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1. Introduction

Let F be a real Banach space and let C' be a nonempty closed convex subset of K. Then a
mapping T' of C into itself is called nonexpansive if | Tz — Ty|| < ||z — y|| for all z,y € C.
A mapping T of C into itself is called quasi-nonexpansive if the set F/(T') of fixed points
of T is nonempty and |7z — y|| < ||z — y|| for all z € C and y € F(T'). For two mappings
S, T of C into itself, Das and Debata [2] considered the following iteration scheme: z; € '
and

Tnt1 = anS[BnTan + (1 = Gz, + (1 — o)z, (1.1)

for all n > 1, where {a,} and {3,} are sequences in [0,1]. In this case of S = T,
such an iteration scheme was considered by Ishikawa [5]; see also Mann [7]. Das and
Debata [2] studied the strong convergence of the iterates {z,} defined by (1.1) in the case
when F is strictly convex and 5, T are quasi-nonexpansive mappings; see also Rhoades
[10]. On the other hand, Tan and Xu [15] discussed the weak convergence of the iterates
{z,} defined by (1.1) in the case when F is uniformly convex and S, T are nonexpansive
mappings with S = T'. Recently Takahashi and Kim [13] proved the following: Let C' be
a nonempty closed convex subset of a uniformly convex Banach space I/ which satisfies
Opial’s condition or whose norm is Fréchet differentiable and let /' be a nonexpansive
mapping of C into itself. Then for any initial data x; in C, the iterates {z,} defined
by (1.1) in the case of U = S = T, where o, € [a,1] and 3, € [a,b] or a,, € [a,b] and
B, € [0,0] for some a,b € Rwith 0 < a < b < 1, converge weakly to a fixed point of
U. Further, they obtained the following: Let C' be a nonempty closed convex subset of
a strictly convex Banach space F and let U be a nonexpansive mapping of C' into itself
such that U(C) is contained in a compact subset of C'. Then for any initial data z; in C,
the iterates {z,} defined by (1.1) in the case of U = S = T, converge strongly to a fixed
point of U. {a,} and {8,} in [13] are different from those in [2], [10] and [15].

In this paper, we study the iteration schemes defined by (1.1). We first consider the weak
convergence of iterates {z,} defined by (1.1) in a uniformly convex Banach space which
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satisfies Opial’s condition or whose norm is Fréchet differentiable. Further we discuss the
strong convergence of iterates {z,} defined by (1.1) in a strictly convex Banach space.
The convergence theorems are generalizations of [13].

2. Preliminaries

Throughout this paper, we denote by IN the set of positive integers and by R the set of
real numbers. Let £ be a Banach space and let I be the identity operator on E. Let C'
be a nonempty subset of £. Then, a mapping T of € into itself is said to be nonexpansive
on Cif [Tz — Ty|| < ||z —y|| for every z,y € C. Let T be a mapping of C into itself.
Then we denote by F'(T') the set of fixed points of T'. For every ¢ with 0 < & < 2, we
define the modulus §(¢) of convexity of E by

) = int {1 = B2 oy < vl < -l 2 6}

A Banach space F is said to be uniformly convex if
d(e) >0

for every ¢ > 0. If F is uniformly convex, then for each r,e with r > ¢ > 0, we have

§(2) >0and
e (1-5(9)

for every z,y € E with ||z]| < r, |ly|| < r and ||z —y|]| > €. A Banach space F is also

said to be strictly convex if

T+ Yy
<1
5
for z,y € E with ||z|| = ||y|| = 1 and = # y. A uniformly convex Banach space is reflexive

and strictly convex. In a strictly convex Banach space, we have that if
[zl = llyll = I[(1 = A) & + Ay| for z,y € E and X € (0,1),

then * = y. Let E be a Banach space and let E* be its dual, that is, the space of
all continuous linear functionals f on F. Then the norm of F is said to be Gateaux
differentiable if

e+t lel
t—0 A
exists for each z,y € F with ||z|| = ||ly|| = 1. It is said to be Fréchet differentiable if for

each z with ||z|| = 1, this limit is attained uniformly for y with ||y|| = 1. When {z,}
is a sequence in F, z, — = and z, — = will symbolize strong and weak convergence,
respectively. We also denote by coA the closure of the convex hull of A. A Banach space
E is said to satisfy Opial’s condition [8] if z,, = z and z # y imply

liminf ||z, — z|| < liminf ||z, — y|| .
00 n—00
With each # € F, we associate the set

J(z)={f € B+ (z.f) = ||=[I* = |If]I"}.
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Then the multivalued operator J : E — FE* is called the duality mapping of E. If the
norm of F is Gateaux differentiable, the duality mapping is single-valued. The following
lemma which was proved by Reich [9] is essential to prove the theorems in Section 3; see

also [13].

Lemma 2.1. Let C be a nonempty closed convex subsel of a uniformly convexr Banach
space F with a Fréchet differentiable norm and let {Ty,T,,Ts,---} be a sequence of non-
expansive mappings of C inlo itself such that (), F(T,) is nonemply. Let x € C and
Sp=T,Tuy--- Ty for all n > 1. Then, the set (),_,co{Snz :m >n} N F consists of at
most one point, where F'=()_, F(T,).

We also know the following lemma proved by Schu [11].

Lemma 2.2. Let £ be a uniformly convex Banach space, let {t,} be a sequence of real
numbers such that 0 < b <t, <c <1 foralln > 1, and let {x,} and {y,} be sequences of
E such that limsup,,_,  ||z,|| < a, limsup,,_, . |lys]| < a and im0 ||[thzn + (1 — o) ya|
= a for some a > 0. Then, lim||z, — y.|| = 0.

3. Weak convergence theorems

In this section, we prove weak convergence theorems for a pair of nonexpansive mappings.
Let C' be a nonempty closed convex subset of a strictly convex Banach space F and let
S, T be nonexpansive mappings of C into itself. For n > 1, a,,3, € [0,1] and = € C, we
define a mapping T,, of C into itself by

Tox = o, S[BTa+ (1 — Go)x]+ (1 —an)x

for every x € C. Then, T,, is also nonexpansive; see [15]. Further we have the following:

fo<a,<1,0<8,<1and F(S)N F(T) is nonempty, then
F(T,) = F(S)n F(T).
Further, in the case of S = T,if 0 < a,, < 1 and 0 < 3, < 1, then
F(T,) = F(T).

In fact, if z € F'(S) N F(T), then it is obvious that z € F(T,). Conversely, if z € F(T,),

we have

z2 =0, S[B,Tz+ (1 = B,)z] + (1 —ay)z
and hence z = S[8,Tz 4+ (1 — 3,)z]. Let w € F(S)N F(T). Then we obtain

Iz —w]l = |[[S[B:T% + (1 = Ba)z] — w]
< 8T+ (1 o) — wl
< BullTz —wl + (1= Bn)llz — wll
< e —wll.
So we have ||z —w|| = ||8,Tz+ (1 = 8,)z — w|| = ||T'z — w||. Since E is strictly convex,

we have Tz = z and hence Sz = z. This implies F(7T,,) = F(S) N F(T). In the case of
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S =T, the result has already been proved in [13]. We also know that the iterates {z,}
defined by (1.1) can be written as

Tp41 = T, Ty Tyx,

for all n > 1. The following theorem is used to discuss the weak convergence of the iterates

defined by (1.1).

Theorem 3.1. Let ' be a nonemply closed convex subset of a uniformly convexr Banach
space B, and let S, T be nonexpansive mappings of C into itself such that F(S)N F(T) is
nonemply. Suppose that {x,} is given by 1 € C and

for all n > 1, where a,, 3, € [0,1]. Then the following hold:

(i) If a, € [a,b] and 3, € [0,b] for some a,b € Rwith 0 < a <b <1, then z,, =y
implies y € F(S);

(i) if a, € [a,1] and B, € [a,b] for some a,b € Rwith 0 < a <b < 1, then z,, =y
implies y € F(T);

(iii) if an, Bn € [a,b] for some a,b € R with 0 < a < b < 1, then z,, — y implies
y e F(S)nF(T).

Proof. Let z; € C and w € F(S)N F(T). Putting r = ||z; — w||, then the set D = {y €
E:|ly — w| <r}NC is anonempty bounded closed convex subset of C' which is invariant
under S and T. So we may assume, without loss of generality, that C' is bounded. By the
definition of {z,}, we have

lanS[Ba T + (1 = Bo)zn] + (1 — ag)z, —w|

a |S[BaTn + (1 = Ba)wn] — w|| + (1 — a) || — w]|

an [|BaT s + (1 = Bn)en — w]| 4+ (1 = an) |2, — w]|

B | Tn — wl|| + (1 = B,) |20 — w|[] + (1 = ap) ||, — w|

[#n = w]|

||5L"n+1 - w”

VAN VAN VAN VAN

and hence the limit of {||z, — w||} exists. Put ¢ = lim,, o, ||z, — w]|| and y,, = 8,7z, +
(1= 5,)z, for all n > 1. Since

[Syn —wll < [lyn —wl
= BuTwn + (1 = Br)an — w]|
S BalTan = wl + (1 = Ba) |20 — wl|
< lzn — ol

we have

limsup [[Sy, —w| < limsup ||y, — w||

n—00 n—0o0

IN

lim ||z, — w||
n—00
c.



W. Takahashi, T. Tamura / Convergence theorems for a pair of nonexpansive mappings 49

Further, we have

T (S =) + (1 = an)(ea )| = lin Jlewss — wl
= e
Ifo<a<a,<b<1, by Lemma 2.2, we have

lim (Sy, — x,) = 0.

n—oo

We have also

[S2n — @nll 1520 = Synll + [[Syn —
12 = ynll + 115yn — zn]l

= BullTwn = nl +11Syn — @l (3.1)
On the other hand, if 0 < a < a,, <1, we have, for n > 1,

lnsr —wll < o l1Sgn — w]l + (1 = ) s — ]
< anllgn = vl + (1 = @) Jz — w]

and hence
2041 — w]| = |lzn — |

- < g — w0l =l — ] .

So, we have
¢ < liminf ||y, — w]|.
n—roo

Since limsup,,_, . ||y» — w|| < ¢, we have

¢ = Tm Jly, —wl|
= lim [|Ba(T2n = w) + (1 = Ba)(2n —w)]- (3.2)

Now we show (i). Assume z,,, = y. Then since 0 < 3, < b < 1, we have liminf; ., 8,, =0
or liminf; . B,, > 0. If liminf,, ., 3,, > 0, from (3.2) and Lemma 2.2, we have
lim[Tz,, —z,,] =0.
21— 00
So, from (3.1), we have
lim[Sxz,, — x,,] = 0.
11— 00
Since [ — S is demiclosed [1], we have y € F(S). If liminf,_, ., 8,, = 0, then since {z,} is
bounded, by (3.1) we have a subsequence {J;m]} of {x,,} such that

lim[Sz,, —x, ]=0.
J—roo J 7

Since I — S is demiclosed, we have y € F(S). This completes the proof of (i). Next we

show (ii). Since 0 < a < a,, < 1, we have (3.2). By 0 < a < 3, <b < 1 and Lemma 2.2,

we have

lim [Tz, — z,] = 0.

n—oo

Since z,, — y and I — T is demiclosed, we have y € F/(T'). This completes the proof of
(ii). (iii) is obvious from (i) and (ii). O
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Using Theorem 3.1, we can prove the following theorem which was obtained by Takahashi
and Kim [13].

Theorem 3.2 ([13]). Let C be a nonempty closed convex subset of a uniformly convex
Banach space FE which salisfies Opial’s condilion or whose norm is Fréchet differentiable.
Let T' be a nonexpansive mapping of C into itself with a fived point. Suppose that {x,}
is given by xy € C and z,11 = o, TG, Tx, + (1 — Bz, + (1 — o)z, for all n > 1,
where a, € la,1] and B, € [a,b] or o, € [a,b] and B, € [0,b] for some a,b € R with
0<a<b<l1. Then {x,} converges weakly to a fized point of T.

Proof. Let z be a fixed point of 7. Then, as in the proof of Theorem 3.1, lim,,_,«, ||z, — 2||
exists. Let z; and 2z, be two weak subsequential limits of the sequence {z,}, that is,
Tp; — 21 and x,; — 25. Then we know 2,2, € F(T) by Theorem 3.1. We claim z; = z,.
If not, by Opial’s condition,

lim [lo — 1)l = lim [fon, — =
n—00 1—+00

< lim [Jz,, — 2]
=00

= lim ||z, — 22|
n—oo

-
J—r0o0

< lim H.Lnj — ZlH
J—00

= lim ||z, — z1]| .
n—oo

This is a contradiction. So, we have z; = z;. We now assume that £ has a Fréchet
differentiable norm. As in the proof of Theorem 3.1, we may assume that C' is bounded.
So, there exists a subsequence {z,, } of {z,} such that z,, = z € C. Then by Theorem 3.1,
we obtain z € F(T). From Lemma 2.1, we have

{z} =Ny co{zy :m >n} 0 F(T).

Hence {z,} converges weakly to a fixed point 7. O

The following is a weak convergence theorem for a pair of nonexpansive mappings in a
Banach space.

Theorem 3.3. Let ' be a nonemply closed convex subset of a uniformly convexr Banach
space F which satisfies Optal’s condition or whose norm is Fréchet differentiable. Let S,T
be nonexpansive mappings of C into itself such that F(S)N F(T) is nonemply. Suppose
that {x,} is given by x1 € C and xp41 = @, 5[0, T, + (1 = Bp)zn] + (1 — an)z, for all
n > 1, where a,, B, € [a,b] for some a,b € Rwith 0 < a <b < 1. Then {z,} converges
weakly to a common fized point of S and T'.

Proof. Note that if 7,2 = &, S[3, Tz + (1 — B,)z] + (1 — o)z for every z € C, then
F(T,) = F(S)NF(T). Then as in the proof of Theorem 3.2, we can prove Theorem 3.3. [
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4. Strong convergence theorems

In this section, we first prove the following theorem which is used to discuss the strong
convergence of iterates defined by (1.1).

Theorem 4.1. Let C be a nonempty closed convexr subset of a strictly conver Banach
space E and let T, S be nonexpansive mappings of C into ilself such that S(C)UT(C) is
contained in a compact subset of C and F(T)N F(S) is nonempty. Suppose that {x,} is
given by ¥, € C and x4 = @, S[BTx, + (1 = B)x,] + (1 — ay)xy, for all n > 1, where
{a,} and {B,} are sequences in [0,1]. Then the following hold:

(i) If a, € [a,b] and 3, € [0,b] for some a,b € Rwith 0 < a < b < 1, then z,, — =
implies z € F(5);

(i) if an € [a,1] and B, € [a,b] for some a,b € R with 0 < a < b < 1, then x,, — =
implies z € F(T);

(iii) if an, Ba € [a,b] for some a,b € Rwith 0 < a < b < 1, then z,, — z implies
z € F(S)n F(T).

Proof. By Mazur’s theorem [3], D = co{S(C) U T(C) U {x1}} is a compact subset of
C which contains the sequence{z,}. To prove (i), let a,, € [a,b] and B, € [0, b] for some
a,b€ Rwith 0 < a <b<1andz, — 2z Assume Sz # z and let w € F(S)NF(T). Then,
as in the proof of Theorem 3.1, we have that lim ||z,, — w]| exists. Let ¢ = lim||z,, — w]| .
Since z,, — z, we have ||z — w|| = ¢. From Sz # z, we have ¢ > 0. Further we have
S[BTz+ (1 = B)z] # =z for all 8 € [0,b]. In fact, if z = S[BTz+ (1 — B)z] for 8 =0, we
have Sz = z. This is a contradiction. If z = S[Tz + (1 — 3)z] for some g € (0,b], we

have

IS[Tz + (1 = B)z] — w]|

< BTz 4 (1 = B)z — v

< BTz —wl + (1 = B) [z — wl|
<

Iz = wl].

Iz = wl

Since F is strictly convex , we have Tz = z. So, we have
z=S[pTz+ (1 = p)z] = S=.

This is also a contradiction. Therefore, we have S[3Tz 4 (1 — 3)z] # z for all g € [0, b].
We also know that ||z — w|| = ¢ and ||S[8Tz + (1 — 8)z] — w|| < ||z — w|| = ¢. Since E is

strictly convex, we have, for any o € [a, b],
aS[BTz + (1 — B)z] + (1 — @)z — w|| < c. (4.1)
Now, consider a real valued function g on [0,1] x [0, 1] given by
g(a, B) = [aSIBT= + (1 = B)z] + (1 — @)z — w]

for a, 8 €[0,1] x [0,1]. Then g is continuous. From (4.1) and compactness of [a, b] x [0, b],
we have

max{g(a,3) : (o, 3) € [a,b] x [0,b]} < c.
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Choose a positive number r such that

max{g(a,3) : (o, 3) € [a,b] x [0,b]} < ¢ —r.

Then from z,, — 2z, we obtain an integer m > 1 such that ||z,, — z|| < r. Hence we have

¢ < Nomn — vl
< Ntmas — anS[BaT= + (1 - Bu)e] — (1 an )]
H|amS[BmTz + (1 — Bm)z] + (1 — ap )z — w||
< ol BTt = T2) 4 (1 = Bt = 2 + (1 = )l — 2]
H|amS[BmTz + (1 — Br)z] + (1 — o)z — w||
< aml|Bn(Tem —Tz) 4+ (1 = Bn)(@m — 2)|| + (1 — am)||#m — 2| + ¢ =7
< am(Bnllem = 2| + (1 = Bu)llzm — 2]])
P
< c

This is a contradiction. So, we obtain z = Sz. This completes the proof of (i). To prove
(i), let o, € [a,1] and 3, € [a,b] for some a,b € Rwith 0 < a < b < 1 and z,, — z.
Assume Tz # z and let w € F(S)N F(T). Then, putting ¢ = lim,,_, ||z, — w||, as in the
proof of (i), we have ||z — w|| = ¢ > 0 and S[BTz+ (1 — 3)z] # z for all 8 € [a, b]. Further

we have that for any a € [a, 1],
|aS[BTz+ (1 = B)z]+ (1 —a)z —w| <. (4.2)

In fact, if @ € [a,1), from strict convexity of £, we have the inequality. If @ = 1 and

|aS[BTz+ (1 — B)z] + (1 — a)z — w|| = ¢, we have

¢ = IISIBT=+ (1 - B)e] — v
18T+ (1 = B)z — ]
BIT= —wl| + (1 - B)]|z — vl

Iz = wl|.

IACIN A

So, using strict convexity of F again, we have z = T'z. This is a contradiction. So, we
have (4.2). Defining a real valued function ¢ on [0, 1] x [0, 1] as in the proof of (i), we also
have

max{g(e, 3) : (a, 8) € [a,1] x [a,b]} <c.
Choose a positive number r such that

max{g(a, ) : (o, 3) € [a,1] x [a,b]} < c—.

Then as in the proof of (i), we obtain ¢ < ||z,41 — w| < ¢. This is a contradiction.
Therefore we have T'z = z. (iii) is obvious from (i) and (ii). O

Using Theorem 4.1, we can prove the following theorem which was obtained by Takahashi

and Kim [13].
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Theorem 4.2. Let C be a nonempty closed convex subsel of a strictly convexr Banach
space B and let T' be a nonexpansive mapping of C into itself such that T(C') is conlained
in a compact subset of C'. Suppose that {x,} is given by 1 € C and v,y = o, T3, Tx, +
(1= 08n)zn] + (1 — ay)xy, for all n > 1, where o, € [a,b] and 3, € [0,b] or a,, € [a,1] and
Bn € [a,b] for some a, b with 0 < a < b < 1. Then {x,} converges strongly to a fized
point of T'.

Proof. We first show that F'(T') is nonempty. Fix zo € C. For each n € N consider a
contraction mapping 7, given by

1 1
Thx =—a94+ (1 ——)Tx
n n

for every © € C. Then T, has a unique fixed point u, in C. Since the closure of T'(C)
is compact, there exists a subsequence {Tu,,} of the sequence {Tu,} such that {Tu,,}
converges strongly to v. Since T'(C') is bounded and

1
VT w, — Tuy|

1— =
n

1
len = Tunll = |10 +
1
= —lro — Tua.
n

we have u,, — T'u, — 0 as n — o0o. So, from

lo=Tol < o= Tun || + [|Twn; = TTun|| + [ TTwn; — Tl|

2”“ - Tum” + Hum - Tuml

<
<

J

we have v = T'v. By Mazur’s theorem [3], note that co({z,} UT(C)) is a compact subset
of C' which contains the sequence {z,}. Then there exist a subsequence {z,,} of the
sequence {z,} and a point z € C such that z,, — z. By Theorem 4.1, we have Tz = z
and hence lim,_,, ||z, — z|| = 0. O

The following is a strong convergence theorem for a pair of nonexpansive mappings in a
Banach space.

Theorem 4.3. Let C be a nonempty closed convex subsel of a strictly convexr Banach
space E and let S, T be nonexpansive mappings of C into ilself such that S(C)UT(C) is
contained in a compact subset of C and F(T)N F(S) is nonempty. Suppose that {x,} is
given by 1 € C and z,qp1 = @, S[3,Tx, + (1 — B,)z,] + (1 — )z, for all n > 1, where
Oy Bn € [a,b] for some a,b € R with 0 < a <b < 1. Then {z,} converges strongly to a
common fized point of S and T.

Proof. For any w € F(S)N F(T), we have that lim, . ||z, — w| exists. Further the
sequence {z,} is contained in a compact subset of C. So, there exists a subsequence {z,, }

of {x,,} such that {z,,} converges strongly to an element z € C. By Theorem 4.1, we have
z € F(S)N F(T). This implies lim,,_«, ||z, — z|| = 0. O

Finally, we prove a strong convergence theorem which is connected with results of [6] and

14].
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Theorem 4.4. Let ' be a nonemply closed convex subset of a uniformly convexr Banach
space B, and let S, T be nonexpansive mappings of C into itself such that F(S)N F(T) is
nonemply. Lel P be the melric projection of C' onto F(S)N F(T). Suppose that {x,} is
given by ©1 € C and zpp = @, S[B.Tx, + (1 = Bp)xn] + (1 — ay)zy, for all n > 1, where
Qy, By € [0,1]. Then {Px,} converges strongly to an element of F(S) N F(T).

Proof. Let y, = 3,7, + (1 — 3,)z, for each n. Then

[P2ni1 = Znga|| < |[Prn — 2|

|Pxn — an Sy, — (1 — o)y

an [P = yol| + (1 = ) | Prn — 2.

an (B |[Pan — Tan|l + (1 = Bo) |Prn — aal]) + (1 — o) [[Prn — @n|
Pz, — ] - (4.3)

IA A IA

So, we have that the limit of {||Pz, — z,||} exists. We denote the limit of {||Pz, — z,||}
by r. Next, we show that for each n,k € N,

1Parn = ayall < P — 2l (1.4)
by mathematical induction. For & = 1, we have

[Pen = nt|| < | Pn — wnll
by (4.3). We assume that for k =/,

1P — 2l < 1P — 2.
Then, we get

P20 = @n1SYntr — (1 = g 2np|

Wit || Pn — ynst]| + (1 — ant) | Prn — zogl|

gt (Bt [P — Toppt|| + (1 = Bagt) | Prn — 2ng])
+(1 = angt) [ Prn — zntd]|

[P2n — Tntt]

|Pxn — xn]| -

| Pn — Tnyrga|

IA A

IA A

This is complete the proof of (4.4). Now we show that {Pz,} is a Cauchy sequence. If
r = lim,o || Pz, — 2,]| = 0, for an arbitrary positive number ¢, there exists a positive
integer ny such that | Pz, — z,|| < ¢ for all n > ny. By (4.4), we have for m,n € Nwith
m >n > ng,

[Pan — Panl| < ||Prn — Pang || + [[Pan, — Pra|

< NPan = zall + |20 = Poag|| + [[P2ng — 2| + [|2m — P
S HPITL - xn“ + Hxno - Pxno” + prno - xno” + me - PIMH
<

4e.

Since ¢ > 0 is arbitrary, we have that { Pz, } is a Cauchy sequence. Next, we assume that
r > 0and {Pxz,} is not a Cauchy sequence. Then there exist a positive number ¢ and two
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subsequences { Pz, }, { P&, } of { Pz, } such that ||Pz,, — Px,,,|| > ¢ for all i € N Also,

there exists a positive number d such that (r + d) (1 — 5(T_|E_d)> < 7. By the definition of

r, there exists a positive integer ng such that
r < ||Pxp — x| <r+d
for all n > no. Let ng,m; > ng and 1> 0y, ms. By (4.4), we have
| Py, — 21]| < ||Pn, —an,|| <r+d

and
| P, — x| < ||Pam, — xm,|| <r+d

By uniform convexity of F, we get

Pz, + Pz, €
T‘SHP.II—,I[HSH#—.I[ < (r+d) (1_5(r+d)>< r.
This is a contradiction. This complete the proof. O

Using Theorem 4.4, we can prove the following result.

Theorem 4.5. Let C' be a nonemply closed convex subset of a Hilbert space H, and let
S, T be nonexpansive mappings of C into itself such that F/(S)NF(T) is nonemply. Let P
be the metric projection of C onto F(S)NF(T). Suppose that {z,} is given by x4 € C and
Tpy1 = @, S[BnTx,+ (1= Bo)z,] + (1 — o)z, for alln > 1, where o, B, € [a,b] for some
a,b with 0 < a < b < 1. Then {z,} converges weakly to an element z of F(S)N F(T),

where z = lim,,_,, Px,.

Proof. By Theorem 3.3, {z,} converges weakly to an element z of F'(S)N F(T). By
Theorem 4.4, {Px,} converges strongly to an element u of F'(S)N F(T). Since P is the
metric projection of H onto F/(S)NF(T), we also know that (z,,— Pz, Px,—y) > 0 for all
y € F(S)NF(T), where (-,-) denotes the inner product of H. So, we have (z —u,u—y) > 0
for all y € F(S)N F(T). Putting y = z, we obtain — ||z — u“2 > 0 and hence z = u. This
completes the proof. O
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