Korovkin Sets and Mean Ergodic Theorems

Toshihiko Nishishiraho

Department of Mathematical Sciences, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japan. e-mail: nisiraho@sci.u-ryukyu.ac.jp

Received September 24, 1996 Revised manuscript received April 17, 1997

Korovkin-type theorems are established, and consequently mean ergodic theorems are obtained.

1. Introduction

Let E be a normed linear space with its dual space E^* and let B[E] denote the normed algebra of all bounded linear operators of E into itself with the identity operator I. Let \mathfrak{T} be a subset of B[E] and let $T \in \mathfrak{T}$. A subset K of E is said to be a \mathfrak{T} -Korovkin set for T if for any bounded sequence $\{T_n\}$ in \mathfrak{T} , the relation

$$\lim_{n \to \infty} ||T_n(g) - T(g)|| = 0 \quad \text{for all } g \in K$$

implies that

$$\lim_{n \to \infty} ||T_n(f) - T(f)|| = 0 \quad \text{for all } f \in E.$$

Let \mathfrak{L} be a subset of E^* and let $\mu \in \mathfrak{L}$. A subset K of E is said to be an \mathfrak{L} -Korovkin set for μ if for any bounded sequence $\{\mu_n\}$ in \mathfrak{L} , the relation

$$\lim_{n \to \infty} \mu_n(g) = \mu(g) \quad \text{for all } g \in K$$

implies that

$$\lim_{n \to \infty} \mu_n(f) = \mu(f) \quad \text{for all } f \in E.$$

For the background of the Korovkin-type approximation theory, see the recent book of Altomare and Campiti [2], in which an excellent source and a vast literature of this theory can be found (cf. [3], [6], [7]).

The purpose of this paper lies in considering \mathfrak{T} and \mathfrak{L} -Korovkin sets under certain requirements from a mean ergodic point of view. For the fundamental results about the ergogic theory, see [4; VIII] and for further extensive treatments of ergodic theorems, we refer to [8].

2. \mathcal{I} and \mathcal{L} -Korovkin sets and mean ergodic theorems

If S is a subset of E, then S^{\perp} denotes the annihilater of S. That is,

$$S^{\perp} = \{ \mu \in E^* : \mu(f) = 0 \text{ for all } f \in S \}.$$

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

If \mathfrak{L} is a subset of E^* , then we define

$$\mathfrak{L}_{\perp} = \{ f \in E : \mu(f) = 0 \text{ for all } \mu \in \mathfrak{L} \},$$

which is called the annihilater of \mathfrak{L} . If T is an operator in B[E], then \mathcal{R}_T denotes the range of I-T.

We shall need the following basic result.

Lemma 2.1 (see [9; Theorem 4.6.1]). If S is a linear subspace of E, then $(S^{\perp})_{\perp}$ coincides with the closure of S.

Let $\mu \in E^*$ and $T \in B[E]$. Then we say that μ is T-invariant if $\mu(T(f)) = \mu(f)$ for every $f \in E$, i.e., μ belongs to \mathcal{R}_T^{\perp} . Note that μ is T-invariant if and only if it is a fixed point of the adjoint operator T^* of T, i.e., $T^*(\mu) = \mu$.

From now on, let e be any fixed non-zero element in E, and we set

$$\mathfrak{T} = \{ L \in B[E] : L(e) = e \},\$$

which is a closed convex subset of B[E]. Let φ be an element in E^* with $\varphi(e) = 1$, and we define

$$P(f) = \varphi(f)e$$
 for all $f \in E$. (2.1)

Evidently, P is a projection operator on E belonging to \mathfrak{T} and φ is P-invariant.

Let $T, L \in B[E]$ and $n = 1, 2, 3, \cdots$. Then we define

$$\sigma_{n,T} = \frac{1}{n} \sum_{i=0}^{n-1} T^i,$$

which is called the n-th Cesàro mean operator of T, and T is said to be norm mean stable with L if

$$\lim_{n \to \infty} \|\sigma_{n,T}(f) - L(f)\| = 0 \quad \text{for all } f \in E.$$
 (2.2)

The condition (2.2) implies that L is necessarily a projection operator on E and TL = LT = L. Furthermore, the mean ergodic theorem of Sine [16] (cf. [15]) asserts that if E is a Banach space and if $||T|| \le 1$, then T is norm mean stable with some $L \in B[E]$ if and only if the set of all fixed points of T separates the set of all fixed points of T^* .

Theorem 2.2. Let $T \in B[E]$ and suppose that φ is T-invariant.

- (a) If the annihilater of \mathcal{R}_T is spanned by φ , then \mathcal{R}_T is a \mathfrak{T} -Korovkin set for P.
- (b) If $T \in \mathfrak{T}$,

$$\lim_{n \to \infty} \frac{\|T^n(f)\|}{n} = 0 \qquad \text{for every } f \in E$$
 (2.3)

and

$$\sup_{n\geq 1} \|\sigma_{n,T}\| < \infty, \tag{2.4}$$

then the converse of (a) is also true.

Proof. (a) Let $\{L_n\}$ be a bounded sequence in \mathfrak{T} such that for every $g \in \mathcal{R}_T$, $\lim_{n \to \infty} \|L_n(g) - P(g)\| = 0$, which is equivalent to $\lim_{n \to \infty} \|L_n(g)\| = 0$ because of P(g) = 0. Let $\epsilon > 0$ and $f \in E$. Then, by Lemma 2.1, there exists an element $h \in \mathcal{R}_T$ such that $\|f - P(f) - h\| < \epsilon$. Since $L_n P = P$ for all n, we have

$$||L_n(f) - P(f)|| \le ||L_n(f) - P(f) - L_n(h)|| + ||L_n(h)||$$

$$\le ||L_n|| ||f - P(f) - h|| + ||L_n(h)|| < \epsilon ||L_n|| + ||L_n(h)||,$$

and so $\lim_{n\to\infty} ||L_n(f) - P(f)|| = 0$ by virtue of $\sup_n ||L_n|| < \infty$ and $\lim_{n\to\infty} ||L_n(h)|| = 0$. Therefore, \mathcal{R}_T is a \mathfrak{T} -Korovkin set for P.

(b) Suppose that $T \in \mathfrak{T}$, (2.3) and (2.4) hold. Then $\{\sigma_{n,T}\}$ is a bounded sequence in \mathfrak{T} satisfying $\lim_{n\to\infty} \|\sigma_{n,T}(f-T(f))\| = 0$ for all $f\in E$, since

$$\sigma_{n,T}(I-T) = \frac{1}{n}(I-T^n) \qquad (n=1,2,3,\cdots).$$
 (2.5)

Assume now that \mathcal{R}_T is a \mathfrak{T} -Korovkin set for P. Then we have that $\lim_{n\to\infty} \|\sigma_{n,T}(f) - P(f)\| = 0$ for every $f \in E$. Let μ be an arbitrary element in \mathcal{R}_T^{\perp} . Then for all $f \in E$, we have

$$\lim_{n\to\infty}\mu(\sigma_{n,T}(f))=\mu(P(f))=\varphi(f)\mu(e),$$

which implies $\mu(f) = \mu(e)\varphi(f)$, since

$$\mu(\sigma_{n,T}(f)) = \mu(f)$$
 $(n = 1, 2, 3, \cdots).$

Thus, \mathcal{R}_T^{\perp} is spanned by φ .

Remark 2.3. If T is power bounded, i.e., $\sup_{n\geq 1} ||T^n|| < \infty$, then (2.3) and (2.4) automatically hold. Also, by (2.5), (2.2) implies (2.3).

As a consequence of Theorem 2.2, we have the following.

Corollary 2.4. Let T be an operator in \mathfrak{T} satisfying (2.3), (2.4) and $T^*(\varphi) = \varphi$. Then the following statements are equivalent:

- (a) \mathcal{R}_T^{\perp} is spanned by φ .
- (b) \mathcal{R}_T is a \mathfrak{T} -Korovkin set for P.
- (c) T is norm mean stable with P.

Let \mathfrak{L} be a subset of E^* and $\mu \in \mathfrak{L}$. Then an operator $T \in B[E]$ is said to be \mathfrak{L} -uniquely ergodic with μ if μ is only one T-invariant functional in \mathfrak{L} , or equivalently, T^* has exactly one fixed point μ in \mathfrak{L} , i.e.,

$$\{\lambda \in \mathfrak{L} : T^*(\lambda) = \lambda\} = \{\mu\}.$$

By [1; Corollary 1.2] and the theorem of Krein-Šmulian (see, [9; Theorem 10.2.1]), we have the following.

Remark 2.5. Suppose that E is a separable Banach space and let \mathfrak{L} be a convex subset of E^* such that the set

$$\mathfrak{L}\cap\{\lambda\in E^*:\|\lambda\|\leq r\}$$

is weak*-closed for each r > 0. Let $T \in B[E]$, and let μ be a functional in \mathfrak{L} which is T-invariant. Then T is \mathfrak{L} -uniquely ergodic with μ if and only if \mathcal{R}_T is an \mathfrak{L} -Korovkin set for μ .

3. Korovkin sets and mean ergodic theorems in function spaces

In this section, let E be a function space on a non-empty set X. That is, E is a normed linear space of real or complex valued functions on X, which contains the unit function e defined by e(x) = 1 for all $x \in X$. Consequently, all the results obtained in the preceding section are applicable to this setting.

From now on, let X be a compact metric space and let C(X) denote the Banach space of all real valued continuous functions on X with the usual supremum norm. Note that C(X) is separable. Let E be a linear subspace containing the unit function e. For a point $x \in X$, we define the point evaluation functional δ_x at x by $\delta_x(f) = f(x)$ for all $f \in E$.

If \mathfrak{L} is a subset of E^* , then $\mathfrak{T}(\mathfrak{L})$ denotes the set of all operators $L \in B[E]$ such that $\delta_x \circ L$ belongs to \mathfrak{L} for every $x \in X$. Set

$$\mathfrak{L}^1 = \{ \mu \in E^* : \mu(e) = 1 \}$$

and

$$\mathfrak{T}^1 = \{ L \in B[E] : L(e) = e \}.$$

Then we have $\mathfrak{T}(\mathfrak{L}^1) = \mathfrak{T}^1$. Let \mathfrak{L}_+ denote the set of all positive linear functionals on E, and we put $\mathfrak{T}_+ = \mathfrak{T}(\mathfrak{L}_+)$, which consists of all positive linear operators of E into itself. Furthermore, we set $\mathfrak{L}_+^1 = \mathfrak{L}_+ \cap \mathfrak{L}^1$ and $\mathfrak{T}_+^1 = \mathfrak{T}(\mathfrak{L}_+^1)$, which coincides with $\mathfrak{T}_+ \cap \mathfrak{T}^1$.

Recall that $\varphi \in \mathfrak{L}^1$ and P is the projection operator in \mathfrak{T}^1 defined by (2.1).

Theorem 3.1. Let $T \in \mathfrak{T}^1_+$. Suppose that $\varphi \in \mathfrak{L}^1_+$ and $T^*(\varphi) = \varphi$. Then \mathcal{R}_T is a \mathfrak{T}^1_+ -Korovkin set for P if and only if T is norm mean stable with P.

Proof. Note that $\{\sigma_{n,T}\}$ is a bounded sequence in \mathfrak{T}_+^1 with $\|\sigma_{n,T}\| = 1$ for all $n = 1, 2, 3, \cdots$. Since $\|T\| = 1$ and P vanishes on \mathcal{R}_T , (2.5) yields that $\lim_{n\to\infty} \|\sigma_{n,T}(g) - P(g)\| = 0$ for all $g \in \mathcal{R}_T$. Therefore, if \mathcal{R}_T is a \mathfrak{T}_+^1 -Korovkin set for P, then T is norm mean stable with P.

Conversely, suppose that T is norm mean stable with P. Let λ be any functional in \mathfrak{L}^1_+ with $T^*(\lambda) = \lambda$. Then we are able to extend λ to a positive linear functional ν on the whole space C(X). By the Riesz representation theorem, there exists a probability measure ρ on X such that

$$\nu(f) = \int_X f(x) \ d\rho(x)$$
 for all $f \in C(X)$.

Let g be an arbitrary function in E. Then we have

$$|\sigma_{n,T}(g)(x)| \le ||\sigma_{n,T}|| ||g|| = ||g||$$

for all $x \in X$ and for each $n = 1, 2, 3, \cdots$. Therefore, it follows that

$$\varphi(g) = \int_X P(g)(x) \ d\rho(x) = \lim_{n \to \infty} \int_X \sigma_{n,T}(g)(x) \ d\rho(x)$$
$$= \lim_{n \to \infty} \nu(\sigma_{n,T}(g)) = \lim_{n \to \infty} \lambda(\sigma_{n,T}(g)) = \lambda(g).$$

Thus we have $\lambda = \varphi$, and so it follows from [5; Theorems 1.1 and 1.2] that \mathcal{R}_T is a \mathfrak{T}^1_+ -Korovkin set for P.

151

Remark 3.2. Let $\alpha = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$ be a finite set of continuous mappings from X into itself and $F = \{f_1, f_2, \dots, f_m\}$ a finite subset of E. We define

$$T_{\alpha,F}(f) = \sum_{i=1}^{m} (f \circ \alpha_i) f_i$$

for all $f \in E$. Then $T_{\alpha,F}$ is a bounded linear operator of E into C(X). Assume that $T_{\alpha,F}$ maps E into itself. Then all the results presented in this section are applicable to $T = T_{\alpha,F}$.

Finally, in view of the study of the rate of convergence for approximation processes of positive linear operators, we notice that our forthcoming topic is to give a quantitative version of Theorem 3.1, with an optimal order of approximation (cf. [10], [11], [12], [13], [14]).

References

- [1] F. Altomare: On the universal convergence sets, Ann. Mat. Pura Appl. 138 (1984) 223-243.
- [2] F. Altomare, M. Campiti: Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin-New York, 1994.
- [3] K. Donner: Extension of Positive Operators and Korovkin Theorems, Lecture Notes in Math. 904, Springer Verlag, Berlin et al., 1982.
- [4] N. Dunford, J. Schwartz: Linear Operators, Part I, Interscience, New York, 1958.
- [5] L. B. O. Ferguson, M. D. Rusk: Korovkin sets for an operator on a space of continuous functions, Pacific J. Math. 65 (1976) 337–345.
- [6] K. Keimel, W. Roth: Ordered Cones and Approximation, Lecture Notes in Math. 1517, Springer-Verlag, Berlin et al., 1992.
- [7] P. P. Korovkin: Linear Operators and Approximation Theory, Hindustan Publ. Corp., Delhi, 1960.
- [8] U. Krengel: Ergodic Theorems, Walter de Gruyter, Berlin-New York, 1985.
- [9] R. Larsen: Functional Analysis, Marcel Dekker, Inc., New York, 1973.
- [10] T. Nishishiraho: The convergence and saturation of iterations of positive linear operators, Math. Z. 194 (1987) 397–404.
- [11] T. Nishishiraho: The order of approximation by positive linear operators, Tôhoku Math. J. 40 (1988) 617–632.
- [12] T. Nishishiraho: Saturation of iterations of bounded linear operators, Hokkaido Math. J. 18 (1989) 273–284.
- [13] T. Nishishiraho: Approximation processes with respect to positive multiplication operators, Comput. Math. Appl. 30 (1995) 389–408.
- [14] T. Nishishiraho: The order of convergence for positive approximation processes, Ryukyu Math. J. 8 (1995) 43–82.
- [15] R. Sine: Geometric theory of a single Markov operator, Pacific J. Math. 27 (1968), 155–166.
- [16] R. Sine: A mean ergodic theorem, Proc. Amer. Math. Soc. 24 (1970) 438–439.