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ON NONMEASURABLE SUBGROUPS OF
THE REAL LINE

A.B. KHARAZISHVILI

Abstract. We prove that, for every nonzero o—finite measure p defined
on the real line R and invariant (or quasiinvariant) under all translations
of R, there exists a subgroup of R nonmeasurable with respect to p. Some
generalizations of this result are discussed, too, and several problems related
to them are posed.

Let R be the real line and let A be the classical Lebesgue measure on R.
In this paper we shall consider some A-nonmeasurable subsets of R having
additional algebraic properties. Also, we shall consider some subsets of R
having an additional algebraic structure and nonmeasurable with respect to
various invariant measures defined on R.

It is well known that there exist many interesting examples of Lebesgue
nonmeasurable subsets of R. In particular, it can be shown (with the aid
of an uncountable form of the Axiom of Choice) that there are Lebesgue
nonmeasurable subgroups of the additive group of R. For instance, using
the method of transfinite recursion and applying Hamel bases of R, it is not
difficult to construct two subsets V; and V5 of R such that

1) VinVe={0}, Vi + Vo = R;
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2) V1 and V5 are vector spaces over the field @ of all rational numbers
and, in particular, they are subgroups of the additive group of R;
3) V1 and V5 are Bernstein subsets of R.

Obviously, relation 3) implies that the subgroups V; and V5 of the addi-
tive group of the real line are nonmeasurable with respect to the Lebesgue
measure .

The construction of the above-mentioned groups V; and Vs is similar
to the classical Bernstein construction and is essentially based on some
specific topological properties of the real line. In connection with this fact
it is reasonable to find a construction of a nonmeasurable subgroup of R
in purely algebraic terms and in terms of an invariant measure structure.
More precisely, let © be an arbitrary nonzero o—finite R—invariant (or, more
generally, R—quasiinvariant) measure defined on a o—algebra of subsets of R.
The following question arises in a natural way: does there exist a subgroup
of R nonmeasurable with respect to the measure p? It turns out that the
answer to this question is positive. Moreover, it can be proved that there
exists a subset V of the real line, such that V is a vector space over the
field @ and V is nonmeasurable with respect to u. Here we shall give
a short proof of this fact. The method that we shall use in our further
consideration is taken from paper [4] where several applications of Hamel
bases to the theory of invariant measures are presented. Notice that this
method can be applied in many other situations (see, in particular, Remark
3 below). Actually, the countable chain condition and the quasiinvariance
of p (i.e. invariance of the class of all y—measurable sets and invariance of
the class of all p measure zero sets) yield the desired result.

In our considerations we use the standard terminology and notation of
point set theory (see, e.g., [9], [8] and [13]). Also, we use some well known
facts from group theory, concerning the algebraic structure of infinite com-
mutative groups (see, for instance, [7]).

First of all let us notice that, applying a Hamel basis of the real line R,
it is not difficult to represent the additive group of R as a direct sum

R =G+ Gy (G NGy ={0}),

where G and G are some vector spaces over @ and, in addition, card(G1) =
w1i.
Now, let us consider the following family of sets:
{Y + G2 :Y is a countable subset of G1}.

Denote by the symbol I the ideal of sets generated by this family. It is clear
that
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1) I is a o—ideal of subsets of R;

2) I is invariant under the group of all translations of R (moreover, I is
invariant under the group of all isometric transformations of R);

3) for each set Z € I, there exists an uncountable family {g, : @ < w1}
of elements from Gp such that {g, + Z : @ < w1} is a family of pairwise
disjoint sets.

Starting with these properties of the ideal I and applying the standard
methods of measure theory (see, e.g., [5] or [10]), we immediately obtain
the following statement.

Lemma 1. Let p be an arbitrary o—finite R—invariant (respectively, R-
quasiinvariant) measure defined on the real line R. Then there exists a
measure v, also defined on R, such that

1) v is an extension of u;

2) v is an R—invariant (respectively, R—quasiinvariant) measure;

3) the ideal I is contained in dom(v);

4) for each set Z € I, we have the equality v(Z) = 0.

We need also the following auxiliary proposition.

Lemma 2. Let p be a o—finite measure defined on some o—algebra of sub-
sets of a basic set E and let {Z, : o < w1} be an uncountable family of
p—measurable subsets of E. Furthermore, suppose that n > 0 is a fized
natural number and suppose that, for every n—element subset D of wy, the
equality
w{Zy:a€ D})=0

holds. Then there exists an uncountable subset A of wy such that u(Z,) =0,
for each ordinal o from A.

The proof of this lemma is not difficult. It can be carried out by induction
on n. Actually, a result much stronger than Lemma 2 can be established in
terms of o—algebras with o—ideals satisfying the countable chain condition
(for details, see [6]).

Now, we are going to establish the following statement.

Theorem 1. Let pu be an arbitrary nonzero o—finite R—invariant (or, more
generally, R—quasiinvariant) measure defined on the real line R. Then there
exists a subset V of R such that V' is a vector space over the field Q and V
s nonmeasurable with respect to the given measure L.
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Proof. Without loss of generality we may assume that the ideal I of subsets
of R is contained in dom(u) (see Lemma 1). Therefore, for each set Z € I,
we have the equality u(Z) = 0.

Let X be a Hamel basis for the vector space G;. Obviously, the equality
card(X) = wy holds. Let us consider a family

{Xne:n<w, £ <wi}

of those subsets of X which form the classical Ulam matrix in X. (Informa-
tion about this matrix is given, e.g., in the well known books [9], Chapter
5, and [8], Chapter 2.)

Let us recall that the Ulam matrix has the following two properties:

a) for each ordinal number § < wy, the set

X\U{Xp¢:n<w}

is at most countable;
b) for each natural number n, the family

{Xn,ﬁ 16 < wl}

consists of pairwise disjoint sets.
Let us put
Yn,§ = U{Xk’é k< TL}
It is clear that, for each ordinal { < wy, the family {Y,¢ : n < w} of
subsets of X is increasing with respect to inclusion and the complement of
the union of this family is a countable subset of X. From this fact we can
easily deduce that, if an ordinal £ < w; is fixed, then there exists a natural
number n (certainly depending on &) such that the following inequality is
fulfilled:
p*(lin(Yne) + Gz) > 0,
where p* denotes the outer measure associated with p and lin(Y;, ¢) denotes
the vector space (over the field Q) generated by the set Y, ¢.
Since w is a countable set and w; is an uncountable set, we can conclude
that there exist a natural number m and an uncountable subset B of w;
such that, for all ordinals £ € B, we have

p(lin(Ypme) + G2) > 0.
Now, let us put
Vg = lin(meg) + Go (f S B)
Taking into account the fact that the sets in any given row of the Ulam

matrix are pairwise disjoint, we deduce that, for every (m + 2)—element
subset D of B, the equality

ﬁ{yvmyg €€ D} =0
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holds. Furthermore, taking into account the fact that the set X is a Hamel
basis of the space G1, it is easy to verify that, for every (m + 2)—element
subset D of B, the equality

ﬂ{‘/g &€ D} =Gs
holds, too. Obviously, we have
1(Ga) = 0.

Suppose now that all vector spaces V¢ (£ € B) are measurable with respect
to pu. Then, applying Lemma 2, we conclude that there exists an ordinal
¢ € B such that u(Vg) = 0. But the latter relation gives us a contradiction
with the relation p*(Vg) > 0. Consequently, there exists an ordinal number
B € B such that the corresponding vector space Vj is nonmeasurable with
respect to the measure p. Hence, if we put V = Vj, then the set V is
the required one. Moreover, the same argument shows us that there exists
an uncountable subset C' of B such that all vector spaces Vg (£ € C) are
nonmeasurable with respect to u. Thus, the proof of Theorem 1 is complete.

O

Remark 1. Let us consider again the real line R as a vector space over
the field Q of all rational numbers. Let H be a fixed uncountable vector
subspace of R. Let u be an arbitrary nonzero o—finite H—invariant (or, more
generally, H—quasiinvariant) measure defined on R. It can be shown, using
an argument similar to the proof of Theorem 1, that there exists a vector
subspace of R nonmeasurable with respect to the measure pu.

Indeed, without loss of generality we may assume that card(H) = w;.
Furthermore, since H is a vector space over (), we can write

R=G1+ Gy (G1 NGy ={0}),

where G; = H and G2 also is a vector space over ). Now, it is clear that we
can apply here the same argument as in the proof of Theorem 1 (actually,
we used in the proof of this theorem only the Gi—quasiinvariance of the
given measure p). In this way we obtain a vector subspace of R (over Q)
nonmeasurable with respect to pu.

Remark 2. Let p be an arbitrary nonzero o—finite R—invariant (or R—quasiinvariant)
measure defined on R. The following question arises naturally: does there
exist a Hamel basis in R nonmeasurable with respect to pu? It turns out that
this question is undecidable in set theory ZFC'. Indeed, it can be proved
(see, e.g., [1] and [13]) that the next two assertions are equivalent:
1) the Continuum Hypothesis;
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2) there exists a countable family of Hamel bases in R such that the union
of this family coincides with the set R\ {0}.

From this fact it can be deduced that the next two assertions also are
equivalent:

1) the Continuum Hypothesis;

3) for every nonzero o finite R invariant (or R quasiinvariant) measure
u defined on R, there exists a Hamel basis in R nonmeasurable with respect
to p.

Indeed, first let us observe that if u is an arbitrary o—finite R-invariant
(R—quasiinvariant) measure on R and H is a y—measurable Hamel basis in
R, then we have the equality u(H) = 0. Taking into account this observa-
tion and the equivalence of assertions 1) and 2), we see that 1) implies 3).
Conversely, suppose that 3) is fulfilled and consider the R invariant o ideal
J of subsets of R, generated by the family of all Hamel bases in R. Then
one can easily verify that J is not a proper o—ideal (otherwise there exists
a probability R invariant measure v on R such that J C dom(v)). Thus,
J coincides with the family of all subsets of R, i.e. R € J. From this fact
it is not difficult to deduce assertion 2) and, consequently, the Continuum
Hypothesis.

The equivalence of 1) and 3) immediately implies that the question posed
above is undecidable in set theory ZFC.

Notice that Theorem 1 can be generalized to a wide class of uncountable
groups. In particular, it can be generalized to the class of all uncount-
able commutative groups. Of course, in order to obtain the corresponding
result for uncountable commutative groups, we need some deep theorems
concerning the algebraic structure of those groups.

Let (G, +) be an arbitrary uncountable commutative group and let u be
an arbitrary nonzero o finite G invariant (or G quasiinvariant) measure
defined on G. Obviously, without loss of generality, we may assume that
u is a probability G-quasiinvariant measure on G. According to the well
known result from the theory of commutative groups (see, e.g., [7], p. 148),
we have the equality

G=U{l'y: k € w},

where {T'y : k € w} is an increasing (with respect to inclusion) countable
family of subgroups of GG such that every group I'y can be represented as a
direct sum of cyclic groups. Now, only two cases are possible.

1. For all natural numbers k the inequality card(G/I'y) > wq holds. It
is easy to see that there exists a natural number p such that p*(I',) > 0.
On the other hand, the group GG contains an uncountable family of pairwise
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disjoint translates of the group I'y,. Hence, the group I', is not measurable
with respect to the given measure p.

2. There exists a natural number k such that card(G/I'y) < w. Let
us fix a number k& with this property. If the group I'y is nonmeasurable
with respect to u, then there is nothing to prove. Suppose now that I'y is
a u measurable subset of G. Then we have p(I'y) > 0. Let v denote the
restriction of the measure p to the group I'y. Obviously, v is a nonzero finite
I'y quasiinvariant measure defined on the group I'y.. Since I'y, is uncountable
and is a direct sum of cyclic groups, we can write

I'n=G1 + Gy (Gl NGy = {0}),

where GG1 and G5 are some subgroups of 'y, satisfying the following relations:

1) card(Gy) = wr;

2) (1 is a direct sum of cyclic groups;

3) G9 also is a direct sum of cyclic groups.

Now, we can apply to the group I'y = G1 4+ G2 and to the measure v the
same construction as in the proof of Theorem 1. In such a way we get a
subgroup I' of the group I'x, nonmeasurable with respect to the measure v.
But it is clear that I' is also a subgroup of the original group G and that I"
is nonmeasurable with respect to the original measure p.

Thus, we obtained the following result.

Theorem 2. Let (G,+) be an uncountable commutative group and let p be
a nonzero o—finite G—invariant (or G—quasiinvariant) measure defined on
G. Then there exists a subgroup of G nonmeasurable with respect to .

The next example gives us a nontrivial application of Theorem 2 to the
Haar measure defined on a commutative locally compact topological group.

EXAMPLE. Let (G, +) be an uncountable commutative o—compact locally
compact topological group and let p be the completion of the Haar measure
on GG. Suppose also that I' is an arbitrary thick subgroup of G with respect
to the measure p, i.e.
u(G\T) =0.

Let us denote by v the trace of the measure g on the group I'. Then v is
a nonzero o—finite I'-invariant measure defined on I'. Applying the result
of Theorem 2, we conclude that there exists a subgroup of the group I'
nonmeasurable with respect to the measure v. In particular, if we take
I' = G, then we get a subgroup of G nonmeasurable with respect to the
original measure p.
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It is also clear that these results are true for any commutative nondiscrete
locally compact topological group (G, +) equipped with the completion of
the Haar measure on G.

Notice that there is a commutative nondiscrete locally compact topologi-
cal group (G, +) without dense proper subgroups (see [11]). Evidently, such
a group G does not contain dense subgroups nonmeasurable with respect
to the completion p of the Haar measure on GG. This fact shows directly
that we cannot apply the classical Bernstein construction to G, in order
to obtain a p—thick proper subgroup of G. Thus, we see that an approach
based on the corresponding combinatorial properties of the Ulam transfinite
matrix is more preferable because it yields the existence of nonmeasurable
subgroups.

In connection with Theorem 2, let us remark that it can be extended
to a large class of uncountable noncommutative groups, too. On the other
hand, this theorem cannot be generalized to the class of all uncountable
groups. Indeed, let us consider an arbitrary group G satisfying the following
conditions:

(1) the cofinality of the cardinal number card(G) is strictly greater than
w;

(2) for every subgroup H of G we have either card(H) < card(G) or
H=G.

In particular, if G is a Jonsson group of cardinality wq, then it is clear that
G satisfies conditions (1) and (2) because w; is a regular cardinal number
and G does not contain a proper subgroup of cardinality w;. We wish to
recall that such a group G was first constructed by Shelah (see [12]).

Now, denote by J the o-ideal of all subsets Z of G with card(Z) <
card(@). Let S be the o algebra of subsets of G, generated by the ideal
J. Then it is easy to define a probability G—invariant measure p on S such
that p(Z) = 0 for each set Z from the ideal J. For this measure p it is also
easy to check that there does not exist a subgroup of G nonmeasurable with
respect to u.

In connection with Theorems 1 and 2, the following two similar problems
can be posed.

Problem 1. Give a characterization of all uncountable groups G such that,
for every nonzero o—finite G—invariant (or G—quasiinvariant) measure u de-
fined on G, there exists a subgroup of G nonmeasurable with respect to

W
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Problem 2. Give a characterization of all uncountable groups G such that,
for any uncountable subgroup H of G and for any nonzero o—finite H—
invariant (or H quasiinvariant) measure p defined on G, there exists a sub-
group of G nonmeasurable with respect to p.

Finally, let us notice that, for every uncountable group G and for every
nonzero o—finite G—invariant (or G—quasiinvariant) measure p defined on G,
there exists a subset of G nonmeasurable with respect to u. More generally,
if G is a group, H is an uncountable subgroup of G and u is a nonzero
o—finite H—quasiinvariant measure defined on G, then there exists a subset
of G nonmeasurable with respect to u (one can find these results in [3]; see
also [2]). In addition, if G is a group and H is an arbitrary subgroup of G,
then there exists a nonzero o—finite G—invariant measure v on G such that
H € dom(v) (in other words, H is not an absolutely nonmeasurable subset
of G). It is also known that there exists an absolutely nonmeasurable set in
every uncountable commutative group. But the following question remains
open: does there exist an absolutely nonmeasurable set in any uncountable
group?

Remark 3. Theorems 1 and 2 have some natural analogs for the Baire prop-
erty. For instance, let H be an uncountable vector subspace (over Q) of the
real line R and let T be a topology on R such that

1) T is a Baire space topology;

2) the Suslin number ¢(T) is equal to w, i.e. T satisfies the Suslin condi-
tion (the countable chain condition);

3) the o algebra of all sets having the Baire property with respect to
T and the o—ideal of all first category sets with respect to 1" are invariant
under the group H.

Then it can be proved, by the method described above (using the cor-
responding analogs of Lemmas 1 and 2 for the Baire property), that there
exists a vector subspace of R (over @) which does not have the Baire prop-
erty with respect to the topology T

Actually, this result is a generalization of Theorem 1. Indeed, we can im-
mediately deduce Theorem 1 from this result if we consider a von Neumann
topology T'(u) on R, associated with the completion of a nonzero o—finite
H-invariant (or H—quasiinvariant) measure u defined on R. We recall that
the von Neumann topology 7'(u) is agreed with the completion of y in the
sense of the Baire property and category (see, e.g., [9], Chapter 22). This
application of a von Neumann topology is typical. In many cases, if we have
a result for the Baire property, we may automatically deduce from it the
corresponding result for a measure. In particular, it is well known that the
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classical (A)-operation preserves the Baire property (in an arbitrary topo-
logical space). From this fact we immediately obtain, using a von Neumann
topology, that (A) operation also preserves the class of all measurable sets
with respect to each complete o—finite measure.

Obviously, we can formulate two problems for the Baire property, analo-
gous to Problems 1 and 2 posed above.
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