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We establish (i) that the quasiconvexifcation of the distance function to any closed (possibly unbounded)
subset of the space of conformal matrices Es in M2*? is bounded from below by the distance function
itself, that is, @dist(-, K) > cdist(:, K), where ¢ > 0 is a constant independent of K; (ii) some esti-
mates of quasiconvexifications of the distance function to a closed subset of M2*2 which is ‘supported’
by Ep; (iil) Qdist?(-, K) = Qdist?(-,Q,(K)) for any p > 1 and any closed K C M~*"; (iv) for some

)

nonconvex K C M?*% Qdist(-, K) is homogeneous of degree one, conjugate invariant and convex, and

Q1(K) = C(K).

1. Introduction

In this note we study some nonconvex, non-negative quasiconvex functions with linear
growth at infinity obtained by using quasiconvex relaxations of the distance function to a
closed set in M?*%. The zero sets of these quasiconvex functions can be unbounded. We
also give some conditions such that a homogeneous quasicovex function of degree one in
M?*? is convex in some two dimensional subspaces.

More precisely, we show that for every closed subset K of Ey (E3, respectively)-the space
of conformal (anti-conformal, respectively) matrices in M?*? - the quasiconvexification of
the distance function dist(-, K') is bounded below by itself, that is,

edist(P, K) < Q dist(P, K), (1.1)

and the constant ¢ > 0 is independent of K. From the definition of quasiconvex relaxation
(see Definition 1.1 below), we have

Q dist(P, K) < dist(P, K).

Therefore, @ dist(P, K') is not convex if K is not convex. If K' C Ej5 (Ej, respectively) is
closed and non-convex, we show that dist(-, K') is not rank-1 convex in M?*?  justifying
the non-trivialness of (1.1). We also obtain an estimate of the lower bound for @ dist(-, K)
for any closed set K C M?*** which is supported (the precise definition of a supporting
space will be given later) by Ej (Ej, respectively). In the case where Fj is the supporting
space of K, we have that

edist(P, K) — C| Py, (P)| < Qdist(P, K)
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for P € K, where Pg, is the orthogonal projection from M?*** to Fj.

Motivated from [7], we also study the behaviour of a nonnegative homogeneous quasicovex
function f: M**? — Rof degree 1 under the conjugate invariant condition (see [23]) which
is a less restrictive condition than that of [7]. We show in Theorem 2.7 below that f must
be convex in certain two dimensional subspaces of M?*? while f is not necessarily convex
(Remark 2.8). This result seems only valid in M?*? because we need a lemma in [7] (see
Prop. 1.6 below) which holds only in two dimensional spaces.

We focus on subsets of F5 and E5 in M*** because of the following two reasons.

(1) The weak type (1,1) estimates for the projection Pg,(D¢) is classical and is readily
available in [18]. Therefore we do not need too much harmonic analysis preparation.
In fact, it is possible to establish a more general version of Theorem 2.2 for any
subspace E of MV*™ under the assumption that F does not have rank-one matrices
[13]. However we need to establish a more general weak type (1,1) estimate for a
special class of singular integral operators.

(2) In [23, 25], the connected subsets of M?*? were characterized and used to construct
nonconvex, nonnegative quasiconvex with p-the growth at infinity. It was proved in
[25] that in M**%  a closed connected set K does not have rank-one connections if
and only if K is a Lipschitz graph of a mapping f from a closed set of F5 to Ej (or
from a closed set of Ez to Ejy respectively), such that

[F(A) - J(B)| <|A-B|, A#B.

It was established in [23] that for any p € (1, 00), there exists some ¢(p) > 0, if K is
such a graph satisfying | f(A)— f(B)| < k|A— B| and k? < ¢(p), then the quasiconvex
relaxation ) dist?(-, K) satisfies

{P e M™ Qdist”(P,K) =0} = K.

It turns out that ¢(p) — 0 as p — 14. This motivated the study of the limiting case,
that is, the graphs are reduced to closed subsets in Fy and Fj respectively.

The existence of nonconvex, nonnegative quasiconvex functions with subquadratic and
linear growth were established in [19] and [22] respectively, where the zero sets of the
functions are compact. A result of Miiller [17] shows that there exists a nontrivial homo-
geneous quasiconvex function of degree one. Yan [21] proved that the p-quasiconvex hull
of the set R;.SO(n) is larger than itself for p < n/2 and n > 2 (the p-quasiconvex hull of
K C MN*" can be defined by Q,K = (Qf)~'(0), where Qf is the quasiconvexification
(see Definition 1.1 below) of the function f, where f(P) = dist?(P,K), P € MNx").
This indicates that the quasiconvex relaxations of the distance function to an unbounded
nonconvex set might be convex. It is known that the n-th quasiconvex hull of R, SO(n)
remains itself. Recently, Dacorogna [7] showed that if f : M?*? — Ris rank-one convex,
positively homogeneous of degree one and in addition, f is SO(2) rotationally invariant
in the sense that f(RAS) = f(A) for R, S € SO(2), A € M*** then f is necessar-
ily convex. Under the less restricted condition that f is conjugating invariant, that is
J(RAR") = f(A) for R € SO(2) and A € M**?, in [23] it was established the existence
of p-homogeneous, conjugating invariant, quasiconvex functions for any p > 1 with their
zero sets of the form

OP = {-LEI + yEQ + 7.P7 ('Lay) € R2}?
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where Fy, Fy is a basis of E5, r = /2% + y? and P € Ej; is a fixed matrix. More precisely,
for any p > 1 there exists some ¢(p) > 0 (limy1, ¢(p) = 0), whenever |P| < ¢(p) then
@ dist?(-, C'p) is p-homogeneous, conjugate invariant with Cp as its zero set.

These results imply that for an unbounded set K* C M?*? the existence of a non-negative
quasiconvex function

M2 R, fY0) =K, and 0 < f(P) < C|PPP+ 4
does depend on the behaviour of the set K near infinity.

We will show in this note that for any Cp, the 1-quasiconvex hull of C'p equals its convex
hull, that is, Q1(Cp) = C(Cp) and @ dist(-,Cp) = dist(-, C'(Cp)), hence @ dist(-,Cp) is
convex. As a tool, though it stands on its own right, we establish the following identity
for any p > 1 and any closed set K C MN*™:

Q dist?(-, K) = Q dist? (-, Q,(K)).

Some results on lower semicontinuity of quasiconvex functionals in BV spaces have been
established recently [1, 11, 12]. The integrands used in that approach are quasiconvex
functions with linear growth at infinity. As far as [ know, very few examples are known
for such functions besides those with compact zero sets [19, 22]. [17] provided the first
example of nonconvex quasiconvex functions of linear growth with unbounded zero sets.

QQuasiconvex relaxation of certain distance functions to a given set in the space of matrices
is an important subject in the study of martensitic phase transitions and optimal design
problems (see [5, 3, 4, 10, 14, 15]). As far as I know, explicit relaxation formulas are hard
to obtain and there are only a few known examples [6, 8, 14, 15]. Hence an estimate of
the lower bound of the quasiconvex relaxation will provide us useful information on the
set itself and on the relaxed function. A result in the same spirit as those in this note was

established in [24] for SO(n), that is
c(n)dist?(-, SO(n)) < Q dist*(P, SO(n)).

In order to state and prove our main results, we need some preparation.

We denote by MN*™ the space of all real N x n matrices, with RV norm, meas(U) is the
Lebesgue measure of a measurable subset U C R™ and let

dist(Q, K) = }%2]1: | Q@ — P

be the distance function from a point Q@ € MV*" to a set K C MN**. From now on
let © be a nonempty, open and bounded subset of R*. We denote by Du the gradient
of a (vector-valued) function u and we define the space C§(Q, RY) in the usual way. If
K C MV*™ et C(K) be its convex hull. Define the spaces of conformal matrices Fy and
anti-conformal matrices K3 as

Ea:{<_ab Z),a,bER}, E8:{<Z _ba>,a,b€R}.

Let f: MN*" — R be a continuous function. The following are some conditions related
to weak lower semicontinuity of the integral fﬂ f(Du(z))dz (c.f. [2, 16, 6]).
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(1) f is rank-one convex if for each matrix A € MN*" and each rank-one matrix B =
a®be MNX" the function t — f(A + tB) is convex.

(2) f is quasiconvex at A € MN*" on §, if for any smooth function ¢ : @ — RN
compactly supported in €,

/Q J(A+ Dg(x))dz > /Q J(A)da

holds. f is quasiconvex if it is quasiconvex at every A € MN*"  The class of
quasiconvex functions is independent of the choice of €.

It is well-known that quasiconvexity implies rank-one convexity (cf. [2, 16, 6]) while
rank-one convexity does not, in general, imply quasiconvexity [20].

To construct quasiconvex functions, we need the following

Definition 1.1 ([6]). Suppose that f: M¥*" — Ris a continuous function. The quasi-
convexification of f is defined by

sup{g < f; ¢ quasiconvex }
and will be denoted by Q f.

Proposition 1.2 ([6]). Suppose that f: MN*" — R is continuous, then

QIP) = _inf

$e0ge (;RN) meas(())

/Qf(P + D¢(z)) dz, (1.2)

where Q@ C R is a bounded domain. In particular the infimum in (1.2) is independent of
the choice of Q.

Definition 1.3. For a closed subset K C MV*" we define the p-quasiconvex hull @,(K)
(1 <p < o0) as follows:

Q,(K)={P e MN*" Qdist’(P,K) = 0},

where () dist?(-, K') is the quasiconvexification of dist?(-, K).

If K is compact, @,(K) is independent of p > 1 [22]. However, this claim is not necessarily
true if K is unbounded (see [21]).

The following result is a special case of a more general theorem (see [9, pages 234, 236]).

Proposition 1.4 (The measurable selection theorem). Let B be a compact subset
of R? and ¢ a continuous function of Q x B. Then, there exists a Lebesque measurable
mapping @ : 0 — B such that for all x € Q:

g(x, a(x)) = min{g(z, a)}.

A direct consequence of Proposition 1.4 is the following:

Proposition 1.5. Let B C RR? be a compact subset and let u : Q@ — RP be a continuous
mapping. Then there exists a measurable mapping u : Q@ — B such that for all x € §)

lu(z) — a(z)| = dist(u(z), B).
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We need the following result established in [7],
Proposition 1.6. Let g : R? — R be such that

(1) gtz ty) = tg(z,y) for every t >0 and z,y € R;
(2) g is separately convex (i.e., g(x,-) and g(-,y) are convex for fized x and fized y,
respectively).

Then, g is convex in [R2.

We conclude our preliminaries by giving a technical condition:

Definition 1.7. A non-empty, closed subset K of M?*? is supported by Fj5 (Ej5, respec-
tively), if there exists an orthonormal basis of Ej (Fj, respectively) {e1, €2}, such that
e;-P>0forall Pe K and 7= 1,2, ‘" being the inner product of 2 x 2 matrices.

We call Ey (Ej3, respectively) the supporting space of K.

2. Statement of results

Lemma 2.1. Suppose that K C Ey (Ej, respectively) is closed and non-convezr. Then
dist(-, K) is nol rank-1 convez.

Theorem 2.2. Suppose that K C FEy (Fj5, respectively) is closed (possibly unbounded).
Then, there exists a constant ¢ > 0 independent of K, such that

cdist(P, K) < Qdist(P, K) < dist(P, K), (2.1)

for every P € M?**2,

If we denote by
K. ={Pc M*** dist(P,K) < ¢},
the e-neighbourhood of K, we have the following simple consequence of Theorem 2.2.

Corollary 2.3. Under the assumption of Theorem 2.2,

Qi1 (K.) C Koy, (2.2)
for every € > 0, where ¢ > 0 is the constant given by Theorem 2.2.

Theorem 2.4. Suppose that K C M?**? is closed and is supported by FE5 (F5, respec-
tively). Then, there exists a constant ¢ > 0 independent of K, such thal
cdist(P, K) — |Pg,(P)|
(cdist(P, K) — | Pr,(P)|

Q dist(P, K),

<
< Qdist(P, K), respectively).

In particular,

cdist(P, K) < Qdist(P, K)

whenever P € By (P € Ej respectively), which implies (Q1K)N Ey = KN Ey (1K) N
E5 = K N Ej, respectively).
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Remark 2.5. A special case of [23, Th. 4.1] is that for every closed subset K C Fy (Ej
respectively), Q,(K) = K for all p > 1. Combining Theorem 2.2 and that result, we see
that Q,(K) = K for all p > 1. The second statement in Theorem 2.4 implies that the
inequality given by Theorem 2.2 holds on the supporting spaces, and the intersection of
the 1-quasiconvex hull with the supporting space does not enlarge the original intersection.

The following is a general result relating the p-quasiconvex hull of a closed set in MY *"
and the quasiconvexification of the distance function. It might be a useful tool in the
study of quasiconvexification of distance functions. We need this result here for the proof
of Theorem 2.7 below.

Theorem 2.6. Let K C MN*" be non-empty and closed. Then
Q dist?(-, K) = Q dist?(+, Q,(K)),
for every 1 < p < 0.

Theorem 2.7. Let f : M**? — R be a nonnegatlive, 1-homogeneous, conjugale in-
variant rank-one convex function. Let A € FEy, B € Ej5 be any fired matrices and
S(A, B) = span[A, B] be the subspace in M*** spanned by A, B. Then the restriction
of f on S(A, B), f|sa,p) is conver.

Remark 2.8. In [17], the existence of a nonnegative homogeneous quasiconvex function
of degree 1 was constructed which vanishes on the union of two one dimensional subspaces
of Fs. From Theorem 2.2, and the fact that every conformal matrix is conjugating
invariant in the sense that RART = A, for R € SO(2), A € Ej, we see that for every
K C Fj, K is conjugate invariant. Therefore functions satisfying the assumptions of
Theorem 2.7 are not necessarily convex on Fj. This result is nearly optimal for the
convexity of functions covered by Theorem 2.7.

Corollary 2.9. Let A, B and span[A, B] be as in Theorem 2.7. Suppose that K C
span[A, B] is scaling invariant, that is, P € K implies tP € K for all t > 0. Then
@1(K) = C(K) and Q dist(-, K') is convex.

Corollary 2.10. Let Cp be the cone based on Fj:
CP - {TEI +UE2 + TP) (T,U) € RQ}?

where Ky, By is the basis of F5 defined by

1 1 0 1 0 1
E“ﬁ(@ —1)’ EQ‘E(l 0)’

r=+/22+y? and P € Ej is a fired matriz. Then Q,(Cp) = C(Cp) and Q dist(-,Cp) is

homogeneous of degree one, conjugating invariant and convex.

Remark 2.11. If we assume that |P| < 1 is sufficiently small, we have, (see [23]) that
Q2(Cp) = Cp, hence Q4(Cp) # Q1(Cp). Corollary 2.10 provides another class of closed
sets other than that given by Yan [21] such that the p-quasiconvex hull for an unbounded
set may depend on p.
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3. Proofs of results

Proof of Lemma 2.1. Since K C Fj is closed and not convex, we may find A, B € K,
such that the line segment L = {P = tA+ (1 —1)B, 0 < t < 1} does not intersect K.
Since A and B are conformal matrices, there exist € SO(2) and @ > 0, such that

B—A=uaQ. lLet
10
=)

and we see that aQ.J € E5 and a@Q).J + a@ is a rank-1 matrix. If dist(-, k') was rank-1
convex, we would have

dist(A + %[GQ +aQJ), K) < %dist(A, K)+ %dist(A +[aQ + aQJ], K).
Notice that dist(A, K) = 0. Since A + %aQ ¢ K, we have

dist(A + %[QQ +aQJ], K) > | P, (A + %[aQ +aQJ))| = ga,

while because Pg, (A 4+ [aQ + aQ.J]) = B, we have
dist(A + [aQ + aQJ], K) = |Pg,(A 4+ [aQ + aQJ])| = V2a.

V2 V2

Combining the above three inequalities, we see that “fa < ¥
implies that dist(-, K') is not rank-one convex. O

a. This contradiction

Proof of Theorem 2.2. We prove the result for K C FEj5 only. The case for Fj is

similar. Notice that the upper bound in (2.1) is trivial because @ f < f is always true
(see (1.2)).

We use the weak type (1,1) estimate for singular integral operators [18] as in [17]. For
a fixed P € M?**? we have, from Proposition 1.2, that there exists a sequence (¢;) in

Cs(D,R?) such that

lim [ dist(P + D¢;(z), K)dx = Qdist(P, K) :=a >0, (3.1)

J—00 D

where D C R? is the unit square.

Let Pg, be the orthogonal projection from M?*** to Ej5. Notice that Ej; is the orthogonal
complement of E5. Now, since K C Ej, we have

|Pr,(A)] < dist(A, K)
for every A € M**2%,

If Qdist(P, K) = a > 0, we have, up to a subsequence,

lim [ |Pg (P + Do;(z))|dx < a.
D

Vimdes



140 K. Zhang / On some quasiconvex functions with linear growth

Since | Py, (Q)| is a convex function in @, we have |Pg,(P)| < a so that

[ 1Pes(Ds(@))lde < 20 45, (3.2
D
where §; > 0 and §; — 0 as j — oco. Notice that (3.2) implies

|a¢§-”<w> a¢§-2)<x>| +|a¢§”<x> +a¢§”<x>
[) 8301 - 8:02 8$2 8$1

Extending ¢; outside D by zero and setting v; = ((/5;1), —qb;?)), we have

/[| divep| 4 | curl ¢)|]ldz < 2a + 6.
D

From the weak (1,1) type estimates in the singularity operator theory (see [18, Ch.2 and
pp. 60]), we have

(2a —|— 5])0

meas ({;v e R |Dy;(x)] > )\}) < %/Hdivgﬁﬂ + | curl ¢, |]dx < 3 )
D

for every A > 0, where C' > 0 is a constant depending only on the operators div and curl.
Therefore, we have

meas ({z € R%, |Dg;(z)] > A}) < M.

Since the distance function dist(-, K) satisfies
| dist(A, K) — dist(B, K)| < |A - B|
for A, B € M**?, we see that
dist(P, K) > dist(P + D¢;(z), K) + A implies |D;(z)] > A,
In other words,
Dy = {z € Q, dist(P, K) > dist(P + Do;(z), K) + A} C {z € Q, |Dg;(z)| > A},

so that meas(Dy) < &)Y Choosing A = 2Ca + v2Ca, we see that (2a + 6;)C/\ < 1
for sufficiently large j. Hence,

/ dist(P + D¢j(z), K)dz > / dist(P + D¢;(z), K)dx
D D\D)

> [dist(P, K) — A] (1 _ M) ,

for sufficiently large 7 > 0. Passing to the limit in the above inequality, and noticing that
lim; 00 fD dist(P + D¢j(z))dz = a, we obtain

a > [dist(P, K) — )] (1 - 2§c> : (3.3)
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which implies dist(P, K') < (2C' +14v2C)a. Letting ¢ = (2C+ 1+ \/20)_1, we conclude
that

cdist(P,K) < a = Qdist(P, K).

If a =0, we let A > 0 be any fixed number. For sufficiently large j > 0, we have C'd; < A.
We then proceed as in the first case to obtain (3.3) with a = 0. Hence

dist(P, K) < A,
for every A > 0, thus dist(P, K') = 0. The proof is complete. O

Proof of Corollary 2.3. Let P € Q(K.). Then Qdist(P, K.) = 0, and since
dist(P, K) < dist(P, K,) + €, (3.4)
from Theorem 2.2 and inequality (3.4), we obtain
cdist(P, K) < Qdist(P,K) < Qdist(P,K.) +e=¢

which implies P € K. O

Proof of Theorem 2.4. Similar to the proof of Theorem 2.2, we prove the theorem

only in the case where K is supported by F5. The proof for the other case is similar. Let
P € M**? he fixed and let (¢;) be a sequence in C5°(D, R?) such that

lim [ dist(P + Dé;, K)de = Qdist(P,K) = a > 0.

Vamdes D

For each fixed j > 0, since ¢; € C5°(D,R?), we have for some large R; > 0,

dist(P + D¢;(z), K) = dist(P + D¢;(z), K N B(0, R;)),

B(0, R;) being the closed ball in M?*2/ centred at the origin with radius R;.
Now we apply Proposition 1.5 to the function F(z,Q) = |P+ D¢;(z) — Q| for x € D and

@ € KN B(0, R;). There exists a measurable mapping X; : @ — K N B(0, R;), such that

[P+ Doj(x) — X;(z)| = dist(P + Do;(x), K N B(0, R;)) = dist(P + Do;(x), K),
almost everywhere in . Setting

Yi(z) = Pr,(X;(2)),

we see from the assumption that Fj is the supporting space of K that the components of
Y; do not change signs in . Let

/ dist(P + D¢, K)dx = a + §;,
D
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where §; > 0 and lim;_,., 6; = 0. Since ¢; is zero on the boundary of D, we have that
o+ = [ 1P+ Do) - Xi(o)ds
D

> [ 1Po,(P+ D6i(2) = Vy(o)lds

) 1/2
/D (Z[ei (P + Doj(x) — Yj(x))]?> dzx

=1

v

vV

75 [ Sl (P D) = Vi s

! /Dei (P = Y)(2))da]

sl
U

v
S
o
<<
5
QU
il
|
¥
=
=

> o [ 1Vi(e)ldr ~ [Pey(P).
D

The last inequality holds because the components of Y;(z) do not change signs. Hence
we have

/D V()| d < 2(a+ 8 + | P, (P))).

We also have

atd; > /D [Pry(P + Dy (x)) — Yi(a)|de

> [ 1Pe(Daalde ~ [ [Vi(a)lds ~ |Pey(P))

Combining this inequality and the previous one, we see that

[) [Py, (D65()) | < 3(a + 65 + | Py (P)]).

Similar to the argument as in the proof of Theorem 2.2, we have

, C , 3C
meas ({x € D, [D3,()] > M) < 5 [ [Peg((Désa))lde < Z(a+ 8, + | Peg P
D

for every A > 0. If a > 0 or |Pg,(P)| > 0, we choose
A= 6C(a + |Pry(P)])
and, applying the same method as for Theorem 2.2, we have

5C v a4 |PE8<P>|>) |

a+06; > (dist(P, K) — X) (1 -
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Passing to the limit j — oo we obtain
dist(P, K) < 6(C 4+ 1)(Q dist(P, K) + |Pg,(P)]).

The proof is finished if we take ¢ = [6(0 + 1)]_1.

If a = 0 and |Pg,(P)| = 0, we see that fD |Y;|dz — 0. We may choose any fixed number
A > 0 and, following the proof for the case a > 0, we deduce that dist(P, K) < A. The
conclusion follows by letting A — 0. O

Notice that if ¢; - P < 0, ¢ = 1,2, we may drop the term |Pg (P)| in the proof of
Theorem 2.4 to obtain a better estimate cdist(P, K') < 6(C + 1)Q dist(P, K).

Proof of Theorem 2.6. Let P € M*" be fixed and P, € Q,(K) be such that
dist(P, Q,(K)) = |P — Py

Since Py € Q,(K), by definition, @ dist?(Fy,Q,(K)) = 0. From Proposition 1.2, there
exists a sequence (¢;) in C&°(D,,, RY), such that

lim dist(Py + Doj(x), K)dx =0, (3.5)
J—00 D,

where D, is the unit cube in R™. Similar to the proof of Theorem 2.4, we have, because
D¢; is bounded for each fixed j that we may apply Proposition 1.6 to find a sequence of
measurable mappings P; : D,, — K, such that for each fixed j, P; is a bounded mapping,
and

dist?(Py + D¢;(z), K) = |Py + D¢;(z) — Pi(x)]P

almost everywhere in D,,. Now, by the definition of quasiconvexification, for any given
e > 0, we have

Qdist?(P,K) < / Q dist?(P + Do;(z), K )da
Dy,

< / dist?(P + Doy (x), K)da

n

< /D 1P+ Do) = P

< (l-l—e)/ |P—P0|pd$—|—0(e,p)/ |Po+ Doj(z) — Pj(z)|"dx

n

= (14 ¢)dist?(P,Q,(K)) + C(c,p) / dist?(Py + Do; (), K)dx,

D

where C'(¢,p) > 0 is a constant depending only on € and p. Passing to the limit j — oo
in the above inequality, and taking into account of (3.5), we have

Q dist? (P, K) < (1 + €) dist? (P, Q,(K))
for each fixed € > 0. Hence

Q dist? (P, K) < dist?(P, Q,(K)),
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for every P € MN*" From Definition 1.1, we see that

Q dist? (P, K) < Q dist? (P, Q,(K)). (3.6)
From K C Q,(K), we always have

Q dist” (P, Q,(K)) < dist”(P,Q,(K)) < dist”(P, K),

which again, by Definition 1.1, implies

Q dist? (P, Q,(K)) < Q dist?(P, K). (3.7)
Combining (3.6) and (3.7), the conclusion follows. O
Proof of Theorem 2.7. We may assume that |A| = 1, |B| = 1. Then we may find
Qo, Q@ € SO(2), such that A = QoE, B = QQoE,QT = QuQ?E,, where E = %I',
[ being the identity matrix, and F; is defined in Corollary 2.10. We seek to prove

that f(2QoF + yQQoF1Q") is convex in (z,y). Since [ is conjugating invariant and
RQoERT = QuF for all R € SO(2), we only need to prove that f(Qo[zE + yF,]) is

convex. Since
. 1 r+y 0
$E+yEl_ﬁ< 0 l__y)a

we let © +y = u, x — y = v and define

o1 (s )

Since f i1s homogeneous of degree 1, so is g. f is rank-1 convex, hence g is separately
convex. Apply Proposition 1.6, we see that g is convex in (u,v), so is f(Qo[zFE + yE]) in
(z,y). The proof is finished. O

Proof of Corollary 2.9.  Since K is scaling invariant, we see that dist(-, K') and
@ dist(-, K') are both homogeneous of degree 1. Because @ dist(-, K') is also rank-1 con-
vex and @ dist(-, K') > dist(-,C(K)), Theorem 2.7 implies that @ dist(-, K') is a convex
function on S(A, B). Therefore, Q1(K) = C(K). Finally, since dist(-, C(K)) is a convex

function, hence is quasiconvex. We then have, from Theorem 2.6 that

Q dist(-, K) = Qdist(-, @1(K)) = Q dist(-, C(K)) = dist(-, C(K)).
Thus, @ dist(-, K') is convex. O
Proof of Corollary 2.10. Using a similar method as in the proof of Corollary 2.9, we
see that Q;(Cp Nspan[A, P]) = C(Cp Nspan[A, P]) for every A € Ej. Since

@ dist(-, Cp Nspan[A, P]) > Q dist(-, Cp),
we have C'(Cp Nspan[A, P]) C Q1(Cp). Since we also have
C(Cp) = Uaer,C(Cp Nspan[A, P]),
we see that Q;(Cp) = C(Cp). A similar argument as in the proof of Corollary 2.9 gives
Q dist(-,Cp) = dist(-,C'(Cp)).

The proof is complete. O
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