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INITIAL - BOUNDARY VALUE PROBLEM
FOR EQUATIONS OF GENERALIZED
NEWTONIAN INCOMPRESSIBLE FLUID

E. ZADRZYNSKA

Abstract. In the paper the existence theorem for a initial — boundary
problem with the Neumann type boundary condition to equations of the
motion of a generalized newtonian incompressible fluid is proved. Moreover,
for a special case of a non-newtonian fluid uniqueness of a solution is proved,
as well.

1. Introduction. Let Q be a bounded domain in R? with boundary S
of class C'. Denote Q7' = Q x (0,7) and ST = S x (0,7T), where T > 0.

In this paper we consider the motion of a non-newtonian incompressible
fluid in Q7 which is described by the equations

(1.1) ve+ (v-v)v —divT(v,p) = f in QF,
(1.2) diveo=0 in QF,

with the boundary conditions

(1.3) v-m=0 on ST,

(1.4) ToT(0, D)7 = go (@ =1,2) on ST
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and with the initial condition

(1.5) vop in Q

v’t:OZ
where T = T(v,p) is the stress tensor, v = v(z,t) and p = p(x,t) are
the unknown velocity and the unknown pressure, respectively. Moreover,
f = f(z,t) is the external force field, g, = gn(z,t) (@ = 1,2) are the
tangent components of the surface forces, m and 7, (o = 1,2) are unit
orthonormal vectors such that 7 is the outward normal vector and 71,79
are tangent to S.
We assume that the stress tensor is given by

(1.6) T =T(v,p) = —pI + 1D,

where I is the unit tensor, ¢1 = ¢1(IIp), IIp = trD? is the invariant
of D,D = {Dj;(v)} = {%(Ui,xj + vj4,;)} is the velocity deformation tensor.
Fluids described by constitutive equation (1.6) are called generalized newto-
nian incompressible fluids and they are special cases of Reiner—Rivlin non-
newtonian incompressible fluids (see[12]), constitutive equations of which
are given by

T = —pl + 1D + $oD?,

where ¢1 = ¢1(ﬁD,mD), ¢2 = (ﬁg(ﬁ[),ﬁp), mD = tI‘DS. In the
case when ¢1(I1p) = 2u, where u > 0 is a constant, relation (1.6) is the
constitutive equation for a newtonian fluid with the coefficient of viscosity
w and in this case (1.1) are Navier—Stokes equations.

The aim of the paper is to prove the existence of a solution of problem
(1.1) — (1.5). System (1.1) — (1.2) was considered in some papers before,
but all of them were devoted to the initial — boundary value problem for
(1.1) — (1.2) with the Dirichlet boundary condition. The first papers con-
cerned with system (1.1) — (1.2) were papers of O. Ladyzhenskaja [6]-[8].
The author considered in [7] system (1.1) — (1.2) with the stress tensor

T= pl+T= {—poir, + ik} satisfying the conditions:
~ 2
L |T(Djp)| < e(1 + [D[7)|D),
Yhere D =D(v), |D| = ( ?J:l D%)I/Q, ¢ > 0 is a constant;
2. Tir(Dj1) Dy > vD*(1 + [D]?),
where v and £ are positive constants;
3. o [Tik(Dé'l) - Ek(D§Q)] (D, — Dig)dx > vo o Z?,k:l(Dék - Dz/'/k-)QdI
for all vectors v/, 0" € W3 () "Wy, (Q) with dive’ = dive” = 0 and
v'|s = v"|g, where 1y > 0 is a constant, D}, = D}, (v') , D} = D} (v").
Under assumptions 1-3 O. Ladyzhenskaja proved in [7] existence of a unique
weak solution to system (1.1) — (1.2) with the initial condition (1.5) and
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with the boundary condition v|gr = 0 in space jéfgmg(QT), which is the
completion of {v € C§°(2) : divv = 0} in the norm

Wlse0, qry = 202, [IWllz2@) + llesllzz@r) + [[IPI]] v or.

In [8] the following systems are considered:

(17) UVt — % |:A(U$)ka:| + ’Uk’l)xk = - VP + f(x’ t)a
dive = 0;
(1.8) v + rot [(vo + 1/1]r0tv|2“)]r0tv + vz, = — D+ f(z,t),
. dive = 0
or
(L.9) v — V() Av + ke, = —Vp+ fla,t),
’ dive = 0;

where A(v;) = vy + v1]vg|**; 1o and vy are positive constants;

v(vg) =19+ 1/1/ vi(x,t)dz  or v(vy) =g+ Vl/ rot? v(z, t)dz;
Q Q
3
v = (v1,v2,v3), v? = |U|2 = ZU?a %25 = |Ua:|2 = Z ”z‘za:j;
i=1

moreover, in (1.7) — (1.9) the summation over repeated indices is assumed.

O. Ladyzhenskaja proved in [8] the existence of weak solutions of initial
— boundary problems to the systems both (1.7) and (1.8) with the initial
condition (1.5) and with the Dirichlet boundary condition. She obtained
the existence of solutions in the space jéiQu’Q(QT) (where p > 1/5) which
is the completion of {v € C§°(€2) : divv = 0} in the norm:

W10y = 0wl ey + ot 2y

Moreover, she proved uniqueness of solutions if p > i. Next, O. Ladyzhen-
skaja proved in [8] existence of a unique solution of the initial — boundary
value problem with v|gr = 0 to system (1.9) in the space

m = {v vess sup ||ve(z, t)|[z2(q) + Ve[ L2(ory < oo}
0<t<T

(see also [6]) and she formulated the classical existence theorem for the
above problem.
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The initial — boundary value problem for system (1.7) is also examined
in [4], where the authors prove existence and uniqueness of a global in time
weak solution of (1.7) with condition (1.7) and v|gr = 0 if p > %0.

Moreover, to the system (1.1) — (1.2) are devoted the papers [2] and [10]
and the book [9].

In [9] different types of initial — boundary value problems for system
(1.1)  (1.2) are considered. The author obtain existence of weak solutions
assuming that the function ¢; occuring in (1.6) satisfies:

VE € [0,00) a1 < ¢1 < ag,

where a1,as > 0 are constants. Moreover, some additional conditions are
imposed on ¢;.

The next paper concerned with system (1.1) - (1.2) is [10], where the
authors prove the existence theorem for the initial — boundary value problem
to system (1.1) — (1.2) in the case when Q = (0,L)" (n=2 or 3, L > 0)
and with the boundary conditions:

ulp; = ulr,,, plr; = plr,;
ou ou
= |. = 3= Vik=12,...,n;
Oxy, IT; Oz ITj4m

where I'; = 0Q N {z; =0}, T'jyp, =00 N {z; = L}.

Finally, H. Amann considers in [2] problem (1.1) — (1.2), (1.5) with
v|gr = 0. Using the theory of semigroups he proves existence and unique-
ness of a solution v € C(RY; W2(Q)) N C'(RL;LYQ)), p € C(RL; W] ()
(where ¢ € (3, 00)) without assuming any coerciveness conditions.

In this paper we prove existence and uniqueness of a weak solution of
problem (1.1) — (1.5) in Q7" where T* is depending on f, g and vy (see
Theorem 3.1). In the case go = 0 (o = 1,2) we obtain a global in time
solution (see Theorem 3.2). In the proofs of Theorems 3.1 and 3.2 we use
the methods of H.W. Alt and S. Luckhaus (see [1]) and J. Filo and J. Kacur
(see [5]). We also use the Korn type inequality from [3] which is presented
in this paper in Lemma 2.4.

In Section 4 we consider the case when T = T(v,p) = —pI + ¢1|D|*2D.
In this case by using the methods of [8] we prove existence of a solution v
of (1.1) — (1.5) such that

2 2
||vel |2y + essogstuSPT*H”(t)nggq(m < oc.

Finally, in Section 5 we prove existence and uniqueness of a solution

v e L>(0,T; Wy, () with v, € L*(Q") of problem (1.1) — (1.5) in the
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case when
T =T(v,p) = —pl + 01‘]1))’2(172]1)) + coD

(where ¢; and cq are positive constants).

2. Notation and auxiliary lemmas. In this paper we denote by
W) (1 < s < o0o) the usual Sobolev space of functions v = v(z) such

that
ov;
1911710y + ZH ey <%
where v = (v1,...,v,), HUHLS(Q) =y, fQ |v;|*dz, 37”3 (j=1,...,n) are
distributional derivatives of v; (i = 1,... ,n). Let X be a Banach space. By

C(0,T; X) we denote the space of defined and continuous on [0, 7] functions
v with values in X equipped with the norm

sup |[v(t)||x-
0<t<T

By L2(0,7; X) and L*(0,7; X) we denote the spaces of functions v such
that
[kl a o]
v(t t<oo an ess sup ||v < 00,
0 @]l 0<t<T X
respectively. Next, by |- |0 we denote the norm in L*(Q2). By D;;(v) we
denote the components of the deformation tensor D = D(v), i.e.

1 dv; 2 \L/2
D;j(v) = E(vixﬂ' +’iji), where v, = 8—33] and |D| = (Z Dij> .
,j=1
In the paper the summation convention over the repeated indices is as-
sumed. Moreover, by C' we denote different positive constants occuring in
the paper.

In the next section we use the following lemmas.

Lemma 2.1. (see [5], Proposition 1)
Let Q C R™, n > 1 be a bounded C*-domain. Assume that
rln+m+1)+m+1

(2.1) 0<m<p< - , >0

and let v be any function in W} (Q) N L™(Q). Then

1
(2.2) /\ P <ol o+ O /|U|m+1dx) o
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for any 0 < n < oo, where

_ (r+Dp—m) _ n(p—m)
vy = and o = .
r(n+m+1)+m+1—np rln+m+1)+m+1—np

The positive constant C depends on 2, n, p, v, m and does not depend on
v and 7.

Lemma 2.2. Assume that v, — v weakly in L™ (0, T; W, (), where
0<7r<oo.
Moreover, assume that the following estimates hold

T—h
%/0 /Q(uu(t+h) — ()’ dzdt < C

and

/vi(t)dng for 0<t<T,
Q

where C' > 0 is a constant independent of v,. Then v, — v in LY(QTY) for
a subsequence.

Proof. The proof is similar to the proof of Lemma 1.9 of [1]. O

Lemma 2.3. (see [5], Lemma 2)
Let 0 < m,r < oo. Suppose that

{vu} ey CL7PHO, T3 Wigy () 0 L0, T3 L™ ()

T

and

T
+1 i
esso?tl%/g [ou@"™ dz + /0 ||UM||7I:VT1+1(Q)dt <C.

Moreover, let v, — v almost everywhere on QL. Then
v, — v strongly in  LTH(QT)

provided
0 < ¢ <max{m,(r(m+4)+m+1)/3}.

The above lemma is proved in [5].
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Lemma 2.4. Let v = (v, va, v3) and let v e W3 (Q), ¢ > 1. Then
2q 2q
(2.3) / dx + |U|2qQ > ¢f|v ||W1 Q)
Q= 1

where v]ag 0 = |[v]|120(0), Dri(v) = %(% + 38_;1%)’ ¢ > 0 is a constant.

Proof. Consider the following system of differential operators:
3 3
D)’U:Z Z stﬁDB’US:ZPjS(D)’US (]:1/ ’6)’
s=1 |g]=1 s=1

where 3 is a multiindex, i.e. 8 = (81, B2, 33), B1 + B2 + B3 = 1; cr1(1,0,0) =

€42(0,1,0) = ©€63(0,0,1) — L, €21(0,1,0) = €22(1,0,0) = €31(0,0,1) — €33(1,0,0) =
052(070,1) = C53(0 1 0) % and the Other stﬂ’S are equal to 0, Pll(D)Ul = 2_2)317
Py(D)vg = 8:1:2 Pe3(D)vg = axs Py (D)vy = é?g; Py (D)vy = %g—;ﬁ,
P31 (D)vy = 523;, Ps3(D)vs %2—1 Psa(D)vg = 5222, Ps3(D)vz = %3,—3’;,
Pia(D)ve = Pi3(D)vs = Pag(D)vs = Ps(D)ve = Pu(D)vy = Pya(D)vs =

P51(D) PGI(D) P62( )1) = 0.
Next, introduce the matrix {Pjs(£)} defined by

P]s(g) = Z stﬂ£11$22 a

181=1
where 81 + (2 + B3 = || = 1, i.e. {P;s(§)} has the form
& 0 0
36 36 0
(raey-| 50 0 8
sE=107 & 0
0 3& 126
| O 0 &
Since rank {Pjs(§)} = 3 for any complex £ # 0, Theorem 11.3 of [3] yields
inequality (2.3). O

3. Existence of solution of problem (1.1) — (1.5). Introduce the
spaces:

Vi= {veC®Q): divv=0,v-7n=0 on S},
H := the closure of V in LQ(Q),
V := the closure of V in WQq(Q) (g>1).
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Since
(Vp,¢) = —(p,div() =0 V(¢ eV,

where p is sufficiently regular we introduce the following definition of the
weak solution of problem (1.1) — (1.5).

Definition 3.1. A vector-valued function v € C(0,T; H) N L?4(0,T;V) is
called a weak solution of (1.1) — (1.5) if

2
(3.1) %0%)+Mwo+dwwo=<ﬁc>+§:<%Qm>‘%GV
a=1

v(0) =vy, where (v,({) = / v - (dz,
Q

(32) a(0,¢) = 3 [ 61Du(0) Dua Q)

0
(3'3) b(”a”a() = U Uk dex, < gaCaTa >= / gac  Tads
o Oz s

for any g, for which the right side makes sense, < f,( > denotes the value
of a linear functional f at ¢ and < f,{ >= [ f - ¢(dz for any f for which
the right side makes sense.

Now, we formulate the existence theorem for problem (1.1) — (1.5).

Theorem 3.1. Let the following assumptions are satisfied:
(34) ¢1 (ﬁD)ﬁD Z Clﬁ%
for any symmetric tensor D;
— —=q—1
(3.5) |p1(TTp)| < ez + 3117,
for any symmetric tensor D;
(3.6) [¢1(ﬁD)Dkl — ¢ (ﬁﬁ)ﬁkl} (Dkl - 1~7kl> >0
for all symmetric tensors D = {Dy} and D = {Dy}. In (3.4) — (3.6)
ITp =trD?, ¢; > 0 (i = 1,2,3) are constants; in (3.4) - (3.5) 1§ < q < .

Moreover, letvg € H, f € L2112—31(0,T; V"), ga € L%(ST)(Q =1,2). Then
there exists T* € (0,T] depending on f,g and vy (satisfying (3.19)) such that
problem (1.1) — (1.5) has a weak solution v € C(0,T*; H) N L?1(0,T*; V).



INITIAL — BOUNDARY VALUE PROBLEM 87

Proof. We shall apply a Galerkin procedure. Let us choose the sequence of
functions wi,... ,w,... such that: V; w; € V; V, wi,... ,w, are linearly
independent; the set of all linear combinations of functions w; is dense in
V. For any p we define an approximate solutions of problem (1.1) — (1.5)
by

I
(3.7) vy, = ch(t)wi,
i=1

(e, wy) + a(vy, wj) + b(vy, vy, wyi) =< fyw; > +

2
+ Y < gawj, Ta > Yy, (3.8)
a=1
(3.9) v, (0) = vo,, where

Vo — Vg In H and "U()M|2’Q < |v0\279.
Putting (3.7) into (3.8) we get

1% 2
Z(wsz])ciu(t) + Aj,u(c,u) =< f7 wj >+ Z < GaWsj, Tey >
i=1 a=1
j=1,...,pn (3.10)
(3.11) cin(0) = (vop, wi), i=1,...,p,
where

u u
Aj#(cﬂ) = a(z cw(t)wi,wj> + Z b(wi,wl,wj)cw(t)cm(t).
i=1 il=1
Since w; for ¢ = 1,... , p are linearly independent, the determinant of the
matrix {(w;,w;)} is not equal to zero and therefore (3.10) can be rewritten
as

" 2
(3.12) cgu(t) + Biu(cy) = Zaij (< frwj >+ Z < GaWj, Ta, >>.
j=1 a=1

By general results concerning nonlinear ordinary differential equations there
exists a solution of (3.11)  (3.12) in an interval [0,¢,]. We shall prove that
t, is the same for all p.

Multiplying the both sides of system (3.8) by ¢;,,(¢) and summing up from
1 to p we obtain

2

(3.13) (vut, vu) + alvy, vu) + b(vy, vy, v,) =< fov, >+ Z < GaVpus Ta >

a=1
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Since

Ovys 1 2 1 ov 2
b(UM;UM,UM) _/Qvlliﬁvujdx_ §Lvﬂlvy]nlds_§/ Zl },LZ 70

(what follows from the definition of V'), instead of (3.13) we get

%%’”#(t)‘g,ﬂ + %/Q¢1Dkl(vu(t))Dkl(”u(t))d$:

2
SR CICESDY [ 9a(00(0) - 7ads,

where [v,(t)]5. = Jolvu(®)*dz, é1 = é1(trD2(v,(1))) = b1 (Dpa(v,(t)) -

Dpa(vu(2)))-
Hence, by assumption (3.4) and by the Young inequality we have

2

%%’”ﬂ(”’ T Cl/Q [Di (0, ()] "da < ()| £(¢ qu T4 (3.14)

2,0

_2q

2
2 1
+ O o+ Slloa@lE,

][00 (8)|2a(s)-

Integrating (3.14) with respect to ¢ in (0,¢) (0 < ¢ < T') and using inequality
(2.3) for sufficiently small n we have

wurm+@/wm|| oyt < ) [5O3 at + (3.15)
2q 1 2 t 2q
Z/ Hga 2L s )dt—l— ’v0|2’9+/0 ‘Uu( ’2qﬂdt

Now, we estimate |vu(t)|gg79 using inequality (2.2) withp = 2¢—1, r = 2¢—1,
n=3,m=1. We get

316) @y <l @I o e ([ o)
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Using (3.16) (with sufficiently small 1) in (3.15) yields

a0 + %/Hvu ||W1(Q) o) [N @F de+ @)

Z/Hga e

TT(s)

|vo|29+c / /|v# |d$)q for t<T.

Denote )
y(t) = |vu(t) |2,Q'

Then inequality (3.17) gives
(3.18) <c+d/ Nids, 0<t<T,

where

t 2g 2 t _2q
c=cln) [IFOIF direm) S [Noa®I™ 5 ditfuof} g, d = el
0 a=1"0 L2a-1(S) '

As in [5] we compare a solution of inequality (3.18) (with the initial condition
y(0) = \Uou@,g < |v0\§ o < c) with the solution z(t) of the integral inequality

—c+d/ qu 0<t<T,

i.e. with the function
() = ¢ — for t€ 0,1/ d(q —1)).
(1= crld(g — )T

We obtain

0<y(t) <=z(t) vtelo,T7],
where

T if T<-———
(3.19) 0<T*= . AT
< TG otherwise.

Hence, by (3.17) we get
3.20 sup |v + / v ydt < C,
( ) Ogtng*} 2 |QQ H u( le ()

where C' > 0 is a constant depending on f, g and vg. Inequality (3.18) yields
(3.21) v, — v weakly in L?1(0,7%;V)
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for a subsequence of (v,) still denoted by (v,). Moreover,

(3.22) v, —v % - weakly in L*(0,T"; H).
Now we shall prove the estimate
1 1= 2
(3.23) . / / (vt + ) — vu(8)) dz dt < C.
0 Q
To do this notice that equality (3.8) is fulfilled for all ¢ € V), = span{wy,... ,
w,, }. Thus,
(3.24)
2
(Uuhé—) + a’(v,ua C) + b(vuvv,ua C) =< fa C > + Z < gaCa Ta > VC € V,u-
a=1

Integrating (3.24) with respect to ¢ in (t,t + h), where 0 <t <t+h < T,
we get

(walt + ) — va(t), C)+ / T o (0), Cdt + / v (t), v (1), €t

t+h

t+h
:/ <f,<>dt+z/ < guCiTa > dt. (3.25)
t a=1 t

To obtain estimate (3.23) we shall use that
t+h

(3.26) }llin%) F(r)dr = F(t).
—0.J¢

From (3.26) it follows that
(3.27)  Vewg 3nso Bl <6 :,/ 1dr < h(F(1)) + ).
Putting in (3.25) ¢ = v,(t + h) — v,(t) and using (3.27) with F(t) =
a(vy(t), v, (t + h) —vu(t)), b(vu(t), vu(t), vu(t + h) —vu(t), < fouu(t+
h) —wvu(t) >, 321 < galvu(t + h) — v,(t)), 7o >, respectively, we get

T*—h

/ / (0t + 1) — va(8))2de dt < (3.28)
0 Q

< Ch /OT*h {/sz |1 Dpr (v (4)) [Dra (v (t + 1)) — Dya(vp(t))]|de

+/Q'vul(t)aav—£(t)(vuk(t+h) 0 (0)|de + | < (), vt +B) = 0(0) >

2
+ /Slga(t)(vu(tJrh) — vu(t)) -Ta|ds}dt+C.
a=1



INITIAL - BOUNDARY VALUE PROBLEM 91
At first estimate

J1 = /(]T*—h{/Q ‘(ﬁlel(Uu(t))[Dkl(Uu(t + h)) Dkl vM ”dI dt.
By (3.5) and (3.20) we have

T*—h
I < c(/o /Q]¢1||vw(t)|]vw(t+h)\dmdt+ (3.29)

s [ [olbw@raa) <o([ 7 [ ool

T*—h )
+ / / |vue(t + R)|“dz dt
0 Q

T*—h 2yt
+ / /Q |V ()] |vuaz (t + h)|dz dt
0

T*—h 9 T* 9 .
+ / / |V (t)] qudt) < C/ / |02 ()] dz dt < C,
0 Q 0 Q

where by C in (3.29) we denote different positive constants.
Next, estimate

Joy = /OT*—h /Q ‘vul(t)%v—a’;l’“(t)(vuk(t + h) — vu(t)) ’dac dt.

Using the Young inequality we get

T*—h ) T*—h ag
C’(/ / |0 (t)| qudt+/ / v, (¢) |27 dz df3430)
0 Q 0 Q
T*—=h _4q_
+ / / ot + 1) [T d )
0 Q

C’(/T*/ v (t)‘2qd$dt+/T*/ v (t)]ﬁ—zldxdt)
o Jo o Jo'" '

To estimate the second term on the right-hand side of (3.30) we use inter-

polation inequality (2.2) with p = 2‘”}, = 2q — 1, m = 1. Hence, by

Jo

VAN

IN

inequality (2.2) we have

T*—h g T* %
/0 /Q|U‘u|2q*1d$dt < 77/0 Hquwl (Q)dt—l— (3.31)

14+
+ Cn~ / /\vu| d:c dt
4¢%2—2q+1

q(102—11)’ Y = G{0-11) and ¢ > %—0, what follows from inequality

for o =

(2.1).
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Estimates (3.30), (3.31) and (3.20) yield

63 [ [ @R O+ R - al]dede < C.

In the same way we obtain the estimate

T*—h 2
| < o+ m — v >|—|—agl/s|ga(t)(vu(t+h)

—vu(t) - Taldsdt < C. (3.33)

Taking into account (3.28), (3.29), (3.32) and (3.33) we get estimate (3.23).
Next, from (3.23), (3.21), (3.20) and Lemma 2.2 it follows that there exists
a subsequence of (v,) still denoted by (v,) such that

v, —v strongly in  L}(QT")

and hence

(3.34) v, —v ae in Q.

From (3.34), (3.20) and Lemma 2.3 it follows

(3.35) v, — v strongly in  L2(Q1).
Now, we shall prove the estimate

(3.36) Vi<k<si<i<s |[¢1Dp(vu)]| L% ) <C

Integrating (3.13) in (0,¢) (where ¢ < T%) and using (3.2) and (3.3) we
obtain

t 1 t
/(Uut,vu)dt + 5/ /(ZSlel(vu)Dkl(v#)dxdt:
0 0 Ja

t 2 et
= / <f,v#>dt+2/ < Galy, Ta > dt.
0 =10

Hence, by the Young inequality and (3.20) we get

1 t t
w®Ba + 5[ [ eDu@IDuwIdzdt+ [ < foo, >+

+ z/ |<gauu,7a>|dt<c/||vu Ol

AL Hé‘%ldwz/uga W a)<c

1 (s)
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Hence
t

(3.37) / / 61 Dyi(v,) Diy(v)dzdt < C, 0 <t < T
0 Jo

In view of assumption (3.6) we have

T+ B
/ /¢1(ﬁD)Dkl(vu)Dkzdﬂfdt < (3.38)
o Ja
T*

< [0 [ 1TT0) Dua(w,) Dual,)dw e +

T L T L
+/0 /Q¢1(I—75)Dkszzdwdt/O /Q¢1(H§)Dlekl(vu)d$dt

for any symmetric D € L2(QT"), where ITp = trD?(v,,), ﬁﬁ = trD2.
Now, we estimate the last term on the right-hand side of (3.38). Using (3.5)
and (3.20) yields

T* o _
/o /Q(bl(IIﬁ)Dkl(U,u)DkldwdtS (3.39)
T - T* "
<c/ /]D) Lld dt+/ /11))2“1 Ldzat) <
<C( | IDlousldzdt-+ [ | D juyldudt) <
T* . T*
O(/ /|]D)|2qudt+/ / (V0 Md dt) < C.
0 Q 0 Q

Estimates (3.37) and (3.39) imply

T* e _
[ [ xTTo)Dute) Pude de < ©

for every D € L24(Q""). Hence (3.36) holds and

IN

J— _2q *
(3.40)  Vick<si<i<s 1(IT1p)Dyi(vy) — X weakly in L2 (Q77)

for a subsequence of (¢1(IIp)Dy(v,)). Taking into account (3.8) — (3.9),
(3.21), (3.22), (3.35) and (3.40) we conclude that v € L*(0,7*;H) N
L29(0,T*; V) satisfies

d 2

70+ 06DQ) +b(v,0,¢) =< f,{>+ 3 < a7 > VCEV

a=1

and v(0) = vg, where

(x, D)) = %/QXlekl(C)dx-

In order to prove that x = ¢1(I1p)D(v) we use assumption (3.6) and apply
the same argument as in [7], [8] or [9].
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In order to complete the proof it suffices to show that v € C(0,7*; H).
To do this denote

T*
(Bv,u) = / b(v, v, u)dt
0

and
T* 2 T
(Av,u) = / a(v,u)dt + Z/ < gall, To > dt.
0 1o

29
We see that B : L27(0,T*;V) — LZ—1(0,7%V’) and A : L?9(0,T*;V) —
2
L7t (0,7*; V). In fact,

HBUH = ‘/ /vl—ukdazdt‘
= T(0,1+;V") <1

||u||L2q(0 T V)

IN

ol ey g Mul]

—1 (QT* 1 (QT*

sup ‘ |Uz | |L2q (QT*
||u||L2q(o,T*;V)—

2
C’ |v’ ’L2Q(07T*;V)

VAN

and

1 T
|| Avl| = sup ‘— / / 1Dy (v) Dy (w)dzdt +
L2q 1 (O T*: V/) ||u||L2¢1(0,T*;V)S1 2 0 (9]

2 T*
+ 3 / / go - Tadsdt| <€ sup [[[ull gz
=Jo s T

Hu||L2q(o T*, V)<1
1 (ST*))]

1 (ST* )

2g—1
(el a0y + 110l 200 1 >+ZHQ I,

IN

2—1
CI1olFaoresy * 110l ooy + ZHgaH

Hence v; € L%(O,T*;V’) what yields that v € C'(0,7%; H). This com-
pletes the proof of the theorem. O

Remark 3.1. Since v € C(0,7*; H) N L?(0,T*;V) is a solution of (3.1)
there exists a distribution p such that Vp = f — v — (v- V)v + div(¢1D) in

* 29
Q" (see for example [11]) and Vp € L7 (0, 7*; V).

In the case g, =0 (o = 1,2, ) we have.
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Theorem 3.2. Let assumptions (3.4) — (3.6) be satisfied. Moreover, let
vo € H, f € L*(QY), go =0 (o =1,2). Then there exists a weak solution
v e C(0,T; H) N L*(0,T; V) of problem (1.1) — (1.5).

Proof. In this case the boundary term >2_; < GaUu, Ta > in (3.13) vanishes
and instead of (3.14) we get

1d 2 , r 1 2
G4 5 ale@] +e [ D) d < 5@+ lu]
Integrating (3.41) with respect to ¢ in (0,¢) we have
t
w®Ba + | [ (D)t < (3.42)
0

t t
L 15O adt+ [ o0 adt + ol o

By the Gronwall inequality, (3.42) yields

(3.43) sup ]vﬂ(t)‘g 0 <C
0<t<T ’
and hence also
t
(3.44) / / [D2,(v,)]“de dt < C.
0 Jo
From (3.44) and inequality (2.3) it follows
(3.45) [ 11l e < 0+ [ lunlitg

Now, using in (3.45) 1nequahty (3.16) for n sufficiently small and (3.43) we
obtain

. <C.
(3.40) s [0+ [ 0] it < C
Next, using (3.46) and the same argument as in Theorem 3.1 we obtain the
assertion of the theorem. O

4. Existence theorem for problem (1.1) — (1.5) with T = —pI + ¢;|D|29721
In the case when T = —pl + ¢;|D|?72D (where ¢; > 0 is a constant) we
obtain the following theorem

Theorem 4.1. Let in (1.1) T = —pl + ¢1|D|*~2D, where g <g<oo. Let
29 29
vo € V, f € L2QY), go € C(0,T;L%1(S)), gux € L21(ST)
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( = 1,2). Then there exists T* € (0,T] depending on f, g and vy (sat-
isfying (3.19)) such that problem (1.1) — (1.5) has a weak solution v €
L®(0,T*; V) with v, € L2(Q17).

Proof. The function ¢; = c;|D|*¥~2 satisfies the assumptions of Theorems
3.1 and 3.2. Our aim is to obtain an appropriate estimate for v, which is
the solution of (3.8) — (3.9) with ¢; = ¢1|D|??~2 and where we assume that
Vo — Vo in V and \|UUM||W21q(Q) < H’UOHW%‘I(Q). To do this multiply the both

sides of system (3.8) by @C‘;t(—t). We get

1 2q—2
(U,utav,ut) + 501/Q|D(Uu)’ ! Dkl(vu)Dkl(vﬂt)dﬂc+b(vﬂ,v#,vut) =

2
= <fovu >+ Y < Galut:Ta > -

a=1

Hence, using the integration by parts we have

oo l 2¢|t=t ¢
/O/S)UNtdxdt+4_q/gz|D(U“)‘ ‘tzodx—i-/o /Q(vu-v)vﬂvutdacdt

t 2
= s v pdr dt + // QUut - Tadsdt. (4.1
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Consider fg Js gavut - Tads dt. Integrating by parts we obtain

t
/ / GaUpt - Tadsdl = / Ga(t)v,(t) - Tads — (4.2)
0o JS S
t

— / 9a(0)v,(0) - T ds f/ / Gaty - Tads dt <

S 0 JS

1 2L 2 2
< =[1ga(0 — 0 o (O]
O Al R [P ] KET

+77HUN LQq (S) +3 / HgatH2q y dt

w2 [
20”"

+Cllunl ity o)+ COllga 0]

2q71
2q
LZ—T(S)

L2a(S) < nga

1(S)
el Ol o +5 ) ol 75,

t
2
+C [ ol oyt

where 71 > 0 is sufficiently small. Moreover,

(4.3) //f wdzdi < C(n //f2da:dt+77// o2,da dt

and the following estimate is derived in [8] (pp. 86-87)

2 4
(4.4) /0 /Q(UM'V)”u'vﬂtdIdtgn/o /Qvutd:l:dt—l—C’(n)/O HquW%q(Q)dt,

where ¢ > 6
Using (4. 2 — (4.4) in (4.1) we obtain for sufficiently small 5

// #td:cdt—i—C’/]]D)vu )[*dz < C /UD)% )[*dx + (4.5)

HI7 11720 {10l | T supllea(0] 2
RS CON L7 (5)

2 2 t 4
+771Hvu(t)Hm21q(Q) +/0 H%qu/;q(ﬂ)dtJF/o ’|UMHW21q(Q)dt>'

Now, using to estimate [, [Dv,(¢)[*!dz inequality (2.3), next inequality
(3.16) and the estimate

2q 2q 2q
[ 1D0,0)"de < € [ 0,0 dz < Clfenl |3, o
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we get instead of (4.5) for sufficiently small 7;

/ [ e dt+Clo @)1y o) < (4.6)

2q

< C|lleolly, ) + 111120 el | “aa - supllga(t qu ;

—1(st) t ()
2 2
ol e+ [ o)

T
+ [ il g o]
By estimate (3.20) (which holds for 0 < ¢ < T™) inequality (4.6) gives

t
2 2q 4
(4.7) ot 12y +S]‘;p’|vl‘(t)||W21q(Q) < e(t) +h/0 [[ullwy (@)t

for 0 <t <T%*, where
2q

o) = C ol 11l ok, FoupllanOl %5, €],
h > 0 is a constant.
Now, denote
= [[ou(®) Il (@
Then inequality (4.7) yields
(4.8) y(t) < e(t) + h/oty%(t)dt, where 0 < ¢ < T,

Considerations of [8] (pp. 87-88) concerning inequality (4.8) yield

(4.9) /0 "Rt < k(D).

where k = k(t) is an increasing function of ¢ € [0,T*].
By (4.8) and (4.9) we obtain

2 2
(4.10) o[22y + ogstung*‘ [0y ) < C-

Estimate (4.10) and the same argument as that used in Theorem 3.1 com-
plete the proof of the theorem. O

If moreover g, =0 (o = 1,2) the following theorem holds.

Theorem 4.2. Let in (1.1) T = —pl +¢1|D|*72D, where ¢ < ¢ < oo. Let
vo €V, fe L), go=0 (a=1,2). Then there exists a weak solution
v € L®(0,T;V) with v, € L>(QT) of problem (1.1) - (1.5).
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Proof. The similar considerations as in Theorem 4.1 and estimate (3.46)
yield

2 2
| |U,ut | |L2(QT) + 0?ng| ’Uu(t) | ’I/Izlq(fl) <G

what completes the proof of the theorem. O

5. Existence and uniqueness theorem for problem (1.1) — (1.5)
with T = —pI + ¢1|D[?372D + c3D. In the nondenegerate case T = —pl+
1/D[?472D + 3D, (where ¢; > 0, ca > 0 are constants) considered also in
[4] and [6] [7], we obtain not only the existence of a solution, but the
uniqueness, as well. We prove the following theorem

Theorem 5.1. Let in (1.1) T = —pl+¢;|D[>* 2D+ oD, where £ < q < oo.
Letvg €V, f € L2(Q1), go € C(0,T; L3(S)), gat € L*(S) (a =1,2). Then
there exists a unique weak solution v € L>(0,T;V) with v; € L*(QT) of
problem (1.1) — (1.5).

Proof. In this case we define an approximate solution of problem (1.1) —

(1.5) by
(Vut, wy)  + %/QDM(UM)DM(wj)der (5.1)

c _
+ %A{D(Uu)|2q * Dyt (v) Dya (w;)dz + b0y, vy, 05)

2
= <f,wj>+z < GaWj, To > Vwj,

a=1
UH(O) = Uom
vop = vo in Voand - ooullwy (@) < llvollwy, )-

Multiplying the both sides of (5.1) by ¢;,(t) and summing up from 1 to p
we obtain

c 2 c 2¢—2 2
(Uut,vp)  + 52 0 [Dkl(”u)] dz + 51/Q|D(Uu){ ! [Dk'l(vu))} dr =
2
= < fv, >+Z < GaVus Ta > -

a=1
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Hence, using (2.3) with ¢ = 1 and the Young inequality we have

1d| o ;
EE‘U““)’QQ + E/QHUN(t)HW;(Q)dt“' (5.2)

C: 2 2
+ 2 [ P frde < cm)lr@l,
2
2 2 2
Ol +C0) Y lga®)y g + alun®)]
=1

Since [v, (D135 < Cllloa(®)l3

we get for sufficiently small n

) integrating (5.2) with respect to ¢ in (0, 1)

2 ¢ 2 t 2
’U#(t)‘zﬂ + 03/0 H”u(t)|‘wgl(9)dt+c4/0 /Q’D(UN” tdz <
t t t
< ([ 1r@bad+ [ ol gt +olyg+ [ a®),).

Therefore, by the Gronwall inequality we obtain

5:3) s o) y2Q+/ o, (t) lede/ (0|2 it < C.

where C'is a constant depending on ||| z2(ar), ||9allr2(sT) and [vol2,0-

Next, using to estimate fOT |D(vu)|gg79dt inequalities (2.3), (3.16) and esti-
mate (5.3) yields

(5.4) Oiltlp vt ’2 Q +/ ’Ullel(Q dt < C.

Next, we shall obtain the estimate of type (4.10). To do this multiply the
both sides of (5.1) by dc’“( ). We get

C C —
W) + 2 [ Du)Dulwa)de+ 5 [ D) Dav,) Dia(vur)de +

2
+ b(vy, v, vu) =< foop >+ Z < GaVuts Ta > -

a=1
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Now, using the integration by parts we obtain

t t=t t=t
2 2] 2 & 2q
/0 /Qvutdacdt + 1 /Q]]D)(v#)] ‘tzodac+4q/§2|]]))(vu)| ’tzodm—F (5.5)
t
+ / /(v#-v)vu-v#td:z:dt
0 JQ

t 2 t
- pdr dt + // aUut * Tads dt.
J R 3 ) g

Consider fg Js 9avut - Tads dt. Integrating by parts we obtain

t
/ / JaUut * Tads dt = / Ga(t)ou(t) - Tads — (5.6)
0 JSs S
t
*/ ga(O)Uu(O) “Tads */ / Gt Vp Tods dt <
0 JS

1 2 2 2 2
§H9a ‘ L2(S )+CHU0HW21(Q) +C(77)H9a(t)HL2(s) +77H”u(t)”w21(ﬂ)

1 2 t 2
i [ Nt syt € [ Tlenl g e

where 7 > 0 is sufficiently small. Using in (5.5) estimates (5.6), (4.3), (4.4)
and (2.3) (to estimate [, |Dv,(t)]*dz and [, |Dv,(t)|*'dz) we have

[ [ e+ a0y + @l o < 6D
< C(HUOHV%q(Q) + HU0|‘W21(Q) + HfHL2(QT)

2 2 t 2
+HgatHL2(sT) + Sl;pHga(t)HL%s) +/0 HUNHW%(Q)dt

t 9 t q t 4
+ [ @B adt+ [ ou®lgde+ [ ol o).

Applying to (5.7) the same considerations as in the proof of Theorem 4.1
we get

2 2 2
(5:8) vl [Faor) + oi?é}”v“(twwg(”) + OzttlgTHvu(t)HVi;qm) <C,

where C' > 0 is a constant.
Estimates (5.4), (5.8) and the same argument as in Theorem 3.1 complete
the proof of the existence.
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Now, we prove the uniqueness of the solution. Assume that there exist

two solutions v’ and v” of the considered problem. Denote u = v/ — v”.

Then
2 2 2g—2
(ug, C) 2/ |D D (V) = DR Dkl(v”)]Dkz(C)dﬂch

+ 6—2/ Dkl(u)Dkl(C)dx + / (wkuxk + ukwwk) -(dx =0 v¢ev, (5.9)
2 Ja Q

where w =

(v +v") and u(0) = 0.
Putting in (5. =u

9) ¢ (t) and integrating with respect to ¢ in (0,¢) we obtain

%’u(t)‘zﬂ + %/Ot/QDD(U'”?q—QDkl(U’)—i-
— D) Du(")|(Du() — D)) de dt

t
+ 2 / / [Dyr(u)] 2de dt
2 Jo Ja
t
+ //(wkuxk—kukwmk)udxdtzo.
0 JQ

Since ¢ > 2 and [§ [o[[D(v")|27 2Dy (v") — [D(v") 272 Dy (v"")] Dy (u)da dt >
0 using inequality (2.3) with ¢ = 1 and the same argument as in [7] (pp. 139-
141) we get

2 b2 . T
OS<UP |u(r |2,Q "‘/0 ||UHW21(Q)dt < Cwaqu(Qtl)(/o |{UHW21(Q)d:U+

t
2 2
+ sup |u(T —I—/ u(t dt, (5.10
s [un) ;o) + [Tl odt. (5.10)
where 0 <t < t1, t; € (0,7], ¢ > 0 is a constant. Choosing ¢; so small that
cl|wg|[L2a(@ny < 1 estimate (5.10) and next the Gronwall inequality yield

t1
2 2
sup |u(t + / U dt <0.
OStStl‘ ( )|2Q 0 I HW?I(Q)

Therefore u = 0 for ¢ € [0,¢1]. In the same way we can prove that u = 0
for t € [t1,t2]. After a finite number of steps we obtain u = 0 for ¢ € [0, 7],
what gives the uniqueness and completes the proof of the Theorem. O



[7]

(8]

(9]
[10]

(1]
(12]

INITIAL — BOUNDARY VALUE PROBLEM 103

REFERENCES

Avrr, H.W. and LUCKHAUS, S., Quasilinear Elliptic Parabolic Differential Equa-
tions, Math. Z. 183 (1983), 311-341.

AMANN, H., Stability of the Rest State of a Viscous Incompressible Fluid, Arch.
Rational Mech. Anal. 126 (1994), 231 242.

Besov, O.V., TLLIN, V.P. and NI1koOLsKII, S.M., Integral Representations of Func-
tions and Imbedding Theorems, Nauka, Moscow (1975) (in Russian).

Du, Q. and GUNZBURGER, M.D.; Analysis of a Ladyzhenskaja model of incompress-
ible viscous flow, J. Math. Anal. Appl. 155 (1991), 21-45.

Firo, J. and KACUR, J., Local Existence of General Nonlinear Parabolic Systems,
Preprint No. M5-91, Comenius University.

LADYZHENSKAJA ,0., The Mathematical Theory of Viscous Incompressible Flow,
Nauka, Moscow (1970) (in Russian).

LADYZHENSKAJA, O., Modification of the Navier Stokes Equations for Large Velocity
Gradients, Zap. Nauchn. Sem. LOMI., vol. 7 (1968), 126-154 (in Russian).
LADYZHENSKAJA, O., New Equations for the Description of the Viscous Incompress-
ible Fluids and Solvability in the Large of the Boundary Value Problems for them, in
“Boundary Value Problems of Mathematical Physics V”, Amer. Math. Soc., Provi-
dence, RI (1970).

LitwiNow, W.G., Motion of Fluid with Nonlinear Viscosity, Nauka, Moscow (1982)
(in Russian).

MALEK, J., NECAS, J. and RUZICKA, M., On the Non-newtonian Incompressible
Fluids, Mathematical Models and Methods in Applied Sciences, 3 (1993), 35-63.
TEMAM, R., Navier—Stokes equations, North Holland (1979).

TRUESDELL, C. and NoLL, W., Nonlinear Field Theories of Mechanics, in Encyclo-
pedia of Physics, Vol. I1I/3, Springer-Verlag (1965).

INSTITUTE OF MATHEMATICS

AND OPERATION RESEARCH

MILITARY UNIVERSITY OF TECHNOLOGY
S. KALISKIEGO 2

01-489 WARSAW, POLAND



