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NONCONVEX SWEEPING PROCESS

H. BENABDELLAH, C. CASTAING, A. SALVADORI, AND A. SYAM

Abstract. We discuss the existence of BV and Lipschitzean solutions for
the sweeping process associated to a nonconvex closed moving set and its
applications to a new class of evolution problem governed by a subdifferen-
tial of a Lipschitzean function. Convex and nonconvex perturbations of the
preceding evolution problem are also studied.

1. Introduction. Convex sweeping process was introduced by J.J.
Moreau in 1971 (in French, rafle, see [25], [26], [27]). We refer to [6] and
[22] for a complete bibliography on the subject. However not much study
has been done for the sweeping process without convexity even in case when
the closed moving set C(t) has the form Cp+ v(t) where Cj is a fixed closed
nonconvex subset in R% and v is a R? valued Lipschitzean mapping de-
fined on an interval [0, 7. In ([29], [30]) Valadier studied some cases of the
sweeping process without convexity, mainly when the closed moving set is
the complementary of the interior of a closed convex moving set, and also
when the closed moving set is of the form epif + (0, p(t)) where f belongs
to a special class of Lipschitzean functions defined on R? and ¢ is an in-
creasing Lipschitzean real function defined on [0,7]. In the present paper
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we will deal with convex and nonconvex perturbations in R of the sweeping
process associated with a closed moving set C(t) in R%:

u'(t) € —No (ult) + F (¢, u(t))
where Ne)(u(t)) denotes the Clarke normal cone to C(t) at u(t) and F is
a bounded closed-valued multifunction defined on [0,7] x R?.

In Section 2 we recall for completeness some useful results and the rela-
tionship between Clarke normal cone and Mordukhovich normal cone (alias
limiting proximal cone).

In Section 3 we present an abstract existence result of BV solutions for
the sweeping process by nonconvex closed moving sets.

Section 4 is devoted to the closure properties of the Mordukhovich normal
cone to a closed moving set C(t) of the form C(t) = A;(Cp) where A; is a
linear isomorphism from R? to R? depending continuously on ¢ € [0, T7.

In Section 5 we provide several applications to convex and nonconvex
perturbations of the above differential inclusion and also the existence of
Lipschitzean solutions (y,6) with values in R*! for the evolution problem

of the form
{ 0(t) = f(y(t) + o(t)
y'(t) € —0'(1)0f (y(t))
where ¢ is an increasing Lipschitzean function defined on [0,77], f is a real
valued Lipschitzean function defined on R¢ and 9f is the Clarke subdiffer-
ential of f.

2. Notations and Preliminaries. We will use the following notions
and notations.

R? is endowed with its canonical Euclidean structure. The scalar product
of z and y is denoted by (z,y).

— If I denotes the interval [0,7] (7" > 0) of R, dt is the Lebesgue measure A
on I, 7\(I) is the o-algebra of all Lebesgue measurable subsets of I and I,
is the interval I equipped with the right topology.

— A subdivision of [0,7] (T' > 0) is a finite sequence (%o, ..., tn) such that
O=ta<t1 <..<t,="1T.

— The variation of a mapping u : [0, T] — R is the supremum over the set of
all subdivisions of [0, T of the sums 37", ||u(t;) — u(t;—1)||. It is denoted by

var(u;0,T). The mapping u has bounded variation (BV) if var(u;0,7T) <
+o0.
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— If u is BV, its left—hand side limit u~ () exists at any ¢ > 0. By convention
u (0) = u(0). The righ-hand side limit is denoted by u™(¢). Then there
exists a vector measure denoted by Du such that

Va < b, Du([a,b]) = u™(b) — u™ (a).
The measure Du is the differential measure of w.

— If p is a positive Radon measure on I and if f € L]%{d(],p), then the
mapping u : [0,7] — R? defined by u(t) = u(0) + f]O . f(s)u(ds) is a BV

and right continuous mapping.

— If C is a nonempty closed subset of R? and = € R?, we denote by §*(-,C)
the support function of C' and we set

projo(z) ={y € C: ||z — y|| = d(z,C)}

where d(x,C) is the distance from z to C. A vector y € R? is normal
proximal to C' at x € C' iff there exists a positive scalar ¢ such that:

(y,a —z) < olla—z|

for all @ € C. We denote by II¢(z) the set of all normal proximal vectors
to C' at € C' and the Mordukhovich normal cone of C at z (alias limiting
proximal normal cone) is defined by:

Mc(z) = {lim y; : Vi, y; € llo(x;), x; € Cand lim x; = z}.

71— 00

— If A and B are subsets of R?, the excess of A over B is
e(A, B) =sup{d(a,B) : a € A}.

(where d(a, B) is the distance from a to B) and their Hausdorff distance is
h(A, B) = max(e(A, B),e(B, A)).

The excess e(A,0) is denoted by |A].

— ¢(R%) (resp. k(R?) (resp. cc(R?) (resp. ck(R?)) is the collection of all
nonempty closed (resp. compact) (resp. closed convex) (resp. convex com-
pact) subsets of R?.

— Isom(R%,RY) is the set of all linear isomorphisms from R to R

For the sake of completeness we summarize the characterizations of prox-
imal points and normal proximal vectors to a nonempty closed set C at
x € C and also the relationship between the Mordukhovich normal cone
and the Clarke normal cone to C at z.

The following easy result is standard.
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Lemma 2.1. Let C be a nonempty closed subset of R%. Then the following
assertions hold:

(a) Let x € RY. Then y € projo(z) iff:
1
Vo€ C (x—y,a—y) < Slla—yll”

(b) Let u € R If v € projc(u), then for every w € [v,u], v € projc(w).

Proof. Indeed, to prove the first assertion, observe that, for every a € C,
we have

lla —all* ~lly —2l* ={(a—2) ~ (y —2),(a—2) + (y —2))
={a—y,at+y—21)
=lla—ylP+(@a—ya+y—2z—a+y)
=lla—yl =2(a-y.z -y

Let us prove the second assertion. Assume that v € projc(u). Then we have
1
Vee O, (u—v,c—v) < §||c—v||2.
Let w € [v,u]. Then w has the form w = v +t(u—v) with 0 < ¢ < 1 so that
(w—wv,c—v) =t{u—v,¢c—v)

1
< tole — ol

1
< Slle—ol?

for all ¢ € C. Hence v € projo(w). O

Remarks 2.2. (a) IIg(z) is a convex cone and in view of Lemma 2.1 we
have the following characterization of Il¢(z) : y € g (z) <= there exists
0 > 0 such that z € projo(x + dy). It is enough to take & = % in the
definition of Tl (x).

(b) y € M¢(x) iff : for every £ > 0, there exists (u,v) € C x RY such that
vello(u), [z —ul| <e, |ly—v|| <e.

The following result is well known (see, for example, [12] and [17]) and
we provide a proof for the convenience of the reader.

Proposition 2.3. Let C be a nonempty closed subset of R with x € C' and
let No(z) be the Clarke normal cone to C' at the point x. Then the following
hold:



Nonconvex sweeping process 221

(a) Ne(z) =coMo(z).

(b) The multifunction x — Mc(x) has closed graph.

(¢) Let V be a closed neighbourhood of x. Then the following equalities
hold:

llo(z) = leny(z), Mo(x) = Menv(x), No(z) = Neav ().
(d) If C is conver, then
Ne(z) = Me(x) = ().

Proof. (a) Let us recall that N¢(z) = U)\adc(x) where do(-) == d(-,C).
A

But dd¢(z) = co Do (x) where

(%

Dc(z) = {0} U{v = lim

i—oo [[og]] |
perpendicular to C at z; with x; — x and v; — 0}

where v; perpendicular to C' at x; means that: v; # 0 and projo(z; +v;) =
{z;}. Tt is clear that YA > 0, we have AD¢(x) C M¢(x). Hence it follows
that
A0dc(x) = co[AD¢(x)] C co Mo ().

Therefore N¢(x) C @ Mc(z). Let us check the converse inclusion. Let any
nonzero y € Mo(z) with y = lim; . v;, v; € le(z;) and z; — = € C.
Choose t; — 04 such that x; € projo(z; + t;y;). Now fix v € T (z) where
Tc(x) is the Clarke tangent cone to C. Then there exist v; — v such that
x; + t? v; € C. By Lemma, 2.1 one has

1
(i + tiyi — x; 3 + v, — 2;) < §t§1 [|vil|>

ie. (yi,v;) < 2t;||v;]|* and hence, taking the limit, one gets (y,v) < 0. So

y € N¢(x) and hence o M¢(x) C No(z). (¥)!

(b) follows from the definition of M (x) .

(¢) First we prove equality IIo(z) = Ilgny (x). Let y € To(z). Then there
exists d > 0 such that z € projo(x+0dy). Whence a fortiori € projony (z+
0y). So y € gy (x). Conversely assume that y € Iony (). Then there
exists 7 > 0 such that x € projony (z + ny). Pick > 0 such that B(z,r) C
V and choose § > 0 such that 0 < § < n and that [|§y|| < 3r. Since
x40y € [z,x+ny|, by Lemma 2.1 x € projony (z + dy). Now we claim that
(%) z € projc(z + 0y).

'(*) The preceding arguments are kindly communicated to us by Lionel Thibault.
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Note that (x%) is equivalent to the following
(5 %) vee O, [|oyl] < [lx + oy — ¢[l.

Let c € C. 1f c € C NV, then (% x *) holds because z € projcny (z + dy). So
assume that ¢ ¢ C'N'V, whence ¢ ¢ B(z,r). Then we have

|z + by — el = |l — el| = [loyl] > 7 = [|6y[| > [|oy]]

thus proving (* * *) and consequently y € II¢(z). Hence we conclude that
le(z) = ey (2).

Equality M¢o(x) = Meony (z) follows easily from the preceding equality
and the definition of M. Indeed the relations y = lim;_,~ y; with Vi, y; €
Me(x;), x; € C and x = lim;_, x; are equivalent to : y = lim; .~ y; (1 > 4)
with ¥Yi > ig, y; € Hc(l‘i) = HCﬁV(Ii)a z; € CNnintV and lim;_, o x; =

Finally we have
Ne(z) =20 Mc(z) = eo Monv (z) = Nenv (2)-

(d) If C is convex and closed, N¢o(x) C e (z) since
y € No(z) <= = = projc(x + ).
U

To end this section we would like to mention several extensions to infinite
dimensional spaces of the notions of normal cone in some series of papers
by Borwein-Strowjas [4], loffe [18], Jofre-Thibault [19], Loewen (]20], [21]),
Mordukhovich-Shao ([23], [24]).

3. Existence of BV solutions: An abstract formulation. We will
provide in this section an existence theorem for BV and right continuous
solutions for the sweeping process by nonconvex closed moving sets in R¢
which is analoguous to a result due to Moreau ([27], Proposition 3b) ensuring
the existence of BV and right continuous solutions for sweeping process by
convex closed moving sets in a Hilbert space. We refer to Valadier [29],
Castaing Duc Ha Valadier [6], Benabdellah Castaing Salvadori ([2], [3])
and Castaing-Marques ([7], [9]) for the case when the closed moving set is
the complementary of the interior of a convex closed moving set. The use of
the limiting proximal normal cone will be decisive in our proof. We would
like to thank Lionel Thibault for recommending this fact.

Theorem 3.1. Let p be a positive Radon measure on [0,T] and let C :
[0, T] — c(R?) satisfying the following conditions:
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(i) h(C(t),C (1)) < pu(]7,t]) whenever 0 <7 <t <T.
(ii) The graph of the multifunction
: Moy (z) ifz e C(t)
G.(t,x)—>{ 0 itz ¢ C(t)
is closed in [0,T], x R? x R? where My (x) is the limiting prozimal
normal cone to C(t) at x € C(t).

Then given x¢g € C(0) there exist a right continuous mapping of bounded
variation u : [0,T] — R and v’ € LL,([0,T), p) such that

(a) YVt € [0,T], u(t) =z + f]o,t] u'(s)p(ds).
(b) —u/(¢) € Nog (u(t)) p-a.c.

Proof. First step : Algorithm. We will adopt an algorithm developed by
Moreau ([27], p. 368 369) (see also Castaing Marques ([7], Theorem 4.2)
providing the existence of approximate solutions for the sweeping process
by C(t). Let (e,)nen be an infinite sequence of positive real numbers, con-
verging to zero. Set v(t) = p(]0,t]) for all ¢ € [0, T, then v is increasing and
right continuous. Hence by taking the inverse images under v of intervals
of the form [p},p, [ with p},; — p}' < &,, one can construct an infinite
sequence (Sy,)nen of finite partition of / into subintervals of the form

Sn : [Oatrll[a [ ?atg[v [ Z(n)—lvT[a {T}

with the following properties :
(j) the increment of v on every interval constituting S, is < €,

(jj) limy, oo max{tl — ¢t ; :i=1,...,v,} =0.
For every n € N, let us define inductively a finite sequence (z}')o<i<y, of
points of R¢ by
(3.1.1) xg = a, i € proj(zi_q, C(t})).
This implies
|2f — 2y [ S H(CH), CE)) < v(ti) — v(tiy).

For every n € N, let us contruct a mapping u,, : [0,7] — R? as follows:

(1) if (el ;) = v(t]), set

Vt € [ti 1, 7], un(t) = =iy = a7

(2) if v(t] ;) > v(t}), set

(v(t7) —v(®)ziy + ((E) —v(E )z

Vt € [ti, 8], un(t) = o(tr) —v(t? )
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(3) for t =T, up(T) = xfn .

Then w,, is right continuous with bounded variation, namely we have that

(3.1.2) [|un(8) = un(s)|| < v(t) —v(s)

whenever 0 < s < t < T. Moreover the differential measure du,, of u,, is equal
to ul dy where u!, : [0,T] — R? is a step function with values in the closed
unit ball of R%. We refer to Moreau for details ([27], Lemma, 1, p. 369-370).
Now let 6, : [0,7] — [0,T] be defined as follows : 0,(0) = 0,60,(t) =t} if
t et |, for 1 <i < w,. Then by (3.1.1), the construction of u, and the

i—17 "
properties of the limiting proximal normal cone to a closed set (see Remark

2.2 (a)), we have

(3.1.3) uy, (t) € —Me(o, 1)) (Un(0n(t))

for all ¢ € [0, 7.

Second step : Convergence of the approximate functions. Since ||ul,(t)|| <1
for all n and all t € [0, T], by extracting a subsequence if necessary we may
assume that u/, — u’ for o(L', L>®)-topology with |[v/(t)|| < 1 p-a.e. By
(3.1.2) we have [|un(0,(t))) — un(t)|| < v(0,(t)) —v(t), for all n € N and all
t €10, 7], so that

(3.1.4) lim u,(0,(t) = lim wu,(t) := u(t)
where u(t) = zo + f]O 1 u'(s)pu(ds), with u(t) € C(t) for all t € [0,T]. More-
over (3.1.3) yields

u,(t) € —Mcp,, 1) (un (On () N B(0,1)

where B(0,1) is the closed unit ball of R?. Now by assumption (ii), one sees
that the multifunction T : [0, 7], x R? — ¢(R?) U {0} defined by

F(tv CE) = MC(t) (:L.) N F(Oa 1)
has closed graph in [0, 7], x R? x R?, hence is upper semicontinuous. Since
by (3.1.4)
lim 60,(t) =¢, lim wu,(0,(t)) = u(t), Vt € (0,717,

n—oo n—odo

then by using Mazur’s lemma, the upper semicontinuity of I' and property
(b) in Proposition 2.2, it is easy to conclude that

—u/(t) € (V28 | TO:0), ur (84 (1)) C T, ult)) T Moy (ult))

n k>n
= Ne (ult))
p-a.e. O
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Assumption (ii) is crucial in Theorem 3.1. Also we will give in the next
section sufficient conditions for which Mx(-,-) has closed graph.

4. On the limiting proximal normal cone to a closed moving
set. In this section we present two closure theorems concerning the graph
of limiting proximal normal cone to a closed moving set in R

Proposition 4.1. Let I, = [0,T], (T > 0) and C : I, — cc(R?). Assume
that the function (t,z) s 6*(x, C(t)) is lower semicontinuous on [0, T, x R%
and the graph of C is closed in [0,T], x RY. Then the multifunction

[ Newl@) frec)
F(t,x){ yew) iz ot

has closed graph in I, x R% x R,

Proof. We have
y € Now(z) <=z € C(t)and (y,z) = 6" (y, C(2)).
Let x, € C(t,) and let y, € No,)(zn) with t,, —tin I, 2, — 2, yp — y-
We need to check that y € Ng)(z). Since the graph of C is closed in
I x R? by hypothesis, we have = € C(t). Since (¢,z) — 6*(z, C(t)) is lower
semicontinuous on [0, 7], x R? by hypothesis, we have
0 (z,C(t)) < liminf §*(xy,, C(t,)) < lim (zy,,y,) = (z,y).

Hence y € Ne) (). O

REMARKS. (a) If C': I, — cc(R?) is lower semicontinuous, then (¢, )
§*(x, C(t)) is lower semicontinuous on [0, 7], x R? by Michael selection the-
orem.

(b) Proposition 4.1 is valid in Hilbert spaces.

In order to state the second closure theorem we need the two following
lemmas.

Lemma 4.2. Let E be a Banach space and L(E, E) the set of all linear
continuous mappings from E into E. Let A : [0,T], — L(E,FE) such that,
Vo € B, t — A(zx) is continuous on [0,T],. Then the mapping

C: (t,z) — Ag(z)

from [0, T], x E into E is also continuous.
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Proof. By standard properties of the right topology, we need only to show
that ¢ is sequentially continuous. Let (t,,z,) be a sequence in [0,7T], x F
such that (t,,,z,) — (t,z) in [0,7], x E. Clearly the set D := {t} U {¢, :
n € N} is compact in [0, T),. So, Vo € E,|J,cp{As(x)} is compact in £ by
hypothesis. Hence, Vo € E,sup||As,(z)|| < co. By virtue of the Banach-

Steinhaus theorem, this impligs that M := sup||A,|| < +00. To conclude
the proof, it is enough to observe that "
1 As, (zn) = Ae(2)[| = ||Ar, (20 — 2) + A, (2) — Ar(2)]]
< M ||y — zf| + |[Ar,, (z) — As(2)]].

Lemma 4.3. Let Cy € ¢(R?) and let A € Isom(R%,RY). Then we have
(4.3.1) z € gy (y) <= A7 (y) € Cy and A*(2) € ¢, (A Y(y))
where A* denotes the adjoint operator of A.

Proof. Indeed z € I 4(¢,)(y) iff y € A(Cp) and there exist o > 0 such that
Ve € Co, (2, A(c) —y) < ol|A(e) -yl

But

(4.3.2) (z,A(c) —y) = (2, Alc = A7 (y))) = (A"(2),c = A7 (y))

and

(4.3.3) 1A(c) — yI? = [|A(c — AT ())II* < [|AIP]le — A7 (w)I%.

So if z € Tl 4(¢y)(y) then y € A(Cp) and there exists o > 0 such that
(4.3.4) Ve € Co, (A™(2),¢ = A7Hy)) < ol|AlP[le = A7 ()|

using (4.3.2) and (4.3.3) and hence A*(z) € Ilc(A1(y)). The other impli-
cation follows by symmetry. O

Theorem 4.4. Let [ = [0,T]. Let Cy € ¢(RY) and t — A; € Isom(R?,RY)
such that for every x € R, t — Ay(x) and t — A7 (x) are continuous on
I.. Then the multifunction

‘ My, o) (x) if z € Ai(Ch)
G:(t,z) —’{ 0 o) z’f:r§§At(C(()))

has closed graph in I, x R% x R,
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Proof. For each t € I, we denote by A; the adjoint operator of A; and we set
C(t) = A¢(Cp). Obviously we have (AF)~! = (A4, 1)*. Let y, € Me(t,)(Tn)
with ¢, — t in I, x, — =z, y, — y. For each n pick :1:7’2" and yﬁ" with
yhn € HC(tn)(Jz,’fﬁ) such that |[zF" —z,|| < 27" and |[yf» — y,|| < 27" (see

Remarks 2.2). By the characterization (4.3.1) we have
(4.4.1) A;}(:v’fl") € Cy and A; (ykr) € 11, (A,;L1 (zFm)).

n

By Lemma 4.2 the mappings (¢,x) — Ay(x) and (¢,x) — A7 '(x) are con-
tinuous on I, x R? and so is (t,7) — A} (z). Consequently we get

(4.4.2) lim. At (akn) = A7 (2) and lim A (yk) = Az (y).

Since Cj is closed, we have A;!(z) € Cp and so x € C(t). Using (4.4.1) and
(4.3.1) we deduce that

b = A(A7H (@) € C(t) and wy 1= (A7)7H(AL, (417) € T ()
By (4.4.2) and the continuity of the mappings A; and (A})~! we obtain
lim v, = A¢(A;7 Y (z)) =z and lim w, = (A)) " (A4} (y) = v.

This proves that y € M) (z). Hence the graph of G is closed. O

5. Applications: Convex and nonconvex sweeping process and
evolution equation. We will present in this section existence theorems
for sweeping process by nonconvex closed moving sets and applications to
a new class of evolution equation.

Proposition 5.1. Let p be a positive Radon measure on [0,T] and let v :
[0, 7] — R? satisfying : for all s <t in [0,T], |[v(t) —v(s)|| < p(s,t]). Let
Co € c(R?). Then given a € Cy + v(0) there are a BV right continuous
mapping v : [0,T7] — R and o' € Lgy([0,T], 1) satisfying the following
properties:

(1) Vt, u(t) =a+ f]o,t] ' (s)u(ds) with ||u'(s)]| <1 p-a.e.

(2) —/(t) € Ny (ult)) p-a.c.

Proof. Set C(t) = Co + v(t) for all t € [0,T]. Then it is obvious that the
multifunction C satisfies

(5.1.1) Vs < te0,T], h(C(t),C(s) < u(ls, 1))
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In view of Theorem 4.4, the multifunction G associated to the limiting
proximal normal cone to C' given by

o MC(t) (x) if z € C(t)
Glt,z) = { 0 it o ¢ O(t)

has closed graph in I, x R? x R? so that by (5.1.1) we may apply Theorem
3.1 to get the result. U

Here is a particular case of Theorem 5.1.

Proposition 5.2. Let v : [0,7] — R be a 1-Lipschitzean mapping and
let Cy € c(RY). Then given a € Cy + v(0), there there is a 1-Lipschitzean
mapping function u : [0,T] — R? satisfying the following properties:

(1) Vt,u(t) =a+ f]o g w(s)ds with |[W/(s)|| <1 dt-a.e.

(2) /(1) € Neyauiy (ult)) di-a.c.

Proof. 1t is enough to see that the multifunction C(-) = Cy + v(-) is
1 Lipschitzean for the Hausdorff distance so that Proposition 5.2 follows
from Proposition 5.1 by taking p = dt. U

From Proposition 5.2 we derive an existence result for a new class of
evolution equation. We are inspired by ([30], Theorem 7).

Proposition 5.3. Let f be a real-valued Lipschitzean function defined on
R? with f(0) = 0. Let ¢ : I — [0,00] be a positive increasing Lipschitzean
function with (0) = 0. Then there exists a Lipschitzean mapping x = (y,0)
from I into R with 2(0) = (0,0) which satisfies the following properties:
(a) V¢, 0(t) = f(y(t)) + o(t).
(b) ¥'(t) € =0'(t)0f(y(t)) dt-a.e., where Of denotes the Clarke subdiffer-
ential of f.

Proof. Set C(t) = epif+(0,¢(t)) for all t € I. Then Proposition 5.2 applied
to the sweeping process

5 { 0.0 € ettt 00

(¥(0),0(0)) = (0,0)
yields a Lipschitzean solution z := (y,0) to (5.3.1). It is also obvious that
Ve, 0(t) > f(y(t)) + ¢(t). Now using the continuity of f and applying Val-
adier’s arguments in ([30], Lemma 6) we get (a) as follows. Assume by
contradiction that Q := {t : 0(t) > f(y(t)) + ¢(t)} is nonempty. Then
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there is Jto, t1[C Q with 0(to) = f(y(to)) + ¢(to). On Jto, 1], 2'(t) = 0 since
—Ng(4)(c) = 0 whenever ¢ € int C(t). But

0(to) = 0(1) > f(y(1)) + ¢(t) = f(y(to)) + ¢(?)
yields a contradiction because ¢ is increasing.

(b) follows easily from (a) and the inclusions

/(1) 0'(1)) € ~Negis(0,000) (W(0): [ () + (1))
= U —brwm) < -1

A€E[0,00]
|

REMARKS. Property (a) allows to obtain (b) and relies on the arguments
of Lemma 6 in Valadier [30] using the continuity of f. When both f and ¢
belong to a special class (S) of Lipschitzean functions [30], Valadier obtains
more information about properties of solutions of the evolution equation
y'(t) € —0'(t)0f(y(t)). Note that Proposition 5.3 completes Valadier’s work
since it provides existence of Lipschitzean solutions z(-) = (y(+),0(-)) for the
sweeping process by C(t) = epif + (0,¢(t)). Unfortunately we are unable
to formulate an analogue for property (b) when f is lower semicontinuous
although solutions = do exist for the sweeping process by C(t) = epif +
(0,¢(t)) with f lower semicontinuous. This is an open problem. There
is another difficult problem concerning the case when f is a Carathéodory
continuous integrand.

Now we establish some results on convex and nonconvex perturbations
for the sweeping process associated to a nonconvex closed moving set.

Proposition 5.4. Let C : [0,T] — c¢(R?) be a k—Lipschitzean multifunction
such that the multifunction

Mow () ifz e C(t)
Glt,e) = { R

has closed graph in [0,T] x R? x R%. Let F : [0,T] x R? — ck(R?) be a
multifunction such that, ¥(t,x) € [0, T] xR, |F(t,z)| < m for some positive
constant m and that : for every fixzed t € [0,T], F(t,-) is upper semicon-
tinuous on RY, for every fived x € R F(-,z) has a Lebesgue measurable
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selection. Then, given a € C(0), there is a Lipschitzean solution x to the
differential inclusion

—2'(t) € No)(x(t)) + F(t,z(t)) a.ec.
z(t) € O(t),Vt € [0, 7]
z(0) =a

Proof. For every n € N, set t}' := i%, 0<i<uy,=2" and zj = a. Pick

z7 € proje(m)(zf) and a measurable (hence integrable) selection o7 of the
multifunction F(-,a). For every t € [tf,t]]. we set

Pick 23 € projc(sm) (@, (t7)) and an integrable selection o3 of the multifunc-
tion F(-, z,(t7)). For every t € [t} 3], we set

xh — xp, (1] t
ult) = () + 2 -y - [ oy
2 U tn
Then, by induction, we obtain a mapping x,, : [0,T] — R? such that
!t — x, (T t
ralt) = ottt + S Gy - [ s

n __ 4n
i =t o,

for every t € [t} 1,¢]'] with i = 1,..,v,, where 2} € projcm)(zn(t;,)) and

ol is an integrable selection of the multifunction F'(-, z,, (¢ ;)). We consider
the two following mappings d,, and 6,, from [0, 7] to [0,7] defined by:
on(ti') = On(t7) = 13", and 6, (1) = iy, On(t) =t}
for ¢ €]t? |, t?[ and for 1 <i <, . Let us denote by
Ji=[ti g, [ for 1 <i <wvpand J) = [t 4,T].

i—1> Y1 vn—01»

Let us consider the mappings T, y,, 2z, defined on [0, 7] as follows. For all
t=1,...,v, and for all t € J, we set

x — (17 )

Tn(t) =2, yn(t) = T and z,(t) = —oj'(t).
i Tl

Then one can easily check that the following properties hold:
(5.4.1) Vte[0,T], t —=T/2" <6,(t) <t < 0,(t) <t+T/2".

(5.4.2) V£ €[0,T], Fn(t) € C(0n(t)) and ||z, (0n(t)) — Tn(t)|| < mT/2".

(543) Ve 0,1], lyn(®)ll < k+m and ||z (0)]] < m.
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(5.4.4) Yt € [0,T], yn(t) € —Tlgo, 0 (Fn(t)) and 2z, (t) € —F (£, 2, (64 (£)))-

t
(5.4.5) YVt € [0,T], zn(t) = a —I—/ x) (s)ds where x!, =y, + 2.
0

By standard arguments, it is not difficult to see that (y,) and (z,) are
relatively weakly compact in Lg,([0,T7],dt), and (z,) is relatively compact
in the Banach space Cra([0,7]). By extracting subsequences, we may ensure
that v, — v, 2, — 2z weakly in L]Ed([O,T], dt) and z,, — x in Cga([0,T]) so
that

t
(5.4.6) z(t) =a +/ 7'(s)ds, Vt € [0,T], where 2’ :=y + z.
0
On the other hand, since
(5.4.7) Vit € (0,7, lim x,(0,(t) = lim z,(t) = x(t)

and the graph of C' is closed, we have

(5.4.8) Vit € [0,T], z(t) € C(t).

Now let us consider the multifunction I' : [0, 7] x R? — ck(R?) U {0} :
V(t,z) € [0,T] x R4, T(t,z) := —G(t,z) N B(0,k +m).

Then by hypothesis, I' has closed graph, hence I' is upper semicontinuous
on [0,T] x R% Moreover, by (5.4.3) and (5.4.4), we have

(5.4.9) Yt € [0,T], yn(t) € T(0,(L), Fn(t)).

Since 6,,(t) — t and Z,(t) — x(t) for every t € [0,T], by upper semiconti-
nuity property of I', we conclude that

(5.4.10) vt € 0,77, ﬂ@ [j I'(0,(t), z,(t)) Ceol'(t, z(t)).
By Mazur’s lemma, we have s

(5.4.11) y(t) € (o f_j{yp(t)} a.e.

So (5.4.9), (5.4.10), (5.4.11) imgly yl(]t)ne col'(t,z(t)) a.e. Hence
(5.4.12) y(t) € —=New (z(t)) a.e.

because

T (t,2(t)) € 2 [~ Mgy ((t))] = ~Neg (b))



232 H. BENABDELLAH, C. Castaing, A. Salvadori, AND A. SYAM

by Proposition 2.3 (a). Since Vi, x,(,(t)) — x(t), then by using similar
arguments and (5.4.4), we get

(5.4.13) z(t) € =F(t,z(t)) a.e.
This completes the proof. O

Now we consider nonconvex perturbation of the sweeping process associ-
ated to a nonconvex closed moving set.

Proposition 5.5. Let Cy and v as in Proposition 5.2. Let F : [0,T] X
RY — k(R?) be a multifunction such that, ¥(t,z) € [0,T] x (Co + v([0,T1)),
|F(t,z)] < k for some positive constant k. Assume that F is uniformly
continuous on [0,T] x (Cy + v([0,T])). Then given a € C(0) there is a
Lipschitzean solution to the differential inclusion

{240 Moo (40 + 10
u(0) =a

Proof. The details of the proof is very long since both Cy and F' are not
convex valued. Also we only sketch a proof which relies on Proposition 5.2
and a special algorithm due to Gamal ([15], [16]) which has been already
exploited by ([1], [14], [28]) in similar problems. Since this algorithm needs
several steps of computation, we do not produce the details because of the
lack of place. However the idea of the proof is quite simple. Using Gamal’s
algorithm ([15], [16]) in accord with the properties of limiting proximal
normal cone, we construct as in the proof of Proposition 5.4 two sequences
(0,) and (6y,) of simple mappings from [0,7] to [0,7], a sequence (uy) of
equi-Lipschitzean mappings from [0,7] to R?, a sequence of measurable
mappings (h,,) from [0, 7] to R? with the following properties:

(5.5.1) Vi, nILH;O On(t) = nlLIgo on(t) =t.

(5.5.2) Vt, |uL (@) <1+ 2k.

(5.5.3) Uy, (t) — hn(t) € Mc(a, 1) (Un(0n(t)) dt-a.e.

(5.5.4) hin(t) € F(6,(t), un(6,(t)) dt-a.e.

(5.5.5) (hy) is relatively compact for the norm of L4 ([0, T, dt).

Using (5.5.2), (5.5.4), weak compactness of (u},) in Ly, ([0, 7], dt) and (5.5.5),
we may suppose that u], — u’ weakly in Lﬁ{d([(}, T}, dt) so that by (5.5.1)

nli_)rgo un (0 (1)) = nh_{go Uun (0n (t)) = u(t)
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with V¢, u(t) = a + fot u/(s)ds. By (5.5.5) we may suppose that h, — h

strongly in Lg,([0,T],dt) and almost everywhere. Now by Theorem 4.4 the

graph of (t,z) — Mg () is closed so that the multifunction I' defined by
L(t,x) = Mg (z) N B(0,1 + 2k)

has closed graph and compact values, hence upper semicontinuous on I x
R?. So using Mazur lemma, the upper semicontinuity of T, the fact that
Ney(z) = @ Mgy (x) for z € C(t) (see Proposition 2.3) and (5.5.3) we
get u'(t) — h(t) € Now(u(t)) dt-a.e., with h(t) € F(t,u(t)) dt-a.e. by using
(5.5.4). O

To end this paper we present in R? an example characterizing the limiting
proximal normal cone to a closed nonconvex moving set and providing also
an interesting variant of Theorem 3.1.

Let us consider the space R? with d = 2, e; = (1,0) and ez = (0,1).
Given p and ro in RT, we set

Vt € [0,1],7(t) = pt + 79, and S(t) = {z € R : ||z]| = r(t)}.
and we consider the following closed moving set
C(t) = S@) U[r(t)er, (ro + p)e].

Let 0 <t < 1. The closed set C(t) = S(t) U [r(t)e1,r(1)e1] is geometrically
represented as follows.

It is easy to see that the multifunction C' is p—Lipschitzean on [0, 1]. Let = €
C(t). In order to characterize Mc () (), it is enough to determine T ().
We use the following property

(€llgy(z) <= Ty € R, § > 0 such that z € projo) (y) and ¢ = §(y—x).

So it suffices to determine all the vectors y — = with y € R? such that
T € projc(y (y) since all homothetic vectors d(y — z) with 6 > 0 belong to
o) ().

Given = € C(t) there are only three positions of z on C(t) which are
represented by the vectors u, v and w (see Figure 1).

(1) First case: Figure 2 : x = u.
Since u is situated on the circle S(¢) with radius r(¢) and center 0, we have
e (u) = Mg (u) = New (u) ={ M u: A€ R} =Ru
Indeed only the points y in R? such that
u € projg ) (y)
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r)=>0+r

radius: r(t)

r(1)e,=xg

XV

FIGURE 1

are those which are situated on the line A, = R.u

(2) Second case: Figure 3 : x = wv.

Is is easy to see that only the points y in R? such that
v € projo(y) (v)

are those which are situated on the segment [0,v]. Indeed, consider the
domains D1, Do, D3 and Dy presented in the Figure 3.

If either y € D or y € Do, then the proximal points of y to C(t) are situated
on either S(t) \ {v} or |v, z).

If either y € D3 or y € Dy, then the proximal points of y to C(t) are situated
on S(t).

So only the points y € [0, v] satisfy v € projo(y)(y) and if y € [0, v], we have
y—veR e ={le1: A <0} =R™ x {0}.

Consequently
Hc(t)(v) =R e =R x{0}.

Third case : Figure 4 : x = w.
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FIGURE 2

Since w € |r(t)e1,r(1)e1[ and |r(t)e1,7(1)e1[ is a convex subset of the closed
subset C(t), we have

Mo (w) = Mo@y(w) = No@ (w) =R.ep = {0} x R.

So only the points 3 in R? for which w € Projc(s) (y) are those situated on
the line
Ay =w+ Rees.

Now we will give a direct proof of the existence for the following sweeping
process associated to the closed moving set C(t). Given a € C(0) with
a # roe1. (**)? Then the sweeping process SW*

u'(t) € —=Neg(u(t)) dt-a.e. t €[0,1]
u(t) € C(t)
u(0) =a
admits an absolutely continuous solution.
Proof. First case : rog # 0. In this case C'(0) = S(0) U [z0, o] where S(0)

is the circle of center 0 with radius ro > 0. Since a € C'(0), we have either
a€ S(0)oraé€ [z, Tool

2(**) Tt is also interesting to consider the case where a = roei.
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FIGURE 3
S(t
(1) y
_____ w r(l1)e1
y
Cw

FIGURE 4
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If a € S(0), ||a|| = 70. Set

Vit € [0,8], ut) = r(t).—2 = (pt + 10)

a
lal] lall

Then u is absolutely continuous on [0, 1] with u(t) € S(¢) for all ¢ € [0, 1]
and u/(t) = pa/||al|. By the case of Figure 2 we have

Ny (u(t)) = Rau(t) = R.a.

Since a # roe1 we have pa/|lal| € —Ngq(u(t) = R.afor all € [0,1]. Hence
u is solution of SW*.

If a €]z, o], then a = r(tp)er with 0 < ¢y < 1. Set

. a ifte [0, t(][
“w—{rmqiuem@
then u is absolutely continuous and
’ N 0 if t e [0, to[
Y (t) - { pel ift e [to, 1]

Then Vt € [0,to], u(t) = a € [r(t)er,r(1)e1] € C(t) and v/ (t) = 0 €
Ney(u(t)). Now Vi € [to, 1], we have u(t) = r(t)er € S(t) N [r(t)er,r(1)e1].
So u(t) corresponds to the case of Figure 3. Since —u/(t) = —pe; €
e (ut)) = R7er, we may conclude that u is a solution of the sweep-
ing process SW*.

Second case : g = 0. In this case S(0) = {0} and
a € C(0) \ {0} =0, peq]
Hence a = r(tg)e; with 0 < ¢y < 1. Then as above it is easy to check that

a if t € [0, to]
u(t) = { r(t)ey if t € [to, g}

is a solution of the sweeping process SW*. O
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