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Abstract. We consider the motion of a viscous compressible heat conduct-
ing fluid in R? bounded by a free surface which is under surface tension and
constant exterior pressure. Assuming that the initial velocity is sufficiently
small, the initial density and the initial temperature are close to constants,
the external force, the heat sources and the heat flow vanish, we prove the
existence of global in time solutions which satisfy, at any moment of time,
the properties prescribed at the initial moment.

1. Introduction. In this paper we consider the global motion of a
viscous compressible heat conducting fluid in a bounded domain Q; C R3
which depends on time ¢ € Rﬁ_ . The shape of the free boundary S; of ()
is governed by the surface tension.Then the problem is described by the
following system with the boundary and initial conditions (see [4], Chs.2
and 5 ):

plo+ (- -Vv] + Vp—puAv—vVdive =pf in Q7
pe + div(pv) =0 in QT
pcy(0r + v - V) + Opg dive — kAG + (1.1)
3 ~

% Z Vi, + Vja;) 12— (v —p)(dive)? = pr in Q7
Thn —ocHn = —pon on ST,

_ Pt ST
VN = ——— on S,

Vol

0 -
g_n =0, on ST,
V|t=0 = v0, plt=0 = po, Olt=0 = 0o in Q,

where ¢(z,t) = 0 describes Sy, 7 is the unit outward vector normal to the
boundary (i.e.ﬁ = ‘g—?;'), Qr = Use(o,r) ¢ x {t}, Qo = Q is an initial do-
main, 57 = Ure(o,r) St x {t}. Next, v =o(z.t), p = p(z,1), 0 = 0(x,1), de-

note the velocity, the density and the temperature of the fluid, respectively.
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Moreover, f = f(z,t) is the external force field per unit mass, r = r(z,t)
— the heat sources per unit mass, 6; = 01(x,t) — the heat flux, p = p(p, 0)

the pressure, p and v the viscosity coefficients, k  the coefficient of
the heat conductivity, ¢, = ¢,(p,0) — the specific heat at constant valume,
po — the external (constant) pressure. We assume that coefficients u, v, k
are constans, g—g(p, 0) >0, %(p, #) > 0 and thermodynamic considerations
imply that ¢, >0, s >0, v > & > 0.

Next, T = T(v,p) denotes the stress tensor of the form

T = {T};} = {—pdij + n(vie; + vja,;) +

+(v — p)dij dive} = {—pdi; + Dj;(v)},
where i, j = 1,2,3, D(v) = {D;;(v)} is the deformation tensor.

By H we denote the double mean curvature of S; which is negative for
convex domains and can be expressed in the form

Hn = Ag,(t)x, x=(r1,22,73),

where Ag,(t) is the Laplace-Beltrami operator on S.

Let S; be determined by
z=x(st,s%t), (s',s%) e R%. (1.2)
Then we have

10 _1, 0 1 0 1,30
As(t) =9 50 2 hapm 5 =0 25 2079" 5

(Oé, g =1, 2) )

where the convention summation over the repeated indices is assumed,

g = det{gap}ta,p=12+ Gap = Ta - T3 (xa = g—ﬁ), {g°”} is the inverse matrix

to {gap} and {Gag} is the matrix of algebraic complements of {g3}.
Assume that domain Q is given. Then by (1.1)5, & = {z € R? : z =

x(&,t),€ € Q}, where x = x(&, t) is the solution of the Cauchy problem

(Z_f :v(x,t), x|t:0 :ga é.: (61752363)' (13)
Hence

t
r=¢ +/0 (e, s)ds = Xo(E,1), (1.4)

where u(&,t) = v(X,(&,t),t).

Formula (1.4) yields a relation between Eulerian z and Largangian &
coordinates. Moreover, the kinematic boundary condition (1.1)5 implies
that boundary S; is a material surface. Thus, if { € S = Sp then X, (&,t) €
Sy and Sp = {z : x = X, (&, 1), £ € S}
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By the equation of continuity (1.1); and (1.1)5 the total mass M of the
drop is conserved and the following relation between p and

/ plx,t)yde = M
Q¢

holds.

In the paper we prove the existence of global in time solution of problem
(1.1) near a constant state. Before introducing the definition of the constant
state take 0, = ﬁ Jo 00 d€ and consider the equation

M 20
0. | =po+ =. 1.
b ((%W> 3 ) ) Po Re ( 5)

e

We assume that equation (1.5) is solvable with respect to R, > 0.

Definition 1.1. Let f = r = 6; = 0. Then by the constant (equilibrium)
state we mean a solution (v, 6, p, ;) of problem (1.1) such that

v=0, 0=0., p=pe, ©=Q for t>0,

where p. = M /(47 /3)R2, Q. is a ball of radius R, which is a solution of the
equation (1.5).

The paper consists of five sections. In Section 2 we introduce some nota-
tion and auxiliary results used in the paper. In Section 3 we formulate the
local existence theorem (see Theorem 3.1) proved in [19]. In Section 4 we
present the differential inequality (see Theorem 4.1) derived in [24]. Sec-
tion 5 is devoted to the global existence theorem (see Theorem 5.5).

The main result of the paper Theorem 5.5 is proved under the appro-
priate choice of pg,vg, 0y, 01, po, 0,k and the form of the internal energy per
unit mass € = €(p, ) (see assumptions (2.5) and (5.37); — (5.40)) and under
the assumptions that ¢(0) < oy and || H(-,0) + R% Hg’slg asz (¢(t) is given
in (4.5)), where o and as are sufficiently small. In Theorem 5.5 we prove
a global solution of (1.1) such that (v, Yo, ¥, ps, pa,) € M(t) for t € R,

(Jo, U, po, pa, are defined in (4.1) and M(¢) is defined in the beginning

1
of Section 5) and S; € VV24 "2 The method used to prove Theorem 5.5 is

similar to that in paper of W.M. Zajaczkowski [29].

The global existence theorem in the case without surface tension, i.e.
when o = 0 is proved in [25], while conservation laws and a differential
inequality for this case are presented in [21] and [23], respectively. Moreover,
in [21] we prove that we can choose pg, v, 6o, 01, po, £ and the form of the
internal energy per unit mass € = &(p, 0), such that vary|| = sup, || —
infy | is as small as we need.
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The other papers concerning problem (1.1) are [19], [20], [22] and [24].

In [19] the local in time existence and uniqueness of a solution to problem
(1.1) in the anisotropic Sobolev—Slobodetskii space is proved.

In [22] conservation laws and global estimates for problem (1.1) are pre-
sented, while paper [24] is devoted to a differential inequality to problem
(1.1). More precisely, papers [22] and [24] contain Lemmas 2.4, 2.5 and
differential inequality (4.6) (see Theorem 4.1), which are fundamental in
the proof of Theorem 5.5.

Finally, paper [20] contains the review of all results from [21]-[25] includ-
ing the main result proved in this paper.

We have to underline that the case o > 0 holds for more general data
(po can be equal to zero, heat sources and heat flux can be non—vanishing)
and the proofs of both the local and the global existence are much more
complicated because of appearing the surface tension.

In the case of a compressible barotropic fluid the corresponding drop prob-
lem was considered by W.M. Zajaczkowski in [26] [29] and by V.A. Solon-
nikov and A. Tani in [16]-[17].

Papers of V.A. Solonnikov [13]-[15] are concerned with the motion of a
viscous incompressible fluid bounded by a free surface.

The motion of a viscous compressible heat conducting fluid in a fixed
domain was examined by A. Matsumura and T. Nishida in [5]-[9] and by
A. Valli and W.M. Zajaczkowski in [18], while K. Pileckas and W.M. Za-
jaczkowski proved in [11] the existence of stationary motion of a viscous
compressible barotropic fluid bounded by a free surface governed by the
surface tension.

Finally, papers of J.T. Beale [1]-[2] are devoted to the global existence of
solution to free boundary problems, where the free boundary is infinite and
the gravitation is taken into account.

L

2. Notation and auxiliary results. By ng’2(QT) (where [ € RY )
we denote the anisotropic Sobolev—Slobodetskii spaces of functions (see [3])
defined in Q7 , where Q7 = QT = Q x (0,T) (2 C R? is a domain, T < oo

L
or T = 00) or Qr = ST = § x (0,T), S = Q. We define Wy? (QT) as the
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space of functions u such that

Il e e [ > Do I} qor) +
<Q )’ || +2i<]1]

|Daatu ga aagu(glvt)P
déde! di+
|a\+2 [z]</ // €~ £’|3+“ 2

T |Dg cou(é,t)?
dtdt'd
- // / t_t/|1+2 oo ¢

where we use generalized (Sobolev) derivatives, Dg = (90‘1 80‘2850;3, (90;” =

Cr?;é (7 = 1,2,3), a = (a1,a9,a3) is a multiindex, |a| = a1 + as + a3,

[V

< 00,

0 = 6_1; and [l] is the integer part of [. In the case where [ is integer the
second terms in the above formula must be omitted, while in the case %

integer the last terms in the above formula must be omitted, as well.
Similarly as W2 (QT) using local mappings and a partition of unity we
1
introduce the normed space W2’2 (ST) of functions defined on ST = § x
(0,T), where S = 09.
By Wi(Q), where [ € R .Q = Q (Q € R? is a bounded domain) or

@ = S. we denote usual Sobolev spaces.
To simplify notation we write

| [lo=I u || ! it Q=0 or Q=57
W, 2(Q)

[ o=l u ||W21(Q) if Q=0 or Q@=5.
Moreover, || u |1,@)= lulpg, 1 <p < oo
To prove the global existence of solutions of problem (1.1) we need the
L

spaces 't (Q) and F22 () of functions u defined on 2 x (0,7") (T' < oo or
T = oc) such that

e =l vl @)= D I 0fu o< oo

i<l-k

and

lulz,k,n =lull g = > N 8uli2ie< oo,

2@ o7y

where [ € R}r, k>0.
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l
Next, define the space L, (0, T’ 1“10’E (©)) with the norm || u || L=
Lp(0,TT4 % ()
|U|l’0’p’QT (where 1 < p < o).

Moreover, let C>'(Q) (CE'(Q)) (Q C R? x [0,+00)) denotes the space
of functions such that D2diu € C°(Q) (D20ju € CY(Q)) for |a| +2i < 2
(C%(Q) is the space of continuous bounded functions on Q).

Finally, the following seminorm is used

1
T |ul|? 2
|u|K,QT:</O |t|22fdt> , where Q= 0Q.

Let X be whichever of the function spaces mentioned above. We say that
a vector-valued function u = (u1,us, ...u,) belongs to X if u; € X for any
1< <v.

In this paper we shall use the following lemmas.

Lemma 2.1. The following imbedding holds
W) c LY(Q) (2 C R®, Qhas the cone property) .

where |a —Q—%—g <, eZ,1 <r < p<oo;Lg(Q) is the space of
functions u such that |D2ul, o < 0o; W) is the Sobolev space.
Moreover, the following interpolation inequalities are true:

|Dyulpo < 0517K|D§:U|T,Q +cg Mlulrg, (2.1)
wheremz'%'+%f%<1,1§T§p§oo,sisapammeter, c>0isa
constant independent of u and &;

|Doulg,s < cal_”|Diu|r,Q +ce "lulrq, (2.2)
wherem:%+§—2<l, 1<r<qg< oo, ceisa parameter, ¢ > 0 is a

Ir lq
constant independent of u and €.

The above lemma follows from Theorem 10.2 of [3]. The next lemma is
proved in [12].

Lemma 2.2. (see [12]) For a sufficiently reqular uw we have

| () lar-1-2.0< e (Il v [arr + | 9u(0) la-1-2:0) -
where 0 <21 <2l —1,1 € N, ¢> 0 is a constant independent of T'.

Now, consider problem (1.1). We assume the following condition:
(A) € is diffeomorphic to a ball, so S; can be described by

lz| =7 = R(w,t), weSs', (2.3)
where S! is the unit sphere.

’
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The following lemma, is true.

Lemma 2.3. (see [29], Lemma 2.4) Let Sy be determinated by (2.3) and
assume that the origin of coordinates coincides with the barycentre of .
Let p(z,t) be a density defined for x € Q; and let t € [11,Ts]. Assume
that there exists a mazximum and a minimum of the density for t € [Ty, Ts]
denoted by

= min minp (x,t *= max maxp(z,t).
© O te[n, 1) Q plet), o te[T1,Ta] Q pla.)

Set |V = M/p*, || = M/ps, pr = M/||. Then there exists a constant
6 €(0,3) such that if
sup |R(w,t) — Ry| +sup|VR| < 0Ry, te [T}, Ty, (2.4)
St St

where VR[> = R% + (sin 9)*2]%35 in spherical coordinates, Ry = ((3/4m)
[9])3, then

/Sl <|R(W>t) - Rt‘z + |VR(w,t)\2) dw <

< o1 (|t — 47R}) + 2RI ™ (1] = [1)°

where c1,co > 0 are constants which do not depend on 5 and R;.

Let the internal energy per unit mass € = £(p, #) has the form

e(p,0) = aop® + h(p,0), (2.5)
where ag > 0, a > 0, h(p,0) > h, > 0, ag, «, h, are constants, h(p,0) is
a sufficiently regular function of its arguments. Moreover, we assume that
h(p,0) has at (pe,0.) (pe and 6, are introduced in Definition 1.1) the only
minimum point equal to A, i.e. min, g h(p,0) = h(pe,0.) = hs.

In [22] it is shown that assumption (2.5) and the thermodynamical rela-
tion
de = Ods + % dp

(where s in this formula is the density of entropy per unit mass) imply the
following relations between h, p and ¢,

aaop™ + p*h, = p— Opy (2.6)
and
Oe
= — = h . 2.

In order to formulate the next lemma we need some notation. Introduce
D = vy(vp — 2/1%) ,
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where

_wB-3) (B
Ho 3poB 2pB

wl=

= (36m)3,

B=a+1, do=d—hM,
d= /Po( +e poﬁo)) d& + polQ| + o|S| +

t
+ ffsup/ dt'/ 01(s,t')ds
t 0 J Sy

Notice that d, > 0 because

[ pohlpo,00) — b = [ polhlpo, 80) — ) dé > 0
Q Q

and the sum of the other terms in d, is positive.
We have the following possibilities :

vo € (2ud,00) =11, then D >0; (2.8)
vo € (ug,2u3] = I, then D <0; (2.9)
vo € (0,pd) =13, then D <O. (2.10)

For vy € I; (i =1,2,3) we define ¢; (i =1,2,3) by

Y
cos hg1 = —%—1, where 1y € I

Ho
Vo
cospp = — —1, where 1€ Iz;
Ho
0]

cosd)gzl—ﬁ, where 1y € I3.
0
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Next, denote

B (110, 61, p0s B, ag, M) = ?L_gf (2 Cosh% - 1)3(ﬁ_1) -

. [2(cosh<b1 +1) — g:; (ZCOSh% — 1)21 — agM? |

o (40, 2. po, B o, M) = ?Lgf <2 cos 2 1)3(ﬂ_1) - (2.11)
[2(COS¢2—|—1)— g:; (20 s%—l) ] —agM?,

®3(p10, b3, p0, B a0, M) = ngf [2(:08 (g - %) _ 1} o

. {2(1 — cos ¢3) — g:; [2608 (g - %) - 1]2} —agM?.

In [22] the following result is proved.

Lemma 2.4. (see [22], Theorem 1) Let conditions (2.5) (2.7) be satisfied.
Let

f=0, 6,>0. (2.12)
Assume that parameters o, vy, po, B, ag, M satisfy one of the relations
vo € Ii, 0< ®i(po, ¢i, pos B, a0, M) < 0o, (2.13);

where i=1,2,3, 1; are defined in (2.8)-(2.10), ®; are given by (2.11) and
6o > 0 is a sufficiently small constant. Then there exists a constant c;
independent of &y (it can depend on the parameters) such that

vary| Q| < 16,

where ¢, > 0 is a constant, 6> = cdy, ¢ > 0 is a constant, vars|Qy| =
sup, Q] — inf; [, ¢ € [0,T], T is the time of the existence of solution
(v,p,0) of (1.1). Moreover, in the case (2.13); we have

HQt‘ - Qz| <0 Vie [OaT}a (214)7,
3 3
where i =1,2,3, Q1 = u} (2 coS h% — ) , Qo = (2 cos ¢32 — ) ,

Qs = pd [2 coS (% — %) — 1}3, co > 0 is a constant.

Next, we have
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Lemma 2.5. Let assumptions of Lemmas 2.3 and 2.4 be satisfied. Then
1

—/ pv dm+a0</ PP dx — inf pﬁdx)—{—

2 Q t Jay

[ plhlo.) = ) d + pol(9] = 19D + (St ~15.) <

_2/,00”0454'00(/% 025+AZ2)5 1>+

+ [ poh(pn,80) — ) dé + pol|2] — (Qi — cab)] +

+0’HS|*(~3(Q1’*025% +/<csup/ dt’ / 01(s,t")

where || = inf; ||, |S.] = 47 R2 (R, is determined by %ﬂ'Rf’; = |Q]),

¢ = (3677)%, co and & are constants from (2.14);; t € [0,T], T is the time of
the existence of solution (v, p,0) of (1.1). Moreover, if

%/onvgdﬁ—l—ao (/ﬂpgdf—ﬁ)+

+ /ﬂ po (h(pos 00) — h) d€ + po [|92] — (Qi — c20)] + (2.15)

+U[|S|—6(Qi—625§ +f<asup/ dt/ 01(s,t')ds <9,

then
| R(w,t) — Ry [[1,51< €0, (2.16)

1 . -
where Ry = <%|Qt|) * g0 =2¢0(d), g0 — 0 as § — 0.
The proof of the above lemma is presented in [22] (see Corollary 1).

Remark 2.6. In [22] it is proved that there exist pg, v, po, B, ag, M such
that assumption (2.13); is satisfied. For example if 1y = 243 then 0 < &9 <
do if (B is sufficiently close to 1. Similarly, if vg = ,u% then 0 < &3 < §y for 3
sufficiently close to 1.

Remark 2.7. Since ag (fQ poﬂ d¢ — #) — 0 as  — 1 we see that for

0 sufficiently close to 1 ag ( Jo pg d§ — %) is as small as needed.
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In the case pg = 0 instead of Lemmas 2.4 and 2.5 we obtain the following
lemmas.

Lemma 2.8. (see [22], Theorem 2) Let pg = 0 and let conditions (2.5)-
(2.7) and (2.12) be satisfied. Moreover, assume that the following relations
hold:

U2
/ po 2 d + / po (h(po. 00) — h.) de + (2.17)
9] Q

t
—l—msup/ dt'/ 01(s,t')ds < o,
t 0 Sy

/Q [pe — pold€ < do (2.18)

ST — [Sell < do, (2.19)
—(38-1)

0< [; 3 —1)* (5 _ %) G s (2.20)

381

~ _1 B=1
'(GOPE""C‘TMG‘ 3) Pl —aopg] Q)" < b0,

where &y > 0 is a sufficiently small constant, |S,| = 4TR2, p., R., Q. are
introduced in Definition 1.1. Then

vary| Q| < e30,

where t € [0,T] (T is the time of the existence of solution (v, p,0) of (1.1)),
c3 > 0 is a constant independent of 8, 6% = ¢dg, ¢ > 0 is a constant. where
c3 > 0 is a constant independent of 8, % = ¢y, ¢ > 0 is a constant.

Lemma 2.9. (see [22], Corollary 2) Let assumptions of Lemmas 2.8 and
2.8 be satisfied. Then

1
= pvgdw+a0( pﬁdzfinf/ pﬁd:v) +
2 Qt Qt t Qt

+/Qt p(h(p,0) — hy) dx + o (|Se| — [Si]) <

<= d g M"
=9 /QIOOUO £+a’0 (/Q IOO é. (CQ(S"‘Qi)ﬁil +
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+/on (h(p0.60) — hu) d& + 0 [|S] - &(Qi — 26)3] +

t
—}—/@sup/ dt'/ 01(s,t") ds,
t JO Sy

where |Sy| is defined in Lemma 2.5, ¢ = (367r)%, co and § are constants from
(2.14);. Moreover, if

1 MP
§/Qﬂovgdf+ao (/ngdfm> +
+ [ oo ((po,80) — he) d€ + 0 [|] - Qi = e26)F] +

t .
-l—/<csup/ dt'/ 01(s,t')ds <9,
t 0 Sy

then estimate (2.16) holds.

Remark 2.10. Tt is shown in [22] that there exist 3, o, ag, pe, |€2¢| such that
assumption (2.20) is satisfied with ¢y as small as we wish.

The double curvature of S; in spherical coordinates has the form

~ Rsin® \ 9¢sin0\/R2+ |[VR]2 00 \/R? + |[VR]?
2

VE’VRE

Consider the equation

H(R) + = = h(w), (2.21)

where h(w) = LT (v, py)iils,, pr =P — po — %. From Theorem 2.4 in [13]
we have

3
Theorem 2.11. Let R € Wy 2(SY) (1 € [k+ Lk +1], k € Z, U{0})
be a solution to (2.21) which satisfies (2.4) with sufficiently small 6. If
he WY(SY), p€ [k k+ 1], then

| R =Ry lloppsi<cill bllys +e2 | R=Rellos
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3. Local existence. In order to prove the local existence of solutions
to problem (1.1) we rewrite it in the Lagrangian coordinates introduced by
(1.3) and (1.4) :
nug — pNV o — vV, Vi -+ Vup(n,T) = ng

in Q1 =Q x (0,7,

m+nVy-u=0 in Q1

ney(n, D)y — kVL = — Tpp(n,T)Vy - u+ (3.1)
IR 2

-I—§ i]zzjl (fggz Veuj + &y - Vgui) +

+(v —p)(Vy - u)® =k in Q"

T (1, ) — 7, ()Xo (6 1) = —po ons" |

n-V,I' =11 on ST,

uli=0 = o, Nt=0 = po, I'li=0 = 0o in €2,

where u(§,t) = v(Xyu(€,1),1), I'(§,t) = 0(Xu(£, 1), 1), n(&. 1) = p(Xu(&, 1), 1),
9(&:1) = f(Xu(&,1).1), k(&1) = r(Xu(&,1),t), Vu = &Ve = GO,
Tu(u,p) = —pIl+Dy(u), Dy(u) = { pt (Eka; g, 1j+Eha, O wi )+ (v — )05 Vi
u} (here the summation convention over the repeated indices is assumed),

Fl(ga t) = 91 (Xu(gv t)v t)'

Let A = {a;;} be the Jacobi matrix of transformation z = X,,(&,t), where
aij = 6ij + J2 O¢;ui(§,t") dt’. Assuming that |Veuly, or < M we obtain

0<ci(l—Mt)> <det{ze} <co(l+Mt)*, t<T,

where ¢1,co > 0 are constants and 7' > 0 is sufficiently small. Moreover,
det A = exp (fée V- udt’) = po/n-

Let S; be determinated (at least locally) by the equation ¢(z,t) = 0.
Then S is described by ¢(x(&,t),t)]i—o = ¢(¢) = 0. Thus, we have

V$¢(-’E, t)

n@& 00 = 17 S

rz=x(&,t)
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and

- _ Vedl&t)
o) ="V

Now, we formulate the local existence theorem.

Theorem 3.1. (see [19], Theorem 4.2) Let S € W;Jr%, f e C2YR? x
0,7]), 7 € C*HR? x [0,T]), 61 € C*'(R® x [0,T]), vo € W3(Q), Oy €
WQ:S(Q)) % S LOO(Q)) bo > 0, po € WQB(Q)f p%) S LOO(Q)} po >0, ¢, €
C*R2), ¢, > 0, p € C3(R%). Moreover, assume that the following com-
patibility conditions are satisfied:

Dg [D¢(vo)o — ppo, 0o)fo — 0As, (0)§] = —D%(pono) , |al <1, on S
and

D¢ (no - Veb) = D¢ (61(£,0)), |af <1, onS.

Let T* > 0 be so small that 0 < ¢1(1 — CKoT*)? < det{z¢} < co(1 +
CKoT*)? (where x(&,t) = € + fguo(ﬁ,t’) dt' for t < T*, ugy is given by
(3.74) from [19], Ko < c(|| po Iz, +lpoloon + [slocot | o Iz + |
0o a0 + || we(0) [1,0 + || T¢(0) [[1,0). ¢ > 0 is a constant, C = C(Kp)
is a mondecreasing continuous function of Ko given by (3.94) from [19]).
Then there exists T**, 0 < T™* < T* such that for T < T** there exists

3
a unique solution (u,T';n) € W;’Q(QT) X W24’2(QT) x C°(0,T; Fg’Q(Q)) of
problem (3.1). Moreover,

m € C2(0, T3 W5 (Q)) N Lo (0, T3 W5 (),

M € Lo(0,T; W3 ()
and
| ullyor + | T |lyor< CKo,

sup [R/MIEXS +Slgp 7 2,0 + 1 7l zo0,0wp ) +

+ e N zo0,5w 0 S P1(TTKo) || po |30 s

1

il gr < B2 (T ) |

+
0,

‘77 ’oo,QT

+®3 (T2 Ko) |poloc0

where ®1 and Py are increasing continuous functions, a > 0.
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In order to consider the global existence we need

Remark 3.2. Assume that ¢ = 0. Denoting p, = p—po —qo, 0 =T —
Oc , No =N — pe (Where qo, 0. and p. are introduced in Definition 1.1). Then
problem (1.1) can be written in the form

UUt—MV3U—VVuVu'U+Vupg:0a
Not +NMVy-u=0,

new(m, D)vor — kV2y0 + Tpr(n, T)Vy, - u + (3.2)

3
+% Z (ng . Vgu]' + lf;cj : Vfui)2 +

AoDu ()i — A1) / w(t')dt' = ng - npy +

+ o7t (A(t) — A0) E+ o (H(g, 0) + R3> ,

ﬁ'vu’y():rlv

ult=0 = V0 » Nolt=0 = Po0 » Y0lt=0 = Vo0 s

where Il and II are the projections defined by Ilpg = g — (g - 7p)no and
Ilg = g—(g9-7)7, peo = Po— Pe, Yoo = 0o — 0 and R, is defined in Definition
1.1.

Let the assumptions of Theorem 3.1 be satisfied and let (u,I",n) be the
corresponding local solution of problem (3.1). Then by Theorems 3.6, 4.1
and Lemma 3.3 from [19] for solution (u,yo,7s) of (3.2) such that

7 (| w lloar + 1 vo lls.0 + Il 900 s + || poo lla) 61(T, Ko) <&
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(where a > 0 is a constant, ¢; is an increasing continuous function of its
arguments, § > 0 is sufficiently small) the following estimate holds

L llagr + 17 lsor +nolsgmar + 170 llear<

30+ [ oo 3.0 + 1 k ll20r +

< 62(T. Ko) (Il o la.e + Il poo |

00 laey sr D20y o4 1R O) 10 +

2

2
FIHED + 7 oy st )

where ¢9 (T, Ky) is an increasing continuous function of its arguments.

4. Differential inequality. In order to prove the global existence of
solution to problem (1.1) we need the differential inequality obtained in
[24] (see Theorem 3.13). Assume that the existence of a sufficiently smooth
local solution of problem (1.1) has been proved and consider the motion
near the constant state (see Definition 1.1) v, = 0, p. = po + %Z, 0. =

|—g12| Jo 0o d, pe = ﬁ , where R, is a solution of the equation

Let
Po=P—P0 Qs Po=p Pe, Jo=0—0., 9=0—10q,, (4.1)
ﬁQt:p*tha

where gy = JQ'T(:’ Oq, = ﬁ Ja, 0dx, pa, = pa,(t) is a solution of the problem

p(poy,00,) =po,  pali=0 = pe -
We impose the above initial condition on pq, because 0q,|i=0 = 6. and

P(pe; 0c) = pe-
Notice that using the Taylor formula p, can be written as (see [24])

Po = P1Po + P2vo (4.2)
and

Po = P3pa, + pav, (4.3)
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where

1
p1 = pi(p,0 /Opp pe+ s(p—pe),0)ds,
1
p2 = pa(p, 0 /Opg Pes O + (0 — 0.)) ds,
1
p3=p3(pgt,p,9) :/0 Po (th+3(p—th),9)dS,

1
P4 :p4(p§2t,99t79) = /0 Po (tha eﬂt + 8(0 - Oﬂt)) ds.

By (4.1) problem (1.1) takes the form
p[vt+(v-V)v]— diVT(UapU):pf ith,tE[O,T],

pt + div(pv) =0 in€y,te(0,77], (4.4)

peu(p, 0)(Jor +v - Vo) + Opg(p, 0) div v +

i,7=1
— (v —p)(div v)? = pr in€y,tel0,1],
T(v,ps)n = 0 Ag,x - 1A+ qon onSy, t€[0,1],
%291 onS;, t€[0,7T],
on

where T(v,ps) = {p (0, vj + Og;vi ) + (v — p)dsj div v — py;;} and T'is the
time of the local existence.
Denote

C
= / Z \Daa’u\g dw+/ (plpg+ P, +p2p9v19(2)> dr +
Q% o<jali<s Po

DPop aqi (2 Cy aqig |2
— D - d — DYoi9g| d
L D SRR A R D IR

P i<l ti<s 2V 1gjafvi<3
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g ~
t5 ; 50‘5 / o e dE' - / 8pvp7pg dt' ds + (4.5)
t |k|<2

\n / 8kvp1p2 dt/‘2 ds +
|k|<2

1_ /t . , k( 2\ 2
—n- [ Ojv,idt + 20 H(-.0)+—>> ds +
b pp p 7 R
2 St|k|<21 1<2 0 e

a =Nk = = =
+ 5 S ( Z DF p Upe ’I’LDpUpa ‘T T Vgppall - Vs ) ds +
: 1<[k|<2

o af [ = K I = ! /
—I—§ g n-/vsadtn-/vsgdt+
St 0 0

+ Z Dy -aDFv s -7 | ds,
|k|<2

®(t) = vli1 0, +1ol300,~ Il po 5.0, + Il P ll6.0, +
+ [oli1.0,~ 190 l5.0, + 119 50, -

+ 1 R(-,t) = R(-,0) [[5 s -

v(t) =l v l5a, + |l po

F(t) = fiu ||(2),Qt ‘Hf\%,o,ﬂt +\T|3,0,Qt +

+ 1 lloge HO1E 10,4+ 161 g,

where the summation over the repeated indices (o, 3,7 = 1,2) and coor-
dinates x is assumed, 6*® on each part of boundary Y3, S; N {¢(z) # 0}
(¢ belongs to a partltlon of unlty of ) is of the form 5B = g 4 268,
e = —Fpa Fus(l+ F + F2) , I is the function such that in the 10—
cal coordlnates {y}, Zt is descrlbed by the formula : vy; = p’, i = 1,2,
y3 = F(p' ,p t) and assuming that supp{¢} is sufficiently small we have
that [F),| < 3. In the last two terms on the right — hand side of ¢(t) bound-
ary S is determined by (1.4).
Now, we formulate the following theorem (see [24], Theorem 3.13).
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Theorem 4.1. Let assumption (A) be satisfied and let v > 3. Then for
a sufficiently smooth solution of problem (4.4) we have

d
d—f +c® < P(X)X(1+ X)X +Y) +ceoF +
2 4 2 2
+egp+ea || H(-,0) + T 13,51 +ecs | I H(-0) + T 12,51 +
+ 1| B(,t) = R(,0) 360 ) + (4.6)

2
+

t
/ vdt!
0 3,St
t 2
/ vdt ,
0 4,5t

where t € [0,T] (T is the time of the local existence), 0 < ¢y < 1 is

*

a constant depending on ps, p*, 0,0 (p. = infycop)info, p(z,t), p* =
SUDye(0,1) SUPQ, p(x,t), O, = infc (o ) info, O(, 1), 0F = SUPye(0,1) SUPg, O(x,t)),
w,v oand K, ¢; (i =1,...,6) depend on ps, p*, 0., 6%, T, fOT | v Hg’ﬂt/ dt’,
| S ||4+%, constants from the imbedding lemma and the Korn inequalities

+%Qu%ﬁ—Rmmﬁ%ﬂ

+ | R(.t) — R(-0) |55

(see Section 5 in [26] ), € is a small parameter and

t
St [ v 1Ba, d.

X =0, + lpel5 00, + 1ol300,+ Il Ao

Y =vliyq, + oot o0+ | pos 130, +P0tl31.0,+ [l Pos |30, +

¢
19 B+ 1 o o + [ 10130, a
5. Global existence. To prove global existence we assume that

f=0, 6,>0 (5.1)

and

3000+ 17 Moo, +101[31 0, + 1 61 10 < 7, (5.2)

where 1 > 0 is sufficiently small. Moreover, assume that v > % W
Let ®(t) be defined by (4.5) and denote

do(t) = 0300, + |ps

| 74et H%,Qt +[r

g,O,Qt + ‘190%,0,0[’_ H ﬁQt Hg,ﬂt ‘
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Introduce the spaces :

N () = {(v, Y0, ps pe2,) = Po(t) < o0},

M(t) = {(v, 99,9 o> i) ¢o@)4—]ﬁt¢(#)dﬂ < o).

Lemma 5.1. Let the assumptions of Theorem 3.1 be satisfied. Let the ini-

tial data vy, po,0o,S of problem (1.1) be such that (v,90, ps,pa,) € N(0)

1
and S € W24+2. Let

[oowota+bxgac=0, [ pogc =0,
Q Q

where a,b are constant vectors. Let (A) ((2.3)) be satisfied and let the
initial data vg, po, 0o, S and the parameters pg,o.d,ag, 3,k, M of problem
(1.1) (d, and ay are defined in Section 2) be such that

2
90(0) e, x(0) =[ H(-0) + & 31,51 < €2,

w(t) = sup | R(,t) = Re |[§ g1 <es, t<T,
v<t

where €1, €2, €3 are sufficiently small , T is the time of the local existence

(see Theorem 3.1). Then the local solution of problem (1.1) is such that
(v,90,Y, po, pa,) € M(t) fort <T and

6o(t) + [ VY < c6o(0) +X(0) + (1) + 500 F(1) = 65:3)

=cA<cle1+e2+e3+1),

where n > 0 is the sufficiently small constant from assumption (5.2) and F
is given by (4.5).

1
Proof. Take (vg, po,0) € W3(Q), S € W24+2 such that assumptions of the
lemma hold. Then in view of Theorem 3.1 and Remark 3.2 there exists a
local solution of problem (1.1) such that

3 3
we WH(QT), n, € Wy 2 (Q7) N CO0, 5Ty 2 (),

0o € Wy (Q1),
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where 1" is the time of the local existence. Moreover, Remark 3.2 yields
2 2 | |2 2
lullior + 110 507 +105130.00.0m + [ 70 I or <
<c ([ 3o+l el + (5.4)
2 2 2
+ | Joo lI5.0 + || H(-,0) + R H2+%751

< e(do+x(0) < eler +e2),

where v = v (l’(f,t),t), No = Po ('I(fat)t)a Y = Yo ('I(fat)vt) Using
estimate (5.4) for the local solution, Lemma 6.1 of [28] and the following
imbeddings (see Lemmas 2.2 and 2.1):

sup (|| w |30 + [l w o) <
t
<c(lulior + 1) o +uO)e0) <
= 4,07 3,0 1,0,0) =
< c(go+x(0)) < cle1 +22)
and

T , 1 1

| el de <TH |y qr< cTn(0)
we have

N =sup (|| 0w [8 + | o0 [ + 110 () +

2 2
o 120wy + 10t 0w =

< ¢1(T',¢0(0) + x(0)) (¢0(0) +x(0)) <

<c(er+e2),

where ¢ is an increasing continuous function of its arguments.
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In the same way as estimate (3.57) from [24] we get

Ld 2 Pop 2 PCu 42
5% /Qt (pvwwt + %pa:vxt + TUﬂOwwt> dx +

od _ _
+§a /St 9°PR - vpppa i - Vppp A5+ (5.5)

o (| veet 130, + | powat I3, + | Yowat I2g,) <

< (& +eN) (] v

g,Qt + || Vet ”3,9,3 + || vzt ||(2),Qt +

(2),Qt ) +

+ || 190wttt g’ﬂt + ” 190wwwt Hg,ﬂt + || 190wwtt‘

T
te (N/O M(t’)dt’> M + cF (1),

where N = Ni+Na, No = sup, (|| u 3o + | ut [T + 70 [0 + [ 70: [170)
and M is such that

/ " Mt < e (60(0) + x(0))

holds in, virtue of the estimates for the local solution.
Similarly, we have

1d P pc
S di /Qt (P”:%tt + %pgaztt + 7079(2)mt> dr +
od

s GPR - Vyppa Tt - Ve ds + (5.6)
t

tco (| vare 32, + I ozt I, + 1l Doute [0, <

(%,Qt + || Vewtt ||(2),Qt + || Vogat ||%,Qt +

< (6/2 +cN) (H Uzttt
2 2 2
+ 1l 0wt 3.0, + || Yowwar 13,0, + | Yowate 30, ) +

o1+ N (I v 130, + | Bomet I0,) +
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2 2 r / /
el v [0, + | o [Ba,) +e(N. [ M(E)ae) M +

+cF(t).

Next, Lemma 3.12 from [24] implies

1d
2 dt / (P”ttt + pcrttt ‘|‘ 0 190ttt> dr +

od

Ed—/ n Uttsan Uttsﬁ ds + (5'7)
+co ( + || Youe 115 Qt> <

e(ey+ N+ M) (| )+

t &4 (1| vaate 3.0, + Il Vomare 3 0,) +

+eN (1| vate 3.0, + Il vt B0, +

+ |l vawt .0, + 1| Yowtt 1.0, + | Poatet 5.0, + || Yowat 150, +

+ 1l pout I3, ) + M (I ve 30, + Il Yot 13.0,) +

(Il v I, + || Dous [0, ) + c(N)M +F (1),

where in virtue of the equation of continuity (4.4)2 we have

| Pt 11§ 2. <c(l+N) || ven H%,Qt +c(N)M . (5.8)

From (5.5)—(5.8) we obtain for sufficiently small 6/1, 6/2, 5:3, N, fOT Mdt' and
n from (5.2) that

+ || vt 15,0, + | Yozat 150, +

sup (I

=+ || Poxtt ||%,Qt +

+ || Do 15 0,
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+ 1 pate [0,) +5u0 [ 67 (3 vy - vy + (5.9)
t

+ n- Utppaﬁ . vtppﬂ +n- ’Uttsa’fl . vtt56> ds +

t
[ (et o, + 1 v

2+ lvwe I3, ) dt <

k]

t
< c(60(0) +x(0) +¢ [ F(t)dl < cler+22).
0
Now, to estimate || po, 5o, + || 9 [|3.q, rewrite equation

p(pﬂtaeﬂt) _p(peaee) =0

using the Taylor formula as

Pp(po, — pe) +po(Oo, — 0e) = 0.
Therfore

o 6.0, + 119 8.0, <1l po 5, + 1 Pe — po 5.0, +
+ [ 90 I3, + 1| 6 — o, 50, < ¢ (H po llo., + (5.10)

+ 1190 3.0, + 1 6 — 00, [3.0,) < (Il po I3, +

2
<
0,9

where to estimate || py [|§ o, and || 9o [|§ o, We have used (5.4).

Next, by the same argument as in [29] we obtain the following inequalities
(see inequalities (4.104) and (4.154) from [29]) :

1
+ 190 I, + |17 [ e
t

< ego(0) < ceq,

t 2
| [ode | < (i o+ 1 on IR, + 1 B0 [ 0,) +
0 3,St
t ! ? 2 2
w0 (| [t 4 holBa,+ e o + (.11
et
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2
HIHG0) + o B+ 1 RCH) = RG,0) B ) +

+C2 (II vlza, + 1 oo Iz, + 190 I3, + 1l pow 10, +

t
4
+ 1190 IE,) [ 10 IEq, a

and

t
/ vdt!
0 4,8

t
—+ || ﬂOwww H(Q),Qt) + Cl <H/O vdt

2

<& (|| verew I3, + 1l power 0, +

2
0,

2
FIHEO) + 3 B+ RCH - RE0) B ) +

+Co ([l v Bg, + Il oo 130, + 11 90 3.0, + | 2o I3, +

t 2 t 2
/ vdt 14+ / vdt .
0 4,04 0 3,8

Using (5.11), (5.12) and (4.3) in (4.6) we have

d
d—f +co® < P(X)X(1+ X)X +Y) +coF +

+ 190 [3.0,)

2 2
+est e || H(,0) + 2 550 +ecs (I H(-,0) + = 36 +
R, ™= R. ™

+ | RC.0) = R0 [§50) +

teo{ I B0~ R0 2y [e (10 Ba, + 1 prw B, +

2

+vlga +

t
+ || oz H%,QJ + <H/ vdt
0 0,9

_ 2
+ |l Ao I3, + 119 IB.a, + I H(-,0) + T [
€

+llv 5 + I po 5.0, +

(5.12)

(5.13)
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+ | (1) = R(,0) [B51) +Co (10 B, + 1l po 3.0, +

t
+ 190 B, + 1 b I + 1190 Ihe,) [ 110 e, dt] +

+ | R( 1) = R(,0)

3,51 [E (H Vzaax |(2),Qt + || pozzz g,ﬂt +

+ 1 Vorew I30,) + C1 (| RC-8) = R(0) 361+

2
+vliga +
0,82

2 t
+ | H(-0) + — |3 51 +H/ vdt
Re ? 0

+ 1l Ao I3, + 19 1B.0,) + Co (v 30, + 1l po B0, + 1l 9o 130, +

t 2 t 2
/vdt' -<1+‘/ vdt )]}
0 4,Qt 0 379t

By Theorem 2.11 and boundary condition (4.4); we have

+ 1 oo 3, + 11 9 l13.0,)

| RG1) R0 By o < I RG0) — Ro Iy g0+

+ | R(.0) = Ro |3, 3 g1 +15"| (IRo — Re[* + |Ri — Rel?) < (5.14)

2
50, + 1190 3.0, + | H(-,0) + T ||§+%751 +
€

<c(llv o+l o

+ | R(.t) = Re [lg g1 + [ R(-,0) = Re [[§ 51 +IRo — Rel* +

+ |R = Ro[?) .

Next, using Lemmas 2.2 and 2.1 and estimate (5.4) we obtain

1 1

|Re — Ref” < c| [u]5 — |3 =

-G
p Pe

< c(¢0(0) + x(0))

=C < C|po‘oo,(2t < (515)
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and

|Ro — Re[” < clpoolocn < ¢ (60(0) +x(0)) - (5.16)

Therefore, inequality (5.13), estimates (5.4),(5.9),(5.10) (5.14)—(5.16), the
definitions of X and Y and the assumptions of the lemma yield

do(t) + /Ot d(t)dt' <

t t 2
/ /! !/ / 2
<c [ wy ve [ Fe) +e(IHC0+ 5 By g+ (517)

+ §111<}§z I R(-,t,) — R, H(2),51 +¢0(0)) < c(e1 +e9 +¢e3)

if n > 0 from assumption (5.2) is sufficiently small.

Hence, we have proved that (v,99,7. po, p,) € M(t) for t < T and (5.3)
holds. We have to underline that to prove the above result the standard
technique of mollifiers or differences should be used. This concludes the
proof. O

Lemma 5.2. Assume that there exists a local solution to problem (1.1)
which belongs to M(t) fort <T, i.e. let the assumptions of Lemma 5.1 be
satisfied. Let assumptions of Lemma 2.5 be satisfied. Moreover, assume

/Q|pO - Pe|d§ < dp.-
Then there exist 01,92 € (0,1) sufficiently small such that
I por 116,60, < 61 (5.18)

190 1150, + Il o 15,0,< 02, (5.19)

where 8§ = c(e1 +22)8 +¢(8)(e0+0), 0y = c(e1 +€2)6 + (8 ) (g0 + 0o +0),
8 €(0,1) and ¢(8') is a decreasing function of 8 , ey and & are taken from
Lemma 2.5.

Proof. Estimate (5.18) can be obtained by using Lemma 2.5 exactly in the
same way as estimate (5.16) in [29], while to prove (5.19) the same argument
as in the proof of Lemma 5.2 from [25] can be applied. O
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Lemma 5.3. Let (v,90,9, ps, pa,) € M(t), t <T, be a solution of problem
(1.1). Then u(&,t) = v(z(&,t),t) € COty + A\, T; Wi (Q)) and the estimate
holds

sup_ | v [[10,< c(A)4, (5.20)
to+A<t<T

where tg > 0, A > 0, to+ A < T, A = ¢p(t) +f0 O(t)dt', c¢(A) is a

nondecreasing continuous function of A.

Proof. We use the argument from [13] (see Theorem 6). Let ()\(t) € C*®
be a function such that (\(t) = 1 for t > to + A, (\(t) = 0 for t < to + 3,

0 < G(t) < L [G\(0)] < e/, where (y = G, Let uy = ulx, flox = oG
~Yox = Y0Cx- Then wuy, nex, Yox satisfy the problem (see (4.4) and (5.1)) :

NUN — ,uViu,\ —vV,Vy-uy =
= pnvuncr)\ + prVauyoa + nué)\ in QT: (5'21)
H()HDU(U)\)?Z =0 on ST ,
¢
oD (ux)7 — 70 / As. (Fu(r)dr —
0
t .. }
= /0 [C,\ﬁoT(U,pa)ﬁ + ono(raAg (1)
. (f —l—/ u(T’)dT’) + (0 0-(qonp - n)| dT +
0
+ (P1Mor + P2Y0x) 0 - 2 =
= / T)dT + (P17 + P270x) N0 on ST,

up|t=0 =0 in Q,

where 71,) and 7o) are treated as given functions, Ilpg = g — 7g(no - 9),
llg=g—n(n-g).
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The second boundary condition (5.21)3 follows from the integration by
parts :

o= [ ()0, [T, po ) — oTios, (7):
0

. (5 + /OT u(T')dT') — qono - n] dr =
t t .

= / 67’ [CAﬁOT(uapo)ﬁ] dT—/ [CAﬁOT(U:pU)ﬁ_l_

0 0
+ O'ﬁOC/\AST(T) (g +/OT u(T’)dT’> + qoCr\0r(7ip - 1) | dT +

t

— o -/0 Ag, (T)ur(T)dT .
Next, we introduce the differences :
u (1) = ur(6,t) — ur(6.1)
77((78) (67 t) = nok(fa t) - 1710')\(57 t) )

765)(57 t) = ’70/\(67 t) - /7(,)/\ (57 t) ’

where w'(€,t) = w(€,t — s), 0 < s < ty. Therefore, we obtain the following
equations

nu,gs) —puViu® — v, v, - u® = p,,Vun((f) +

+orVars) — (' Yy + p(V2 — V2 )y +

+0(VuVu = Ve V) -ty + pn(Va = Vi )iiox + 00(Va — Vo )vos +
+(py = Py )Vartor + (or = p)Varyor + (n =1 )uy +

+0u(C—CA)=E in Q7
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oIID, (u*)n =

= Ty (1D, (uy)n — 1Dy (uy)i' ) = F on 57,
t

hoDu(u(s))ﬁ—Jﬁo/ AST(T)U(S)(T)dT =
0

(s)

= p1(0, D) g - 1+ pa(n, D)y Vg - 1 +

+ 19 (Du(uy)i — Dy (uy)n') +

— oy /Ot (AST (1) — AigT (7')) w, dr +

’

t / ! /
+U%) (B(T) — B (T )) dT+p1(n’F)n0>\ﬁ0 . (rﬁ -7 ) +
+p2(n, D)yoaiio - (R — ') + [pl(n, 1) —pi(n, r’)} NoTio - 7+
+ [pQ(UaF) —PQ(TII,F/)] ’yé,\ﬁo n =

t
= G1+/ Gao(r)dr on ST,
0

U(S)|t:0 =0 in Q.
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Let/\E(O,l), to+ A< T, QAZQX(to—I—/\,T), G,\ZSX(t0+)\,T).

Then for sufficiently small ¢o(0) Lemma 5.2 from [28] yields

)|

wan<e(I Elaay +1 Flaye, +
2

161l oy +1G2 g, )
2 2

Now, using the explicite forms of E, F, G1, G2 in the same way as in [30] we

get

a3 g, < c(A)As®.
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[ uC) lae 5y sy

T t — || u(t — 2
:Sup/ [u®) llae =l ult =) llaol” (5.22)
2
s to+A S
+ I u(t) [I3q dt <
to+A
T ult) —ult=s) g
<sup | 2t [ ) [ dt <
0+A S to+A
<c(A)A.

By the imbedding theorems for the Besov and Nikolskii spaces we have (see
[10], Ch. 6.1)

1
By (0,T) C Lo(0,T) for 3> 5

Therefore (5.22) yields (5.20). This concludes the proof. O

Now, we prove a lemma which guarantees a prolongation of the local
solution. The lemma is analogous to Lemma 5.4 from [28].

Lemma 5.4. Assume that there exists a local solution of (1.1) in M(t),
0<t<T, ie. assume that the assumptions of Lemma 5.1 be satisfied. Let
the assumptions of Lemma 5.2 be satisfied. Moreover, assume

2
60(0) <v, [1H(,0)+ & l35<d. (5.23)

Then for sufficiently small v, d,n, 61,02 and &y ( where oy is a constant from
Lemma 2.4, 6; (i = 1,2) are constants from Lemma 5.2 and n is a constant

from (5.2) ) we have
do(t) <y for t<T. (5.24)
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Proof. At first add || [; vdt’ ”421,52 to the both sides of inequality (4.6). Using
(5.12) we get

d
d—(f + 05 < cP(X)X(1+ X*) (X +Y) +cF +

2
devnte (I HE0)+ 5 B+ | RO.D = RE.0) g ) +

2
el H0)+ — lhg e | R0~ RE0) 2,y 60

t 2 t 2
: / vdt +c || R(-,t) — R(+,0) |3 o1 / vdt
0 3,St ’ 0 475t
where
t 2
Py =P + / vdt/ ,
0 4,8
2 2 ¢ 2 /
=19 B+ 1 pe o+ [ 10 1E0, '+

+ I R(t) = Re [§.s1 + | R(-0) = Re [[§ 51 -

Now, by estimates (5.14)—(5.16), assumptions (5.23) and Lemmas 5.1 and
5.3 we have

| R(-,£) — R(-,0) IIZ+%731§ cles+y+eatn). (5.25)
Using (5.25) with sufficiently small 3, 7, €5 and 7 we obtain

d¢ 3

ax +1Po < cP(X)X(A+ X)X +Y)+cF+

+etpr + (Il R(,t) = R(-,0)

2ot (5.26)

2 2
FIHCO+ 2 s )
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where we have used that || H(-,0) + & [|3 g is also small. Applying the

inequality

| RC.8) = R(,0) [0 <l B 8) = Re [0 +
+ | R(,0) ~ Ro |35 +1S" (IR0~ Rel? + R — Ref’) <

<e(flv

¢ (1R — Rel + [Ry — Ref?) + ctb1 (1),

2
oot 1 po 30, + 1100 Ba,) +el HE0) + 7 1360 +
€

where € > 0 is a sufficiently small constant, and introducing the new quan-

tity

2
Qoo = c1Po +c || H(-,0) + R HS,S]
€

instead of (5.26) we get

dd
= TP < cP(X)X(1+XHX+Y) +

2

+eF @) +evn(®) +el H-0) + = e +
€

+c(|Ro— Re? +|Ri — Re[?) .

By Lemma 5.2 we have

60 < C6 < ¢ (Dot | 9o I3, + || po I30,) <

< c(Poo + 02) -

Then, using Lemma 5.1, (5.27), (5.28) and the inequalities
t

X < (000 + [ @@yar)
0

and

Y <®(t) + /Otcb(t’)dt’

(5.27)

(5.28)

(5.29)

(5.30)
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we obtain
t
/ o(t)dt' <
0
. 2
<chy+ep(t) +cl| H(-,0) + i 1261 +
t
+ ¢4(0) +c/ F(that' +
0

+C(|R0 — Re|2 + |Rt — Re|2) )

159

(5.31)

where (t) = supy<; 11(t), ¢ > 0 is a constant and for simplicity we do not

distinguish different c’s.
Next, inequalities (5.28) — (5.30) yield

P(X)X(1+X%)(X +Y) < ego (1+65) Doo +

t 2
+ cog (1 + gzﬁg) 09 + cyPog + cyds + ¢ </0 <I>dt’> .

Hence, using (5.31), instead of (5.27) we get

d
d_f + ®go < cpo(1 + ¢3)Poo + cho(1 + ¢3)d2 +

+ ey Py + cyds + 053 + ) (t) +

2 t 2
+ecl| H(-,0) + R H;‘Sl +c¢?(0) + ¢ (/ F(t’)dt’> +
e ? 0

¢ (|Ro = Rel' + | R = Be[') + cF(2) + e(t) +

2
el H.0)+ 5 55 +e(|Ro— Rel” + | = Rel?) .

Next, using Lemma 2.4 and the relation

1
920 - 19 = [ (e~ po) e

e

(5.32)
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we obtain

|R: — Re| + |Ro — Re| < (5.33)

(| 1€%] = Q] [ + 12 = [Qe] |) < 63,
where d3 = d3(dg) and d3(dg) — 0 as 09 — 0 (g is a constant from Lem-
mas 2.4 and 5.2).

Taking into account (5.32), (5.33), (5.23), (5.1)-(5.2) and Lemmas 5.1,
5.2 and 2.5 we have for sufficiently small v

dp @
d—f 4 % < cho(1 4 ¢3)Poo + ¢y + 0y + b3 +

+c(02 + 02+ ed) +ed® + e + e + i +en + (5.34)

+¢(01 46 4 €9) + cd + ¢63
(where 6 and &¢ are constants from Lemma 2.5 and g9 — 0 as § — 0).

Now, assume that ¢, = inf{t € [0,7] : ¢(¢t) > ~v}. Consider (5.34) in
[0,t,] and assume that v, d, n, 01, d2 and Jp are so small that

0(62+Fy62+6§+5%+52+62+d2+’72+772+5§+77—l—

~ cC
+61+0+e+d+d3) < 71—6,
where ¢ is a constant from the inequality

oo > ¢(¢p — d2) (5.35)

and C' is the constant form (5.28).
Then, since ¢o(t) < CP(t.) = Cvy we obtain

do ~veC'
= < I
5 (b )+ 2 ey(14 7% Do + T
Hence
d(;S ~vyeC
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Thus, using (5.35) we have

do _ 1 4 1 .
= () < —2Cy {5 —c(y+7 )} + by [5 —c(y+7 )} 4
~veC
16

Assuming that 7 is so small that c(y + %) < % and &, is so small that
cdy < yeC'/8 we get
_=Cey  Cey

de
a(t*) = +T*62(52(’Y+’74)<0.

Hence ¢4(t,) < 0, so contradiction.
This concludes the proof. O

Finally, we prove the main result of the paper.

Theorem 5.5. Let v > p. Let (5.1) - (5.2) and assumptions of Theorem
3.1 with r,0, € C5' (IR® x [0,00)) be satisfied, let (v,09, po, po,) € N(0) and
60(0) < ar, w0 [Fa< a2, (5.36)

where a1, > 0 are sufficiently small. Let the following compatibility con-
ditions be satisfied :

D?@g (Tﬁ—UHﬁ+poﬁ)‘t:075=0, la] +i<2,

Doy (n-V0—01) =5 =0, |af+i<2.

Assume that the internal energy per unit mass ¢ = &(p,0) has the form
(2.5), conditions (2.6)—(2.7) hold and the parameters pg, v, po,3, ag, M
satisfy one of the relations

VOEIia 0<q)l (/“Lﬂa(biapOaﬂaaOaM) Séoa (537)1

where i = 1,2, 3, I; are defined in (2.8) (2.10), ®; are given by (2.11) and
do > 0 s a sufficiently small constant. Moreover, assume that the following
relations hold :

1 2 g _L
2 /onvo d& + a0 (/Q po 4 (cod + Qi)ﬁ_1> *

- /Q po (h(po, 0) — ho) d€ + 0 [|S| — &(Qi — e20)3] + (5.38)
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t -
+p0 [|Q — (Qi — c20)] + /isup/ dt’ / 01(s,t')ds <4,
t JO Sy

for vpel; (i=1,2,3),
[ 100 = polde <3, (5.39)
/onvo(a +b % f)dﬁ =0, (5.40)

| mde=0. [ pods =11,

where Q; (1 =1,2,3), ¢ = (3671')%, co and § are defined in Lemma 2.4, & > 0
is a sufficiently small constant, a and b are arbitrary constant vectors.

Next, assume that Q) is diffeomorphic to a ball and let S be described by
€] = R(w), w e S (S* is the unit sphere), where R satisfies

sup |[VR|*+ | R— Re |2 1< a3 (5.41)
st '

441
(ag > 0 is sufficiently small). Finally, assume that S € W2+2 and it is
very close to a sphere, so

2
I H(-,0) + = 351 < o, (5.42)
R, '

where ay > 0 is sufficiently small. Then there exists a global solution of

i
problem (1.1) such that (v,9¢,Y, py, pa,) € M(t) fort € ]R_l‘_, S, € W24+2
and ¢o(t) < ay, || H(-t) + £ [I5 51 < ou.

Proof. At first notice that assumption (5.36) and boundary condition (4.4)4
for S; = S yield

2
” H(,O) + ﬁ ||§+%751§ c10q, (543)

for ao sufficiently small, where ¢; depends on pu, v, a1 and the constants
from the imbeddings theorems (which depend on [€;| and the shape of €,
so they also depend on §y and ay).

Since (2 is diffeomorphic to a ball and x = £+ fg udt’ (wheret < T, T is the
time of the local existence), we obtain that € (¢ <T) is diffeomorphic to a

ball and S; can be described by |z| = R(w,t) (t < T'), where R(w,0) = R(w).
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Hence, in view of (5.4), (5.33), (5.36), (5.41) — (5.42) for t < T we get
[R(8) = Re|* <|R(-0) = Re[* + | Ry — Re[* +
2
+IR(t) = R0 <e || H(0) + = [lgsn + (5.44)

+c ” R(-,O) - Re ||g,51 +|Rt - Re|2 +

t 2 t
/ udt (1 + / udt
0 0

where we have used that |R(-,t) — R(-,0)| = ||| — |¢]| =

£+ fot udt’, € > 0 is sufficiently small.
Moreover, (5.4), (5.36) and (5.41) imply

2
+c ) < e (g +as+d3) ,

and r =

l
€l

2
|+
IVR(w,t)]? <

2
+

t
/ Yudt'
0

<ec <|VR(w,0)|2 + ‘/Ot udt’ 2) < (5.45)

< 03(a1 + Oé3) .

Assume that a1 4 ag is so small that (2.4) holds with sufficiently small 4.
Then Lemma 2.5 implies

| R(-.t) = Ry [} g1 < &0,

where & depends on § and does not depend on 5.
Hence, by (5.33) we have

| R(,t) — Re ||(2)751§ €0+ c403 = ay, (5.46)

where a4 depends on 8 and 03, 0<t<T.

From the assumptions of the theorem and from estimates (5.43) — (5.46) it
follows that the assumptions of Lemmas 5.1 and 5.2 are satisfied. Therefore,
Lemma 5.4 yields

¢0(t) S a1 for t S T. (5.47)
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Now, integrating inequality (5.32) from Lemma 5.4 and using (5.1), (5.2),
(5.33), (5.39), (5.41), (5.42), (5.46) and Lemma 5.2 we get

1 t t
¢+ 5/ [OX dt’ < ca + COél(l + Oé:f)/ Do dt’ +
0 0

t
—I—COél(l + Oé:%)(SQ + coq / b dt’ + C(Oé152 + 53 +
0

+0i+ 2+ +d ol + P+ 05+ + 01 +0+eg+d+43).
Assuming that a1, 01, d2, do, 5, 7 and d are so small that
1
car(1 4 af) + cay < 3

and

clar(1+a3)d + a1dy + 03 + 67 + 6% + 2 + d* +

+a2 4 054+ +o+eg+d+ ] <o

we get

t
¢+/ doo dt’ < csaq.
0

Therefore, Lemma, 5.3 implies

| v ||42L,Qt§ c60q - (5.48)
Thus, by (5.47) and (5.48) we have
lvlia + 1 po 5o + 10 [5o< crar for t<T. (5.49)

1
Therefore, from boundary condition (4.4); we obtain that S; € W24+2.

Moreover, using boundary condition (4.4)4, interpolation inequality (2.2),
Lemmas 2.5 and 5.2 we get

2
| HCT) + 5 [3si< e (o Bse + 1 oo 3s7) <
€
<e(llvar+ 1l po lBor + 1190 3 gr) + (5.50)
@) (0 3.0 + 1l po [§.0r + 1l 90 [ or) <
C\&E v O,QT )00' 07QT 0 07QT =

<ecrag + c(e)cg (3 +d2) < au
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if €, 0o and b are sufficiently small. Finally, boundary condition (4.4), and
(5.49) imply

| HCT) 4 By i< conn (5.51)
where ¢y depends on the same constants as ¢; from (5.43) and in view of
Lemma 2.4 and (5.47) we have |c1 — ¢g| < §(d0, 1) and 8(dg, 1) is as small
as we need if §g and o are sufficiently small.

Now, we are in a position to extend the consideration for interval [T, 277.
By (5.47) and (5.51) we obtain the local existence of solution for ¢ € [T, 27]

which satisfies

| u laoxror) + I 70 [3.0x@2r) +

+|770 |3,0,oo,ﬂx(T,2T) + 170 laoxor)< coou,

where on the right-hand side we have the same bound as for ¢ € [0,7T].

Therefore,
2T
/ udt’
T

so the change of the shape of €; is as small as for interval [0,7]. Hence,
the Korn ineqaulities and the imbedding theorems necessary in the proof of
(4.6) can be applied with the same constants. Therefore, the same inequality
(4.6) holds for [T',2T].

Now, using (5.44), (5.45), Lemma 2.5 and (5.33) we obtain (5.46) for
t € [T,2T]. Thus, estimates (5.47), (5.50) and (5.46) for t € [T, 2T] imply
that

< cioa1,

¢0(2T) S an .
Continuing in the same way considerations we prove the global existence.

This completes the proof of the theorem. O

In the case py = 0 the following theorem holds.

Theorem 5.6. Letpy =0 and v > %,u. Let (5.1)-(5.2) and assumptions of
Theorem 3.1 with r, 61 € (7125;1(}33 x [0,00)) be satisfied, let (v, 0p, po, pa,) €
N(0) and

$0(0) < o1, o o< az,
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where a1, ag > 0 are sufficiently small. Let the following compatibility
conditions be satisfied:

Dgoy (Th — o HA + pon) li=o.s =0, o] +i <2,

Dgo; (n-V0—01) =05 =0, laf+i<2.

Assume that the internal energy per unit mass ¢ = £(p,0) has the form
(2.5), conditions (2.6)—(2.7) hold and the parameters ug, vy, po, B, ag, M
satisfy the following relations:

02
/ 0050 d§ +/ po (R(po, 00) — hu) d§ +
Q Q
t
—l—/@sup/ dt'/ 01(s,t')ds < &,
t 0 Sy

/|Pe*P0|d§§5o,
Q

[1S] = ISell < 6o,

—(38=1)
2

2 3(8—1 1 —3(8-1
0<[§w1)%)(ﬂ§) GO

38=1

(%£+@mr%2\m%iaw4mﬂs%,
ELpWMa+bxsms=o,
/mw&m,/mﬁzM,

Q Q

— d de - — =
2/onvo €+ ag (/on '3 (0 + QP 1 +

+ [ oo ((po,80) — he) d€ + 0 [|S] - Qi = e26)F] +

t -
—l—nsup/ at’ / 01(s,t')ds <6,
t 0 Sy
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where &g > 0 and 6 > 0 are a sufficiently small constants, a and b are
arbitrary constant vectors.
Next, assume that €2 is diffeomorphic to a ball and S is described by
€] = R(w), w € St (S! is the unit sphere), where R satisfies (5.41). Finally,
1

assume that S € W24+§ and that condition (5.42) is satisfied. Then there
exists a global solution of problem (1.1) such that (v,39, 7, ps, pa,) € M(t)
1

4 =
fort € Ry, S, e Wy and ¢o(t) < ay, | H(.t) + £ |26< .
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