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COUNTABLE DECOMPOSITION OF
DERIVATIVES AND BAIRE 1 FUNCTIONS

UDAYAN B. DARJI

Abstract. We give conditions under which Baire 1 functions, Darboux
Baire 1 functions and derivatives are not countably continuous.

Recall that f : A — B is countably continuous iff there exists {4,,}2°
such that U2, A,, = A and f|A,,, the restriction of f to A,, is continuous.
If A, B are Polish spaces and f, in addition to being countably continuous,
has some sort of regularity property, then A can be decomposed in a way
so that A,’s have appropriate regularity property as well. For example, if
A, B are Polish spaces and a countably continuous function f is of Borel
class 1, then A can be decomposed so that A,’s are Gy sets. To see this,
let {A,,} be an arbitrary decomposition of A so that f|A, is continuous for
all n. Now, we may choose an extension f*|A* of f|A4,, so that f*|A* is
continuous and A7 is a G set containing A,,. Since f is of Borel class 1 on
A, and f* is continuous on the G5 set A, we have the set of points of A}
where f* = f is a G5 set. Hence we have extended A, to a G set where f
is continuous.

It was conjectured by Jackson and Mauldin [3] that if X is the the Ba-
nach space of real-valued bounded Baire 1 functions defined on [0, 1] or the
Banach space of bounded derivatives defined on [0, 1], then D,,(X), the set

of functions in X which are countably continuous, is meager in X. It was
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shown by van Mill and Pol that indeed such is the case [5]. We give a
general condition (Theorem 2) under which Darboux Baire 1 functions and
derivatives are not countably continuous. From this condition we obtain
Theorem 3 which shows D, (X) is nowhere dense in X where X is either
the Banach space of bounded derivatives or the Banach space of bounded
Darboux Baire 1 functions. It also follows (Corollary 2) from Theorem 2
that no Pompeiu derivative is countably continuous.

Jackson and Mauldin [3] also showed using some notions of recursion
theory that the Lebesgue measure viewed as a function defined on the set
of compact subsets of [0,1] is an upper semicontinuous function which is
not countably continuous. In the paper mentioned earlier [5], van Mill and
Pol gave a direct argument for this result. We give a condition (Theorem 1)
under which a Baire 1 function from a Polish space into Polish space is not
countably continuous. As a corollary to Theorem 1, we obtain even a simpler
proof of the fact that the Lebesgue measure is not countably continuous.

At this point the author would like to thank Micha Morayne, Abhijit
Dasgupta, and Roman Pol for many stimulating conversations and corre-
spondence on the subject. The reader is referred to [2] for several interesting
remarks and observations resulting from this collaboration as well as an ex-
pository treatment of the subject.

We now introduce some definitions and terminology most of which may
be found in [1] and [4].

A function f : [0,1] — R is Darboux means that it satisfies the inter-
mediate value property. We will use standard facts about Darboux Baire 1
functions which may be found in Chapter 2 of [1]. More specifically, recall
that a Baire 1 function f : [0,1] — R is Darboux iff f has a bilateral road
at each z € (0,1) and a unilateral road at 0 and 1. (We say that f has
a bilateral road at =z if there is a set M such that z is a two-sided limit
point of M and f|M is continuous at x. A unilateral road is defined in an
analogous manner.)

We let bDB; (bA) denote the Banach space of bounded Darboux Baire 1
functions (bounded derivatives) equipped with the sup norm. We let DB,
denote the linear space consisting of Darboux Baire 1 functions defined on
[0,1]. Note that bA C bDB; C DB;. If X is some space of functions,
then we use D, (X) to denote the set of functions in X which are countably
continuous.

We say that f :[0,1] — R is a Pompeiu derivative iff f is a derivative and
f is zero on a dense set without identically vanishing. Recall that Zahorski
type functions which are “lifted” on dense, first category, F, sets (Thm 6.5
in [1]) and the derivatives of differentiable nowhere monotone functions are
Pompeiu derivatives.
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We let K(I) denote the set of all closed subsets of the unit interval [0, 1].
Recall that IC(I) forms a compact metric space when endowed with the
Hausdorff metric. If M C R is measurable, then we use A\(M) to denote
the Lebesgue measure of M. Also recall that A : K£(I) — [0, 1] is an upper
semicontinuous function.

Finally, we use c/(M) and bd(M) to denote the closure of M and the
boundary of M, respectively.

Theorem 1. Suppose A, B are Polish spaces, f: A — B is a Borel class 1
function, and U is an uncountable collection of open subsets of B such that

1. if U,V eld and U #V, then cl(U) CV or (V) CU, and
2. for each U € U, Py \ f~1(U) is dense in Py where Py = cl(f~Y(U)).

Then f is not countably continuous.

Proof. To obtain a contradiction, assume that f is countably continuous
and that {A4,} is a sequence of Gj sets such that f|A, is continuous and
UA, = A. Since f is Borel class 1, we have that for all U € U, Py \ f~1(U)
is a dense G subset of Py and f|Py is continuous on some dense G subset
of Py. Intersecting the points of continuity of f|Py and Py \ f~1(U), we
obtain a Gg set Qu C Py \ f~1(U) such that Qp is dense in Py and f|Py is
continuous on Q. As f~1(U) is dense in Py, we have that f(Qu) C bd(U).
Now let {O,,} be a countable basis for A and for each n,m € N, let

H(n,m)={U €U : PyNO,, #0, and A, N Py is dense in Py N O,,}.

As {A,} is a sequence of G sets whose union contains the set Py, utilizing
the Baire category theorem we have that every U € U belongs to some
H(n,m). Hence |JH(n,m) =U. Now choose n’,m’ € N so that for some
U,V € U we have that c/(U) CV and U,V € H(n',m'). Note that Py C
Py. As A, is Gs and dense in Py N O,,, we have that A,y N Qy N Oy, is
a dense Gy subset of Py N Oy, and f(A, N Qu N Opy) € bd(U). Similarly,
we have that A,y NQy N O, is a dense G subset of Py N O,y and f(A, N
QvNOyy) Cbd(V). Now consider y € A,y NQuNOyy. Then, f(y) € bd(U).
However, y is a limit point of A,,NQyNO,, and f(A,NQyNOy,) C bd(V).
Since bd(U) Nbd(V') = 0, we have a contradiction. O

Corollary 1. The function X : K(I) — [0,1] is an upper semicontinuous
function which is not countably continuous.
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Proof. As stated earlier, it is easy to verify that A is upper semicontinuous.
Hence, X is of Borel class 1. We now use Theorem 1 to show that A is
not countably continuous. Let U = {(1/2 —¢,1/2 +¢€) : 0 < € < 1/2)}.
Then U clearly satisfies condition (1) of Theorem 1. Let us now show
that condition (2) of Theorem 1 is satisfied to conclude the proof of the
corollary. Let U = (1/2 —¢,1/2+¢) € U. Then, Py = cl(A~Y(U)) is just
{M € K(I) : X\(M) > 1/2 — €}. Since for every M € Py there exists,
arbitrarily close to M, N € KC(I) such that A(V) = 1/2 — ¢, we have that
Py \ A7Y(U) is dense in Py. O

Theorem 2. Suppose f € DBy such that graph(f|C(f)), the graph of f
restricted to the points of continuity of f, is not dense in graph(f). Then
f is not countably continuous.

Proof. Let I,J be open intervals such that graph(f) N (J x I) # () and
graph(f|C(f))N(J x 1) =0. Since f is Darboux and graph(f|C(f))N(J x
I) =10, f(J) is an interval. Hence, f(J) NI is an interval. Let t € f(J)N [
and € > 0 be such that (t —¢,t+¢) C f(J)NI and f(0), f(1) ¢ (t —¢,t+¢€).
LetU = {(t—9,t4+0) : 0 < 0 < €}, A= J and B = I. Then U clearly satisfies
condition (1) of Theorem 1. Let us show that it satisfies condition (2) as well.
Let U € Y. Since graph(f|C(f))N(J xI) =10, and cl(U) C I, we have that
f~H(cl(U)) N J is nowhere dense in J. Therefore, cl(f~(U))N.J is nowhere
dense in J. Since f € DBy, f has a bilateral road at every point of (0, 1).
Therefore, all endpoints of connected components of [0,1] \ cl(f~1(U)) N J
map outside U under f. Hence, condition (2) of Theorem 1 is satisfied as
well and we have that f is not countably continuous. U

Corollary 2. Let f : [0,1] — R be a Pompeiu derivative. Then f is not
countably continuous.

Proof. Let I be an open interval such that 0 ¢ cl(I) and f([0,1]) N T # 0.
Since f is zero on a dense set, graph(f|C(f)) N ((0,1) x I) = (. Hence it
follows from Theorem 2 that f is not countably continuous. U

Theorem 3. If X = bDB; or X = bA, then D,(X) is nowhere dense
in X.
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Proof. Let
G ={f €bDBy : graph(f|C(f)) is dense in graph(f)} and

H = {f € bA : graph(f|C(f)) is dense in graph(f)}.

We will show that G and H are closed and nowhere dense in bDB; and
bA, respectively. This fact, together with Theorem 2, yields a proof of the
theorem. ]

Let us now show that H is a nowhere dense closed subset of bA. (An
argument very similar to the one that follows will show that G is a nowhere
dense closed subset of bD By as well.) It is easy to verify that H is closed.
To show that H is nowhere dense in bA, it suffices to show that bA \ H
is dense in bA. To this end, let f € bA and let ¢ > 0. Let p € (0,1) be
a point of continuity of f. Let 6 > 0 be such that (p —d,p + J) C (0,1)
and if x € [0,1] and [p — 2| < 6, then |f(z) — f(p)| < §. Now, let [ be
the line that goes through (p — 0, f(p — ¢)) and (p + 9, f(p + 9)) and let
u: [p—4,p+6] — [0, £] be an approximately continuous function such that
u(p — 0) = u(p+0) =0 and graph(u|C(u)) is not dense in graph(u). Such
a function u maybe constructed using Thm 6.5 of [1]. Define g : [0,1] — R
as follows:

f(z) if x € [0,p — 9]
g(z) =< l(z)+u(z) ifxe(p—9§p+9)
f(z) ifxep+9,1].

Then, g € bA, d(f,g) < €, and graph(g|C(g)) is not dense in graph(g).
Hence, bA \ H is dense in bA.
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