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monotone or pseudomonotone. The results are given in terms of approximate Jacobian matrices which
reduce to convexificators for a real-valued map. The results extend corresponding results obtained using
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1. Introduction

Monotonicity of vector-valued maps plays a crucial role in the study of Complementar-
ity Problems, Variational Inequality Problems and Equilibrium Problems as convexity of
real-valued maps does in Mathematical Programming. Karamardian [18] showed that the
existence of a solution of a nonlinear complementarity problem holds under generalized
monotonicity, namely pseudomonotonicity. Recently, generalized monotonicity properties
have been extensively studied and applied in the context of Variational Inequality Prob-
lems and Equilibrium Problems; see [1, 2, 4, 5, 8, 9, 10, 19, 20, 23, 24, 25, 26] and other
references therein. More recently, various characterizations of generalized monotonicity
were given for locally Lipschitz maps [22] using the Clarke generalized Jacobian [3].

The purpose of this paper is to present characterizations of generalized monotonicity of
nonsmooth continuous maps which are not necessarily locally Lipschitz. The approach
is based on the new concept of approximate Jacobian introduced in [15] for continuous
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vector-valued maps. For a locally Lipschitz map, the Clarke generalized Jacobian can
be chosen as an approximate Jacobian. When the map is real-valued, the notion of
approximate Jacobian coincides with the notion of convexificator [14]; see also [6, 7]. The
results rely on the mean-value theorem established for a continuous map that admits
approximate Jacobians.

The outline of the paper is as follows. In Section 2 we introduce the notion of approximate
Jacobian and establish a form of mean value condition for vector-valued continuous maps.
In Section 3 we present necessary and/or sufficient conditions for a continuous map to
be monotone. Sections 3 and 4 provide characterizations of quasimonotone maps and
pseudomonotone maps in terms of approximate Jacobian matrices.

2. Preliminaries

This section contains notation, definitions and preliminaries which will be used throughout

the paper. Let S be an open convex subset of R* and F : § — R™ a continuous map
F = (fi,..../m). For each v € R™ the composite function, (vF): S — Ris defined by

m

(vF) ()= (v, F(2)) = vifi(x).

=1

The lower Dini directional derivative and upper Dini directional derivative of v at z in
the direction u € R” are defined by

N (vF) (x4 tu) — (vF)(x)
(vF) (z,u) := hlﬁ(l)nf .

(0 )2, u) = hr?;up (vF)(z + ti) - (UF)(JU)

We denote by L(IR* [R™) the space of all (n x m) matrices. The convez hull and the closed
convex hull of a set A C R™ are denoted by co(A) and ©o(A) respectively.

Let us now define for continuous maps the notion of approximate Jacobian.
Definition 2.1 ([15]). The map F : S — R™ admits an approximate Jacobian,
O*F(z) at x € S if 0*F(x) C L(R*,[R™) is closed and for each v € R™

(vF) (z,u) < sup (Mwv,u) Vue R™ (2.1)
Meo*F(z)

An element M of 0*F(z) is called an approximate Jacobian matrix of F' at z. Note
that condition (2.1) is equivalent to the condition

+ : n
(vF)"(z,u) > Melar}flzc?(g;)<MU’u> Yu e R, (2.2)

In the case rn = 1, the inequality (2.1) (or (2.2)) is equivalent to the condition

F~(z,u) < sup ({(2*,u) and FT(z,u)> inf (2% u)Vue R" (2.3)

T*EI*F(x) T*EI*F (1)
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Thus, the set 0*F(xz) is a convexificator of ' at = [6, 13, 14]. Note that condition (2.3) is
equivalent to the condition that for each o € R

(aF) (z,u) < sup (az*,u) Vue R (2.4)
T*EI*F(x)

This can be seen by applying to (2.4) @ = 1 and a = —1. Observe that condition (2.4)
can be written as

(aF)*(z,u) > inf  (az*,u) Yue R (2.5)

T*EI*F(x)

For applications of convexificators see [7, 13, 14, 16]. Clearly, a map admits many ap-
proximate Jacobians in general. Trivially, for F' : § — R™ the whole space L(R" R™)
serves as an approximate Jacobian for F at any point in S. If ' : § — [R™ is continuously
differentiable at x, then any closed set containing VF(z)! is an approximate Jacobian
of F' at x, where VF(z) is the mn X n Jacobian matrix of partial derivatives of F' at .
Suppose that F' is locally Lipschitz at € S. Then the Clarke generalized Jacobian [3]

0o F(z) = co{ lim VF(:vn)T cxy =, {r,} C K}

n—oo

is an approximate Jacobian of F' at x [15]. Here, K is a dense set of points in S on which
F is differentiable. For a numerical example, consider the function F : R? — [R?

F(a,y) = (2] — [yl z + y).
Then it can be verified that

rro-{(41).(7 1))

is an approximate Jacobian of ' at 0. On the other hand, the Clarke generalized Jacobian

ero=e ({1 )- (7 ) (50

which is also an approximate Jacobian at 0 and contains 0*F(0). From an application
point of view, the “smaller” an approximate Jacobian is, the better.

Definition 2.2. The map F : S — R™ admits a regular approximate Jacobian 9*F(z)
at x € S if 0*F(x) C L(R*,R™) is closed and for each v € R™

(vF)*(z,u) = sup (Mwv,u) Yue R (2.6)
Med*F(x)
or equivalently
(vF) (z,u) = Meg}l;(x)<MU,u> Yu e R™. (2.7)

Note that in the case m =1 this definition collapses to the notion of the regular convexi-
ficator [14]. Thus a closed set 9*F(x) C IR™ is a regular convexificator of the real-valued
function F at z if for each v € R,

F~(z,u)= inf (& u) and FT(z,u) = sup (£ u).

£€d*F(x) E€OF(z)
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It is evident that these equalities follow from (2.3) by taking v = —1 and v = 1.

It is immediate from the definition that if F' is differentiable at z, then {VF(z)} is a
regular approximate Jacobian of F' at z. It is also clear by Radamacher’s Theorem [3]
that a locally Lipschitz map F : S — R™ is regular on a dense subset of S.

We now establish a form of mean value condition for a vector-valued continuous map

F : S — R™ extending the result in [15].

Theorem 2.3 (Mean Value Theorem.). Let a,b € S and F : S — R™. Assume that
F‘[a n is continuous and for each x € [a,b] F' admits an approzimate Jacobian 0*F(zx) at

x. Then
F(b)— F(a) € co(0"F([a,b])(b— a)).

Proof. Let us first note that the right-hand side above is the closed convex hull of all
points of the form M(b — a) where M € 9*F(() for some ¢ € [a,b]. Let v € R™ be
arbitrary and fixed. Consider the real-valued function g : [0,1] — R

g(t) = (v, Fla+ (b - a)) = F(a) + 1(F(a) = F(b))).

Then g is continuous on [0, 1] with g(0) = g(1). So, g attains a minimum or a maximum at
some ty € (0,1). Suppose that g is a minimum point. Then, for each o € R, g7 (1, @) > 0.
It now follows from direct calculations that

g™ (10, 0) = (0, F(a+ to(b — @)))" (1o, a(b — a)) + alo, F(b) — F(a)).
Hence for each o € R
(v, Fa+to(b—a))) (to,a(b—a)) > aflv, F(a) — F(b)).
Now, by taking @ = 1 and a = —1, we obtain that
—(v, Fa+to(b—a))) (to,a = b) < (v, F(b) — F(a)) < (v, Fa+ty(b—a))) (to,b — a)).

By (2.1), we get

inf Muv,b—a) < (v, F(b) — F(a)) < su Muv,b—a).
B L N ) < (v, F(b) = F(a)) MEB*F(QEO(b_Q))< )
Consequently,

(v, F(b) — F(a)) € T6(8"F(a + to(b— a))v)(b— a))
and so,
(v, F(b) — F(a)) € @(8" F([a, b])v)(b— a)). (2.8)
Since this inclusion holds for each v € R™ we claim that
F(b) — F(a) € (0" F([a,b])(b— a).
If this is not so, then it follows from the Separation Theorem

(p, F(b) — F(a)) — e > sup (p,u),
u€s(9* F([a,b])(b—a))
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for some p € R™ since co(0* F([a, b])(b—a)) is a closed convex subset of R™. This implies
(9, F(b) ~ Pla)} > supfa - @ € (8" F(a,H)p)(b — )}

which contradicts (2.8).

Similarly, if ¢o is a maximum point, then g™ ({o,a) < 0, for each o € R Using the
same line of arguments as above we arrive at the same conclusion, and so the proof is
complete. O

If for each z € [a,b] F admits a bounded approximate Jacobian 0*F(z) at x, then the
above condition collapses to

F(b) — F(a) € co(&F([a,b])(b— a)).

Moreover, if F': S — IR™ is locally Lipschitz on S, then we get
F(b) — F(a) € co(0c F([a,b])(b— a)).

In this case the Clarke generalized Jacobian d¢ F'(z) can be chosen as a convex compact
approximate Jacobian of F' at z. For corresponding results, see [11].

Suppose f : S — Ris a C'— function, that is, a continuously differentiable function.

We now introduce the notion of approximate Hessian for a C''— function. Note that the
derivative of f which is denoted by V f is a map from S to R .

Definition 2.4. The function f admits an approximate Hessians 9. f(z) at z if this
set is an approximate Jacobian to V [ .

Note that 92f(z) = 9*V f(z) and the matrix M € 92?f(x) is an approximate Hessian
matrix of F at z. Clearly, if f is twice differentiable at z, then V?f(z) is an approximate
Hessian matrix of f at z.

If f:5 — Ris C"Y, that is, a Gateaux differentiable function with locally Lipschitz
derivative, then the generalized Hessian [12] in the sense of Hiriart-Urruty et.al. is given

by

O f(x)=co{M : M = lim V?f(z,), v, € A, z, — x},
n— oo
where A is the set of points in S where [ is twice differentiable. Clearly, 07 f(z) is a

nonempty convex compact set of symmetric matrices and it is an approximate Hessian of
f at x.

3. Monotone maps and approximate Jacobians

In this section, we characterize monotonicity of continuous maps in terms of approximate
Jacobian matrices. As an application, we also present a second-order characterization of
convexity of C''- functions. Recall that the map F : S — R” is monotone if for each
z, y €S,

(F(z), y — )+ (F(y), = —y) <0.
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Theorem 3.1. Let F : S — R be a continuous map which admils an approzimate
Jacobian 0*F(x) for each x € S. If for each x € S, the matrices M € 0*F(x) are positive

semi-definite, then I is monotone.

Proof. Let z, y € S be arbitrary: let v = y — . By the Mean Value Theorem,
F(z4u) — F(z) € (0" F([z, « + u])u),
and so
(F(z +u) — F(z), u) € (c0(0"F([z, =+ u])u), u).
Thus, there exists z € [z, @ + u] and N € @(9*F(z)) such that

(Flz+u)— F(z), u) = (Nu,u)

> inf  (Mu,u)
Meco(9*F(z))
= inf  (Mu,u)
MED*F(z)
> 0.
This shows that F' is monotone. O

The map F : S — R is strictly monotone if for each =,y € S,z # y,

(F(z), y—z)+ (F(y), = —y) <.

Theorem 3.2. Let F': S — R be a continuous map which admits a bounded approzimate
Jacobian 0*F(z) for each x € S. If the matrices M € 0*F(x) are positive definile for each

x € S, then F s strictly monotone.

Proof. Let z, y € S,  # y, be arbitrary and u = y — z. By the Mean Value Theorem,
there exist z € [z, 4+ u] and N € c0(0*F(z)) such that

(Flz+u)— F(z), u) = (Nu,u)

> inf (Mu,u)
Memo(9*F(2))

= inf  (Mu,u)
Mea*F(z)

min  (Mu,u)
MEd*F(z)

> 0.

This shows that F'is strictly monotone. O

Theorem 3.3. Let F : S — R® be a continuous map which admits an approzimate
Jacobian 0*F(z) for each x € S. Suppose there exisls a dense subset K of S such that
Jor each v € K 0*F(x) is regular and for each x ¢ K
0" F(z) C { lim My : {2,} C K, 2, = 2, My € ' F(z,) }
n— 0o

If F' is monotone, then for each x € S the matrices M € 0*F(x) are positive semi-definite.
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Proof. Suppose, to the contrary,
(Myug, ug) < 0,
for some zg,ug € S and My € 0*F (). If 29 € K, then by regularity,

(woF)™ (2o, uo) = inf  (Mug,uo) < 0.

Med*F(zo)
So, there exists ¢ sufficiently small and positive such that
<7.L0, F(CEO + tU0>> — <U0, F<$0>> < 0.

This contradicts monotonicity of F.
If on the other hand 2y ¢ K, then by hypothesis we can find a sequence {z,} C K, z, —
zg and M, € 0*F(x,) such that

lim M, = M,.

n—oo

So for ng sufficiently large M,,, € 0*F(x,,) and (M, ug, uo) < 0. Hence,

(uOF) (:L'no,uo) = Meal*lllff(a:no)<Mu0’uo> < 0.

Then for sufficiently small ¢ > 0
(o, F(2ny 4 tug)) — (uo, F(2,,)) < 0.

This again contradicts monotonicity of F', and so the proof is completed. O

It is worth noting that the above theorem is no longer true without the regularity con-
dition. This can be seen by choosing L(IR",[R") as an approximate Jacobian at each
point.

As a special case of the above theorem we see that if F'is locally Lipschitz, then mono-
tonicity of F'is characterized by positive semi-definiteness of the Jacobian matrices. This

was shown in [22] and [17].

Corollary 3.4. Let F : S — R™ be locally Lipschitz. Then F is monotone if and only if
Jor each x € S the matrices M € 0cF(x) are positive semi-definite.

Proof. et € S be arbitrary. Since F' is locally Lipschitz by Radamacher’s Theorem,
there exists a dense subset K of S on which VI exists. Define

. B {VF(:E)}, re K
" F(z) = { {lim,yeo VF(2,) : 2, = 2, {z,} C K}, 2 ¢ K.

Then 0* F(z) is an approximate Jacobian of F at z. If F' is monotone, then the hypotheses
of the preceding theorem are satisfied, and so the matrices M € 0*F(z) are positive semi-
definite. Hence, the matrices M € co(0*F(z)) = 0c F(z) are also positive semi-definite.

Conversely, if for each € S the matrices M € JcF(x) are positive semi-definite, then
the monotonicity of F' follows from Theorem 3.1 since d¢c F(z) is an approximate Jacobian
of F at x. O
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Corollary 3.5. Let f : S —= R be a C'-function which admits an approzimate Hessian
O2f(x) at each x € R™. Suppose there exists a dense subset K of S such thal for each
v € K 02f(x) is reqular and for each v ¢ K

02f(x) C { lim V*f(x,): {z,} C K, 7, = ;v} .
n—00
If f is convex, then for each x € S the matrices M € 02 f(x) are positive semi-definile.

Proof. The conclusion follows from Theorem 3.3 by replacing F' by V f. O

Corollary 3.6. Let f : S — R be CV'. Then f is convex if and only if for each x € S
the matrices M € 0% f(x) are posilive semi-definite.

Proof. The conclusion follows by applying Corollary 3.4 to V f. 0

4. Quasimonotone continuous maps

In this section, we will see that quasi-monotonicity can be characterized using approximate
Jacobians. The map F : S — R is said to be quasimonotone [10, 19] if for each z,y € S

min{(F(z),y — ), (F(y), v —y)} <0.

Theorem 4.1. Assume that F : S — R™ is continuous and admils an approzimate
Jacobian 0*F(x) at each x € S. If F is quasimonolone, then

(i) (F(2),u) =0 = suppesprp(s)(Mu,u) >0,
(ii) (F(z),u) =0 and (F(z + t'u),u) > 0 for some t' <0 imply the existence of to > 0
such that (F(x + tu),u) >0 for all t € [0,1].

Proof. Suppose (i) does not hold. Then, there exist z, u € S, such that

(F(z),u) =0 and sup (Mu,u) <O0.
MedF(x)

Then from the definition of the approximate Jacobian we get

(uF) (z,u) < sup (Mu,u) <0
Med*F(x)

and

(—uF)(z,—u) < sup (Mu,u) <O0.
Mea*F(z)

Hence, for sufficiently small ¢ > 0
<u,F(x+tu)—F(x)> <0
and

(—u, F(z +t(—u)) — F(z)) <O0.
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These give us that
(u, F(x 4+ 1tu)) <0 and (u, F(z—tu)) > 0.
Thus
(F(z +tu), (x —tu) — (x4 tu)) >0
and
(F(z —tu), (x4 tu) — (z —tu)) > 0.

This contradicts quasi-monotonicity of F, and so (i) holds.

Furthermore, if (ii) does not hold, then there exists ¢y > 0 such that (F'(z),u) =0, (F(z+
t'u),u) > 0 for some t' < 0 and (F(z +tou),u) < 0. Let 29 = x + t'u and let yo = = + tou.
Then, we have

<F(y0)7 To — y0> = <F($ + toU), (t, — to)’u> > 0,

<F($o)7 Yo — .TC0> = <F(.TC + t'u), (to — t’)u> > 0.
These inequalities contradict the quasimonotonicity of F. O

In general, it is not true that quasimonotonicity of F'implies

inf  (Mu,u) >0,
MearF(z)

for each z,u € S as in the differentiable case. Moreover, the conditions (i) and (ii) may
not be sufficient without certain restrictions on the approximate Jacobian. This can be
seen by taking 9*F(z) = L(R", R") for each € S. We now obtain sufficient conditions
under the additional hypotheses that approximate Jacobians are bounded and regular.

Theorem 4.2. Let F': S — R” be a continuous map which admils a bounded approzimate
Jacobian, 0*F(x), al each x € S. Suppose there exits a dense subset K of S such that for
cach v € K 0*F(z) is reqular and for each v ¢ K

0" F(z) C { lim My : {2} C K, 20 = 2, M, € 8*F(:cn)} .

Furthermore, assume that the following conditions hold for each x,u € R™ :

(i) (F(z),u)=0= maxMea*F(x)<Mu,u> >0,
(ii) (F(z),u) =0,0 € {(u, Mu) : M € 0*F(z)} and (F(z+ t'u),u) > 0 for some t' <0
imply the existence of o > 0 such that (F(x + tu),u) >0 for all t € [0,1).

Then F' is quastmonotone.
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Proof. Suppose there exist x,y € S such that

(F(z),y—2)>0and (F(y),z —y) > 0.

Let u =y —z and let g(t) = (F(x 4+ tu),u). Then g is continuous, g(0) > 0 and ¢(1) < 0.
So, there exists ¢y € (0,1) such that

g(t1) =0and g(t) <0 for all ¢ € (4;,1).

Define #; = = + tyu. Then, g(t1) = (F(z1),u) = 0 and (uF)(z1,u) < 0. Now we claim
that

0€ {{u,Mu): M € 0"F(z;)}.

To see this, consider first the case where z1 € K. If (v, Mu) > 0 for each M € 0*F(x1)
then by regularity of 0*F(z1) we get a contradiction since

: _ _ _ <o
0< Merg}‘an(m#Mu,u} MEé{l}?(ﬁ)(Mu,w (uF) (z1,u) <0

If (u, Mu) < 0 for each M € 0*F(xz;), then by (i) we get a contradiction since

0> max (Mu,u)>0.
Med*F (1)

Now consider the case where z1 ¢ K. Then for each M € 0*F(z) we can find a sequence
{yn} C K,y, = 1, M,, € 0*F(y,) such that lim,_, ., M,, = M. The claim holds as in the
above case by applying the arguments in the two subcases to M,,; € 0*F(yu,),yn, € K,
for sufficiently large ng. By continuity of g there exits ¢’ < 0 such that

g(ti + 1) = (F(z1 + t'u),u) > 0.

Condition (ii) gives us that there exists to > 0 such that
g(ti + 1) = (F(z1 4+ tu),u) > 0 for all ¢ € [0,1].

This contradicts the condition that g(¢) < 0 for all ¢ € (#;,1). Hence F' is quasimonotone.
O

As a special case, we obtain a characterization of quasimonotone locally Lipschitz maps

[22].

Corollary 4.3. Assume F : S — R is locally Lipschitz on S. Then F is quasimonotone

if and only if the following conditions hold for each x,u € S

(i) (F(z),u) =0 = maxpyres,p(a)(Mu,u) >0,

(ii) (F(z),u) =0,0 € {{u,Au) : A € 0cF(z)} and (F(z + t'u),u) > 0 for some t' <0
imply the existence of o > 0 such that (F(x + tu),u) > 0 for all t € [0,1o].
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Proof. The conclusion follows from the preceding theorems by noting that

. B {VF(LU)}, re K
0F(z)= { {limysoo VF(2,) t 2y = 2, {2} C K}, 2 ¢ K.

is an approximate Jacobian of F' at z which satisfies the hypotheses of the previous

theorem and observing that dg F(z) = co(0*F(x)). O

Corollary 4.4. Assume F : S — R is differentiable on S. Then F is quasimonotone if
and only if the following conditions hold for each x,u € R™:

() (Pa)u) =0 = (u, VP(e)u) > 0,
(ii) (F(z),u) = (u, VF(z)u) = 0 and (F(z 4+ t'u),u) > 0 for some t' < 0 imply the
existence of tg > 0 such that (F(z 4 tu),u) > 0 for all t € [0,1o].

Proof. Since F is differentiable, {V F(z)} is a regular and bounded approximate Jacobian
for each z € S. So, the conclusion follows from Theorems 4.1 and 4.2. O

Corollary 4.5. Let f: S — R be a C'-function which admits an approximate Hessian
O2f(x) at each x € R If f is quasiconvex, then for each x,u € S with (V f(z), u) =0,

sup (Mu,u) > 0.
Medg f(x)

Proof. The conclusion follows from Theorem 4.1 by replacing F' by V f and noting that
/ is quasiconvex if and only if V f is quasimonotone [21]. 0

5. Pseudomonotone maps

In this section, we will see that pseudomonotonicity of a continuous map can be character-
ized using approximate Jacobians.The map F : S — R” is said to be pseudomonotone
[18, 19] if for each z,y € S

(F(z),y —2) > 0= (F(y),y —z) > 0.

Theorem 5.1. Assume F' : S — R* is continuous and admils an approximale Jacobian
0*F(x) at each x € S. If F is pseudomonotone, then

(i) (F(z),u)=0= supMEa*F(x)<Mu,u> >0,
(il) (F(z),u) =0 = 3o >0, (F(z +tu),u) >0, Vi € [0,1].

Proof. Since pseudomonotonicity implies quasimonotonicity (i) follows from Theorem

4.1. If (ii) does not hold, then there exist z,u € S, and ¢’ > 0 such that (F(z),u) =0
and (F(z + t'u),u) < 0. Define y = z + t'u. Then

(F(z),y — ) = (F(z),t'v) = 0. (5.1)
On the other hand,

(F(y),z —y) = (F(z + t'u), —t"u) > 0.

Now it follows from pseudomonotonicity that (F(z),y — 2) > 0 which is a contradiction

to (5.1). d
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Theorem 5.2. Let F': S — R” be a continuous map which admits a bounded approzimate
Jacobian, 0*F(x), al each v € S. Assume there exils a dense subsel K of S such that for
cach v € K 0*F(z) is regular and for each v ¢ K

0" F(z) C { li_>m M, :{z,} CK, v, -z, M, € 8*F(xn)} )

Furthermore, assume that the following conditions hold for each x,u € R* :

(i)  (F(z),u) =0 = maxpyepr) (Mu,u) >0,
(ii) (F(x),u) =0 and 0 € {(u,Mu) : M € O"F(z)} = J 1o > 0, (F(z + tu),u) >0
vt € [0, to]

Then F' is pseudomonotone.

Proof. Suppose F'is not pseudomonotone. Then there exist z,y € S such that

(F(z),y—z) >0 and (F(y),z —y) > 0.

Let u =y — x and ¢(t) = (F(z + tu),u). Then g is continuous, ¢g(0) > 0 and g(1) < 0.
So there exists t; € [0,1] such that

g(t1) =0 and g(t) <0 forall ¢ € (¢,1]. (5.2)

Define z; = & + tju. As in the proof of Theorem 4.2, (F(z1),u) = 0, (uF)™(z1,u) <0

and

0€ {{u,Mu): M € 0"F(z1)}.

Now it follows from (ii) that there exists {o > 0 such that

(F(zq+tu),u) >0, Vt € [0,1).

Thus g(t; +t) = (F(z1 + tu),u) > 0V ¢ € [0,1o] for sufficiently small ¢ close to #,. This
is a contradiction to (5.2), and hence, F' is pseudomonotone. O
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Corollary 5.3. Assume F : S — R is locally Lipschitz on S. Then F is pseudomono-
tone if and only if the following conditions hold for each x,u € S:

(i)  (F(z),u) =0 = maxyres r)(Mu,u) >0,

(ii) (F(x),u) =0 and0 € {(u,Mu) : M € OcF(z)} = 3 to >0, (F(z+tu),u) >0,Vt €
[0, 0]

Proof. The proof follows along the same line of arguments as in Corollary 4.3, and so
the details are left to the reader. O

Corollary 5.4. Assume F : S — R is differentiable on S. Then F is pseudomonotone
if and only if the following conditions hold for each z,u € R":

(i) (F(z),u) =0= (u, VF(z)u) >0,
(il) (F(z),u) =(u, VF(z)u) =0 = F ty >0, (F(z + tu),u) >0, Vi € [0, o]

Proof. Since F is differentiable, {VF(z)} is a bounded regular approximate Jacobian
for each = € S. So the conclusion follows from the preceding theorems. O
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