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Korovkin-type theorems are established, and consequently mean ergodic theorems are obtained.

1. Introduction

Let £ be a normed linear space with its dual space E* and let B[FE] denote the normed
algebra of all bounded linear operators of F into itself with the identity operator I. Let

% be a subset of B[F] and let T € T. A subset K of E is said to be a ¥-Korovkin set for
T if for any bounded sequence {T,} in T, the relation

lim ||T.(g) — T(g)|| =0 forall g e K

n—o0

implies that
nh_}r(r)lo \T.(f) =T(f)]|=0 for all f € K.

Let £ be a subset of £* and let p € £. A subset K of E is said to be an £-Korovkin set
for p if for any bounded sequence {u,} in £, the relation

lim w,.(g) = plg) forallg e K
n—r00

implies that
lim w,.(f) = p(f) for all f € E.

n—o0

For the background of the Korovkin-type approximation theory, see the recent book of
Altomare and Campiti [2], in which an excellent source and a vast literature of this theory

can be found (cf. [3], [6], [7]).

The purpose of this paper lies in considering ¥ and £-Korovkin sets under certain require-
ments from a mean ergodic point of view. For the fundamental results about the ergogic
theory, see [4; VIII] and for further extensive treatments of ergodic theorems, we refer to

[8].

2. % and £-Korovkin sets and mean ergodic theorems

If S is a subset of F, then S* denotes the annihilater of S. That is,
St={ueFE :pu(f)=0 forall fcS}.
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If £ is a subset of F*, then we define
Lr={feFE:uf)=0 forall pe L},

which is called the annihilater of £. If 7' is an operator in B[FE], then Ry denotes the
range of [ — T

We shall need the following basic result.

Lemma 2.1 (see [9; Theorem 4.6.1]). If S is a linear subspace of E, then (S*), co-
incitdes with the closure of S.

Let p € E* and T' € B[E]. Then we say that y is T-invariant if u(7(f)) = u(f) for every
f € E, ie., ubelongs to R#¥. Note that y is T-invariant if and only if it is a fixed point
of the adjoint operator T* of T, i.e., T*(u) = p.

From now on, let e be any fixed non-zero element in F, and we set
X ={L € B[E]: L(¢) = ¢},

which is a closed convex subset of B[E]. Let ¢ be an element in £* with p(e) = 1, and
we define

P(f)=¢(f)e for all f € K. (2.1)
Evidently, P is a projection operator on F belonging to ¥ and ¢ is P-invariant.

Let T, L € B[F] and n = 1,2,3,---. Then we define

n—1
UTL,T - - T 9
n <
=0

which is called the n-th Cesaro mean operator of 7', and T is said to be norm mean stable

with L if
lim ||lo,7(f) — L(f)|| =0 forall f e FE. (2.2)

n—o0

The condition (2.2) implies that L is necessarily a projection operator on £ and T'L =
LT = L. Furthermore, the mean ergodic theorem of Sine [16] (cf. [15]) asserts that if F
is a Banach space and if ||T|| < 1, then T is norm mean stable with some L € B[E] if
and only if the set of all fixed points of T' separates the set of all fixed points of T*.

Theorem 2.2. Let T' € B[FE] and suppose that ¢ is T-invariant.
(a)  If the annthilater of Ry is spanned by ¢, then Ry is a T-Korovkin set for P.
(by IfTeX,

L]

n—00 n

=0 for every f € K (2.3)

and

sup ||o,,r|| < oo, (2.4)
n>1

then the converse of (a) is also lrue.
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Proof. (a) Let {L,} be a bounded sequence in ¥ such that for every g € Ry, lim, 0
| Ln(g) — P(g)|| = 0, which is equivalent to lim, . ||L.(g)|| = 0 because of P(g) = 0.
Let ¢ > 0 and f € E. Then, by Lemma 2.1, there exists an element A € Ry such that
|f — P(f) — h| < e Since L, P = P for all n, we have

1L () = PO < N Ln(f) = P(F) = La(R)|| + || La(A)]

S NEnllllf = PO = Rl + [Ea(R)I] < €l[Lnll + [[Ln(R)]I;
and so lim, o0 || Ln(f) — P(f)]| = 0 by virtue of sup,, || L,|| < oo and lim,_,« ||L.(R)|| = 0.
Therefore, Ry is a T-Korovkin set for P.
(b) Suppose that T' € ¥, (2.3) and (2.4) hold. Then {0, s} is a bounded sequence in ¥
satisfying lim, oo |0 (f = T(f))|| = 0 for all f € E, since
1
n

our(I=T)=~(I-T")  (n=1,2,3,---). (2.5)

Assume now that Rt is a ¥-Korovkin set for P. Then we have that lim, e ||oy7(f) —
P(f)]| = 0 for every f € E. Let u be an arbitrary element in R¥. Then for all f € E, we
have

lim p(onr(f)) = p(P(f)) = ¢(ule),

n—oo
which implies u(f) = p(e)p(f), since

plon(f) =pu(f)  (n=1,2,3,---).
Thus, R# is spanned by . O
Remark 2.3. If T is power bounded, i.e., sup,; ||7"]| < oo, then (2.3) and (2.4) auto-

matically hold. Also, by (2.5), (2.2) implies (2.3).

As a consequence of Theorem 2.2, we have the following.

Corollary 2.4. Let T be an operator in ¥ salisfying (2.3), (2.4) and T*(¢) = ¢. Then
the following statements are equivalent:

(a) Rz is spanned by .
(b)  Rr is a T-Korovkin set for P.

(¢) T is norm mean stable with P.

Let £ be a subset of £* and p € £. Then an operator T € B[FE] is said to be £-uniquely
ergodic with g if g is only one T-invariant functional in £, or equivalently, 7™ has exactly
one fixed point g in £, i.e.,

Aeg:T*()\) =A={u}.

By [1; Corollary 1.2] and the theorem of Krein-Smulian (see, [9; Theorem 10.2.1]), we
have the following.

Remark 2.5. Suppose that E is a separable Banach space and let £ be a convex subset
of E* such that the set

gn{rxe B ||A <r}
is weak*-closed for each r > 0. Let T' € B[F], and let u be a functional in £ which is
T-invariant. Then T is £-uniquely ergodic with p if and only if R is an £-Korovkin set
for p.
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3. Korovkin sets and mean ergodic theorems in function spaces

In this section, let £ be a function space on a non-empty set X. That is, £ is a normed
linear space of real or complex valued functions on X, which contains the unit function e
defined by e(z) =1 for all z € X. Consequently, all the results obtained in the preceding
section are applicable to this setting.

From now on, let X be a compact metric space and let C'(X) denote the Banach space
of all real valued continuous functions on X with the usual supremum norm. Note that
C'(X) is separable. Let £ be a linear subspace containing the unit function e. For a point
z € X, we define the point evaluation functional é, at = by 6,(f) = f(z) for all f € E.

If £ is a subset of £*, then T(£) denotes the set of all operators L € B[FE] such that §, 0 L
belongs to £ for every z € X. Set

L' ={pek :ule)=1}
and
' ={L € B[E]: L(e) = €}.

Then we have T(£') = X', Let £, denote the set of all positive linear functionals on E,
and we put T, = T(L;), which consists of all positive linear operators of £ into itself.
Furthermore, we set £ = £, N L' and T, = T(L}), which coincides with ¥ N T

Recall that ¢ € £! and P is the projection operator in ' defined by (2.1).

Theorem 3.1. Let T € L. Suppose that p € L& and T*(p) = ¢. Then Ry is a
XL -Korovkin set for P if and only if T is norm mean stable with P.

Proof. Note that {o, s} is a bounded sequence in C’C}I- with ||lo,7|| = 1 for all n =
1,2,3,---. Since ||| = 1 and P vanishes on Ry, (2.5) yields that lim,_ e ||on,7(9) —
P(g)|| = 0 for all g € Ry. Therefore, if Ry is a T} -Korovkin set for P, then T' is norm

mean stable with P.

Conversely, suppose that 7' is norm mean stable with P. Let A be any functional in
LY with T*(A) = A. Then we are able to extend A to a positive linear functional v on
the whole space C'(X). By the Riesz representation theorem, there exists a probability
measure p on X such that

v(f) = /Xf(x) dp(z) for all f € C(X).

Let g be an arbitrary function in . Then we have

o, (9) ()] < llonrlllgl = llgll
for all x € X and for each n =1,2,3,---. Therefore, it follows that

o) = /X Pg)(x) dple) = lim [ ourlg)(z) dplz)

n—oo X
= lim v(onr(g)) = lim Monr(g)) = Mg)-

Thus we have A = ¢, and so it follows from [5; Theorems 1.1 and 1.2] that Ry is a
T, -Korovkin set for P. O
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Remark 3.2. Let a = {ay, a9, -+ ,a,,} be a finite set of continuous mappings from X

into itself and F' = {fi, fo, -+, fm} a finite subset of F. We define

Ta,F(f) = Z(f o ai)fz'

=1

for all f € E. Then T, p is a bounded linear operator of E into C'(X). Assume that
T, r maps E into itself. Then all the results presented in this section are applicable to
T="T,F.

Finally, in view of the study of the rate of convergence for approximation processes of
positive linear operators, we notice that our forthcoming topic is to give a quantitative
version of Theorem 3.1, with an optimal order of approximation (cf. [10], [11], [12], [13],

[14]).
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