Some Geometric Properties in Orlicz Sequence Spaces equipped with Orlicz Norm

Yunan Cui*

Department of Mathematics, Harbin University of Science and Technology, Xuefu Road 52, 150080 Harbin, China. e-mail: yunancui@public.hr.hl.cn

Henryk Hudzik

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Ul. Matejki 48/49, 60-769 Poznań, Poland. e-mail: hudzik@amu.edu.pl

Marian Nowak

Institute of Mathematics, T. Kotarbiński Pedagogical University, Pl. Słowiański 9, 65-069 Zielona Góra, Poland. e-mail: nowakmar@omega.im.wsp.zgora.pl

Ryszard Płuciennik

Institute of Mathematics, Poznań University of Technology, Piotrowo 3A, 60-965 Poznań, Poland. e-mail: rplucien@math.put.poznan.pl

Received April 3, 1997 Revised manuscript received November 27, 1998

It is proved that for any reflexive Banach space X, both X and X^* are **CLUR** if and only if both X and X^* have property **H**. Criteria for rotundity, local uniform rotundity, compact local uniform rotundity and property **H** in Orlicz sequence spaces equipped with the Orlicz norm are given. Criteria for property **H**, rotundity and **LUR** were already known in the literature only for finitely valued Orlicz functions which vanish only at zero and are N-functions (i.e. they satisfy conditions (0_1) and (∞_1) . All our criteria except Corollary 2.15 are given for arbitrary Orlicz functions. Criteria for smoothness of l_{Φ}^0 in Corollary 2.15 are given for any finitely valued Orlicz function satisfying condition (∞_1) , extending the respective result of [2] proved only for Orlicz functions vanishing only at zero.

Keywords: Orlicz sequence space, rotundity, local uniform rotundity, compact local uniform rotundity, property \mathbf{H} , smoothness, copy of l_{∞}

1991 Mathematics Subject Classification: 46E30, 46E40, 46B20

1. Introduction

In the whole paper \mathcal{N} and \mathcal{R} stand for the sets of natural numbers and of real numbers, respectively. Let $(X, \|\cdot\|)$ be a real Banach space and B(X) (S(X)) be the closed unit ball (the unit sphere) of X. By X^* denote the dual space of X. Clarkson [4] introduced the concept of uniform rotundity.

A Banach space X is said to be uniformly rotund (UR for short) if for every sequences (x_n)

^{*}Supported by Chinese National Science Foundation Grant.

and (y_n) in S(X) such that $\lim_{n\to\infty} ||x_n+y_n||=2$, there holds $\lim_{n\to\infty} ||x_n-y_n||=0$.

A Banach space X is said to be *rotund* (**R** for short) if for any x and y in S(X) with ||x + y|| = 2, we have x = y.

A Banach space X is called *locally uniformly rotund* (LUR for short) if for each $x \in S(X)$ and each sequence (x_n) in S(X) such that $\lim_{n\to\infty} ||x_n + x|| = 2$, there holds $\lim_{n\to\infty} ||x_n - x|| = 0$.

A Banach space X is said to be compactly locally uniformly rotund (CLUR for short) if for each $x \in S(X)$ and each sequence (x_n) in S(X) such that $\lim_{n\to\infty} ||x_n + x|| = 2$, it follows that the set $\{x_n : n \in \mathcal{N}\}$ is relatively compact in norm topology.

If in a Banach space X a partial order " \leq " is defined and $||x|| \leq ||y||$ whenever $|x| \leq |y|$, then X is said to be a *Banach lattice*. If X is a Banach lattice and ||x|| < ||y|| whenever $0 \leq x \leq y$ and $x \neq y$, then X is said to be *strictly monotone* (see [8]).

It is clear that a Banach space X is LUR if and only if it is CLUR and R (see [15]).

A Banach space X is said to have property \mathbf{H} if on the unit sphere every weakly convergent sequence to a point on the sphere is convergent in norm.

For the definitions of these and many other geometric notions, some consequences and some relationships between them, see [5].

A map $\Phi: \mathcal{R} \to [0, \infty]$ is said to be an *Orlicz function* if it is even, convex, continuous and vanishing at 0 and $\Phi(u) \to \infty$ as $u \to \infty$.

We say that an Orlicz function Φ is an N'-function if it satisfies the following condition:

$$\lim_{u \to \infty} \frac{\Phi(u)}{u} = \infty. \tag{∞}$$

An N'-function Φ is said to be an N-function if

$$\lim_{u \to 0} \frac{\Phi(u)}{u} = 0. \tag{0_1}$$

We define the Orlicz sequence space by the formula

$$l_{\Phi} = \left\{ x \in l^0 : I_{\Phi}(cx) = \sum_{i=1}^{\infty} \Phi(cx(i)) < \infty \text{ for some } c > 0 \right\},$$

where l^0 stands for the space of all real sequences. We will consider l_{Φ} equipped with the Luxemburg norm

$$||x|| = \inf \left\{ \epsilon > 0 : I_{\Phi} \left(\frac{x}{\epsilon} \right) \le 1 \right\}$$

or with the equivalent one

$$||x||_0 = \inf_{k>0} \frac{1}{k} (1 + I_{\Phi}(kx)),$$

called the Orlicz norm or the Amemiya norm.

By h_{Φ} we denote the subspace

$$h_{\Phi} = \left\{ x \in l_{\Phi} : I_{\Phi}(cx) = \sum_{i=1}^{\infty} \Phi(cx(i)) < \infty \text{ for any } c > 0 \right\}$$

To simplify notations, we put $l_{\Phi} = (l_{\Phi}, ||\cdot||)$ and $l_{\Phi}^0 = (l_{\Phi}, ||\cdot||_0)$.

Orlicz spaces l_{Φ} and l_{Φ}^{0} are Banach lattices under the partial order $x \leq y$ iff $x(i) \leq y(i)$ for all $i \in \mathcal{N}$.

The set of all k's at which the infimum in the definition of $||x||_0$ for a fixed $x \in l_{\Phi}^0$ is attained, will be denoted by K(x). In particular, the set K(x) can be empty if the Orlicz sequence space l_{Φ}^0 is generated by an Orlicz function which does not satisfy condition (∞_1) .

For every Orlicz function Φ the function $\Psi: \mathcal{R} \longrightarrow [0, \infty]$ complementary to Φ in the sense of Young is defined by the formula

$$\Psi\left(v\right) = \sup_{u>0} \left\{ u \left|v\right| - \Phi\left(u\right) \right\}$$

for every $v \in \mathcal{R}$. It is well known that Ψ is also an Orlicz function.

We say an Orlicz function Φ satisfies the δ_2 -condition ($\Phi \in \delta_2$ for short) if there exist constants $k \geq 2$ and $u_0 > 0$ such that $0 < \Phi(u_0) < \infty$ and

$$\Phi(2u) \le k\Phi(u)$$

whenever $|u| \leq u_0$.

Let

$$\theta(x) = \sup\{c > 0 : I_{\Phi}(cx) < \infty\}$$

for any $x \in l_{\Phi}$. Obviously, $h_{\Phi} = \{x \in l_{\Phi} : \theta(x) = \infty\}$.

We say an Orlicz function Φ is strictly convex on [a, b] if

$$\Phi\left(\frac{u+v}{2}\right) < \frac{1}{2} \left(\Phi(u) + \Phi(v)\right)$$

whenever $u, v \in [a, b]$ and $u \neq v$. For more details on Orlicz functions and Orlicz spaces we refer to [1], [12], [13], [14] and [17].

Recall that in the previous papers on rotundity and local uniform rotundity in Orlicz sequence spaces l_{Φ}^{0} equipped with the Orlicz norm there was assumed that the function Φ generating the space l_{Φ}^{0} is an N-function (see [1]). We will omit this assumptions here. To do so it was necessary to use different techniques. We will also give criteria for properties **CLUR** and **H** in l_{Φ}^{0} .

2. Results

We begin with a general result.

Theorem 2.1. If X is a reflexive Banach space, then both X and X^* are CLUR if and only if both X and X^* have property H.

Proof. It is known that if X is **CLUR**, then X has property **H**. We only need to prove that X is **CLUR** if both X and X^* have property **H**. For every $x_0 \in S(X)$ and every sequence (x_n) in S(X) with $\lim_{n\to\infty} ||x_n+x_0|| = 2$, take $(f_n) \subset S(X^*)$ such that $f_n(x_n+x_0) = ||x_n+x_0||$ for every $n \in \mathcal{N}$. Then

$$f_n(x_0) = ||x_n + x_0|| - f_n(x_n)$$

for every $n \in \mathcal{N}$ and

$$\liminf_{n \to \infty} f_n(x_0) \ge \lim_{n \to \infty} ||x_n + x_0|| - \limsup_{n \to \infty} f_n(x_n),$$

whence $\lim_{n\to\infty} f_n(x_0) = \lim_{n\to\infty} f_n(x_n) = 1$.

By the reflexivity of X, there is a subsequence (f_{n_i}) of (f_n) and $f_0 \in X^*$ such that f_{n_i} tends to f_0 weakly. It is obvious that in virtue of $\lim_{n\to\infty} f_n(x_0) = 1$ this yields $f_0(x_0) = 1$, whence $||f_0|| = 1$. By property **H** for X^* , we get that $f_{n_i} \to f_0$ in norm. Hence

$$f_0(x_{n_i}) = (f_0 - f_{n_i})(x_{n_i}) + f_{n_i}(x_{n_i}) \to 1 \text{ as } i \to \infty.$$

Using now the reflexivity of X, we can find a subsequence (z_i) of (x_{n_i}) and $x^0 \in X$ such that z_i tends to x^0 weakly. Obviously, $f_0(x^0) = 1$, whence $||x^0|| = 1$. By property \mathbf{H} for X, z_i tends to x^0 strongly, i.e. the set $\{x_n : n \in \mathcal{N}\}$ is relatively compact in S(X), which implies that X is \mathbf{CLUR} .

In the following we will consider some geometric properties of Orlicz sequence spaces.

Theorem 2.2. Let $x \in l_{\Phi}^0$ $(x \neq 0)$. If $K(x) = \emptyset$, then

$$||x||_0 = \lim_{k \to \theta(x) - \frac{1}{k}} \frac{1}{k} (1 + I_{\Phi}(kx)).$$

Proof. Since the function $f(k) = \frac{1}{k} (1 + I_{\Phi}(kx))$ is continuous on the interval $(0, \theta(x))$ and $\lim_{k\to 0+} f(k) = \infty$, the formula

$$||x||_0 = \lim_{k \to \theta(x) -} \frac{1}{k} (1 + I_{\Phi}(kx))$$

is true. \Box

Corollary 2.3. If $x \in l_{\Phi}^{0}$ and $\theta(x) < \infty$, then $K(x) \neq \emptyset$.

Proof. Assume for the contrary that $K(x) = \emptyset$. Then, by Theorem 2.2 and the Fatou Lemma, we have

$$\frac{1}{\theta(x)} (1 + I_{\Phi}(\theta(x)x)) \le \lim_{k \to \theta(x) - 1} \frac{1}{k} (1 + I_{\Phi}(kx)) = ||x||_{0} < \infty,$$

whence $K(x) \neq \emptyset$. A contradiction.

Corollary 2.4. If $x \in l_{\Phi}^0$ and $K(x) = \emptyset$, then for any $n \in \mathcal{N}$ we have

$$\left\| \sum_{i=1}^{n} x(i)e_i \right\|_{0} = \lim_{k \to \infty} \frac{1}{k} I_{\Phi} \left(k \sum_{i=1}^{n} x(i)e_i \right)$$

and

$$\left\| \sum_{i=n+1}^{\infty} x(i)e_i \right\|_{0} = \lim_{k \to \infty} \frac{1}{k} I_{\Phi} \left(k \sum_{i=n+1}^{\infty} x(i)e_i \right).$$

Proof. We first claim that the limit $\lim_{u\to\infty} \frac{\Phi(u)}{u}$ exists. This follows from the fact that for $0 < u_1 < u_2$, we have

$$\frac{\Phi(u_1)}{u_1} = \frac{1}{u_1} \Phi\left(\frac{u_1}{u_2} u_2\right) < \frac{u_1}{u_2} \cdot \frac{\Phi(u_2)}{u_1} = \frac{\Phi(u_2)}{u_2}.$$

Since $K(x) = \emptyset$, $\lim_{u \to \infty} \frac{\Phi(u)}{u}$ is finite, and consequently

$$||x||_{0} = \lim_{k \to \infty} \frac{1}{k} I_{\Phi}(kx) = \lim_{k \to \infty} \frac{1}{k} \left(I_{\Phi} \left(k \sum_{i=1}^{n} x(i) e_{i} \right) + I_{\Phi} \left(k \sum_{i=n+1}^{\infty} x(i) e_{i} \right) \right)$$

$$= \lim_{k \to \infty} \frac{1}{k} I_{\Phi} \left(k \sum_{i=1}^{n} x(i) e_{i} \right) + \lim_{k \to \infty} \frac{1}{k} I_{\Phi} \left(k \sum_{i=n+1}^{\infty} x(i) e_{i} \right)$$

$$\geq \left\| \sum_{i=1}^{n} x(i) e_{i} \right\|_{0} + \left\| \sum_{i=n+1}^{\infty} x(i) e_{i} \right\|_{0}$$

for every $n \in \mathcal{N}$. On the other hand, by the triangle inequality, we have

$$||x||_{0} \le \left\| \sum_{i=1}^{n} x(i)e_{i} \right\|_{0} + \left\| \sum_{i=n+1}^{\infty} x(i)e_{i} \right\|_{0}$$

for every $n \in \mathcal{N}$. So the corollary is proved.

Corollary 2.5. If $x \in l_{\Phi}^{0}$ and $K(x) = \emptyset$, then

$$||x||_0 = A \sum_{i=1}^{\infty} |x(i)|,$$

where $A = \lim_{u \to \infty} \frac{\Phi(u)}{u}$.

Proof. Since we can assume without loss of generality that $x(i) \neq 0$ for any $i \in \mathcal{N}$, by Corollary 2.4, we have

$$\left\| \sum_{i=1}^{n} x(i)e_i \right\|_{0} = \lim_{k \to \infty} \frac{1}{k} I_{\Phi} \left(k \sum_{i=1}^{n} x(i)e_i \right)$$

$$= \lim_{k \to \infty} \frac{1}{k} \sum_{i=1}^{n} \Phi(kx(i)) = \lim_{k \to \infty} \sum_{i=1}^{n} |x(i)| \frac{\Phi(kx(i))}{k |x(i)|} = A \sum_{i=1}^{n} |x(i)|$$

for every $n \in \mathcal{N}$. Since $||x||_0 = \lim_{n \to \infty} \left\| \sum_{i=1}^n x(i)e_i \right\|_0$, we obtain

$$||x||_0 = A \sum_{i=1}^{\infty} |x(i)|.$$

Corollary 2.6. Assume that Φ is an Orlicz function with

$$\lim_{u \to \infty} (\Phi(u)/u) = A < \infty$$

and a > 0 is the number satisfying $\Phi(a) = 1$. If there exists $b \in (0,1)$ such that $Au - b \le \Phi(u)$ for all $u \ge \frac{a}{2}$, then $K(x) = \emptyset$ for some $x \in S(l_{\Phi}^0)$.

Proof. Define y = (a, 0, 0, ...). Then $I_{\Phi}(y) = 1$, whence ||y|| = 1 and $||y||_{0} \leq 2 ||y|| = 2$. So, for $x = \frac{1}{2}y$ there holds $||x||_{0} \leq 1$. Assuming for the contrary that $K(x) \neq \emptyset$, we conclude that there is $k \geq 1$ such that

$$\begin{aligned} \|x\|_0 &= \frac{1}{k} \left(1 + \Phi\left(\frac{ak}{2}\right) \right) \\ &\geq \frac{1}{k} \left(1 + \frac{Aak}{2} - b \right) = \frac{Aa}{2} + \frac{1-b}{k} > \frac{Aa}{2}. \end{aligned}$$

On the other hand

$$||x||_0 \le \lim_{k \to \infty} \frac{1}{k} \Phi\left(\frac{ak}{2}\right)$$
$$= \frac{a}{2} \lim_{k \to \infty} \frac{2}{ak} \Phi\left(\frac{ak}{2}\right) = \frac{Aa}{2},$$

a contradiction, which shows that $K(x) = \emptyset$.

Remark 2.7.

- (i) If Φ is an N'-function, then $K(x) \neq \emptyset$ for any $x \in l_{\Phi}^{0} \setminus \{0\}$.
- (ii) Let Φ be an Orlicz function satisfying condition (0_1) . If $x \in l_{\Phi}^0 \setminus \{0\}$ and $K(x) = \emptyset$, then supp x is a finite set.

Proof. The assertion (i) has been proved in [6]. To prove (ii) assume for the contrary that supp x is infinite. Denote by μ the counting measure. Then

$$\mu\left\{i \in \mathcal{N} : |x(i)| > \frac{1}{n}\right\} \to \infty \text{ as } n \to \infty.$$

By the assumption (0_1) , we conclude that both functions Ψ and p vanish only at zero. Fix a > 0 and denote b = p(a), where p is the right hand derivative of Φ on \mathcal{R}_+ . Let $m \in \mathcal{N}$ satisfy $m\Psi(b) \geq 1$. Next, let $n_0 \in \mathcal{N}$ be such that

$$\mu\left\{i\in\mathcal{N}:|x(i)|>\frac{1}{n}\right\}\geq m$$

for $n \geq n_0$. Let $k = n_0 a$ and

$$A = \left\{ i \in \mathcal{N} : |x(i)| > \frac{1}{n_0} \right\}.$$

Then k|x(i)| > a and consequently $p(k|x(i)|) \ge b$ for any $i \in A$. Therefore,

$$I_{\Psi}(p \circ k |x|) \geq \mu(A)\Psi(b) \geq m\Psi(b) \geq 1.$$

This yields

$$k_x^* := \inf \{k > 0 : I_{\Psi}(p \circ k | x|) \ge 1\} < \infty,$$

whence $K(x) \neq \emptyset$ (see [1]).

Lemma 2.8. Let $x_0 \in S(l_{\Phi}^0)$ be such that $K(x_0)$ is nonempty and bounded. If $(x_n) \subset S(l_{\Phi}^0)$ is coordinatewise convergent to x_0 , then there exists $n_0 \in \mathcal{N}$ such that $K(x_n) \neq \emptyset$ for all $n \geq n_0$ and $\sup_{n \geq n_0} \{k_n\} < \infty$ for any sequence (k_n) with $k_n \in K(x_n)$ $(n \in \mathcal{N})$. If additionally $\Phi \in \delta_2$, then there exists a subsequence (x_{n_k}) of (x_n) such that all elements of (x_{n_k}) have equi-absolutely continuous norms, i.e. for any $\epsilon > 0$ there is $i_{\epsilon} \in \mathcal{N}$ such that

$$\left\| \sum_{i=i_{\epsilon}}^{\infty} x_{n_k}(i) e_i \right\|_{0} < \epsilon$$

for all $k \in \mathcal{N}$.

Proof. Suppose that $K(x_0)$ is nonempty and bounded. First, we will prove that there is $n_1 \in \mathcal{N}$ such that $K(x_n) \neq \emptyset$ for $n \geq n_1$. Otherwise, we may assume without loss of generality that $K(x_n) = \emptyset$ (n = 1, 2, ...). This implies that $\lim_{u \to \infty} (\Phi(u)/u) = A < \infty$ because otherwise $K(x) \neq \emptyset$ for any $x \in l_{\Phi}^0$ (see [6]). Since $K(x_0) \neq \emptyset$ and it is bounded, there is $\epsilon_0 > 0$ such that

$$||x_0||_0 + 2\epsilon_0 < \lim_{k \to \infty} \frac{1}{k} I_{\Phi}(kx_0) = A \sum_{i=1}^{\infty} |x_0(i)|.$$

Next, there exists $i_1 \in \mathcal{N}$ such that

$$||x_0||_0 + \epsilon_0 < A \sum_{i=1}^{i_1} |x_0(i)|.$$

Since $x_n \to x_0$ coordinatewise, there is $n_2 \in \mathcal{N}$ such that

$$\sum_{i=1}^{i_1} |x_n(i)| > \sum_{i=1}^{i_1} |x_0(i)| - \frac{\epsilon_0}{2A}$$

for $n \geq n_2$. Hence

$$1 = ||x_n||_0 = \lim_{k \to \infty} \frac{1}{k} I_{\Phi}(kx_n)$$

$$= A \sum_{i=1}^{\infty} |x_n(i)| = A \sum_{i=1}^{i_1} |x_n(i)| + A \sum_{i=i_1+1}^{\infty} |x_n(i)|$$

$$> A \left(\sum_{i=1}^{i_1} |x_0(i)| - \frac{\epsilon_0}{2A} \right) + A \sum_{i=i_1+1}^{\infty} |x_n(i)| = A \sum_{i=1}^{i_1} |x_0(i)| - \frac{\epsilon_0}{2} + A \sum_{i=i_1+1}^{\infty} |x_n(i)|$$

$$> ||x_0||_0 + \epsilon_0 - \frac{\epsilon_0}{2} + A \sum_{i=i_1+1}^{\infty} |x_n(i)| \ge 1 + \frac{\epsilon_0}{2}$$

for $n \geq n_2$. This contradiction shows that there is $n_1 \in \mathcal{N}$ such that $K(x_n) \neq \emptyset$ for $n \geq n_1$. Without loss of generality, we may assume that $K(x_n) \neq \emptyset$ for all $n \in \mathcal{N}$. Therefore, there are $k_n \geq 1$ such that

$$||x_n||_0 = \frac{1}{k_n} (1 + I_{\Phi}(k_n x_n)), \quad n = 0, 1, 2, \dots$$

We will prove that $\sup\{k_n: n=0,1,2,...\}<\infty$. If not, we can assume that $k_n\uparrow\infty$. Since

$$||x_0||_0 + 2\epsilon_0 < \lim_{k \to \infty} \frac{1}{k} I_{\Phi}(kx_0) = A \sum_{i=1}^{\infty} |x_0(i)|,$$

there exists $i_2 \in \mathcal{N}$ such that

$$||x_0||_0 + \epsilon_0 < A \sum_{i=1}^{i_2} |x_0(i)|.$$

Hence

$$1 = \|x_n\|_0 = \frac{1}{k_n} \left(1 + I_{\Phi}(k_n x_n) \right)$$

$$= \frac{1}{k_n} \left(1 + \sum_{i=1}^{\infty} \Phi(k_n x_n(i)) \right) = \frac{1}{k_n} \left(1 + \sum_{i=1}^{i_2} \Phi(k_n x_n(i)) + \sum_{i=i_2+1}^{\infty} \Phi(k_n x_n(i)) \right)$$

$$\geq \frac{1}{k_n} \left(1 + \sum_{i=1}^{i_2} \Phi(k_n x_n(i)) \right) \rightarrow A \sum_{i=1}^{i_2} |x_0(i)| > 1 + \epsilon_0,$$

a contradiction which shows that $\sup\{k_n: n=0,1,2,...\} < \infty$ whenever $K(x_n) \neq \emptyset$ for all $n \in \mathcal{N}$. Taking n_0 large enough and using the fact that $K(x_n) \neq \emptyset$ for all $n \geq n_1$, we get the first part of the lemma.

Now, suppose that $\Phi \in \delta_2$. Passing to a subsequence if necessary, we may assume without loss of generality that there is $k \in [1, \infty)$ such that

$$\lim_{n \to \infty} k_n = k.$$

Now, we will prove that the elements of (x_n) have equi-absolutely continuous norms. Since $\Phi \in \delta_2$, we only need to prove that for every $\epsilon > 0$ there is $i_{\epsilon} \in \mathcal{N}$ such that

$$I_{\Phi}\left(\sum_{i=i_{\epsilon}}^{\infty} x_n(i)e_i\right) < \epsilon$$

for all $n \in \mathcal{N}$. Fix $\epsilon > 0$. Then there is $i_3 \in \mathcal{N}$ such that

$$\left\| \sum_{i=1}^{i_3} x_0(i) e_i \right\|_0 > 1 - \frac{\epsilon}{2}.$$

Since $x_n \to x_0$ coordinatewise, there is $n_3 \in \mathcal{N}$ such that

$$\frac{1}{k_n} \left(1 + I_{\Phi} \left(\sum_{i=1}^{i_3} k_n x_n(i) e_i \right) \right) \ge \frac{1}{k} \left(1 + I_{\Phi} \left(\sum_{i=1}^{i_3} k x_0(i) e_i \right) \right) - \frac{\epsilon}{2}$$

for $n \geq n_3$. Hence

$$1 = \frac{1}{k_n} \left(1 + I_{\Phi}(k_n x_n) \right) = \frac{1}{k_n} \left(1 + I_{\Phi} \left(\sum_{i=1}^{i_3} k_n x_n(i) e_i \right) + I_{\Phi} \left(\sum_{i=i_3+1}^{\infty} k_n x_n(i) e_i \right) \right)$$

$$\geq \frac{1}{k_n} \left(1 + I_{\Phi} \left(\sum_{i=1}^{i_3} k_n x_n(i) e_i \right) \right) + I_{\Phi} \left(\sum_{i=i_3+1}^{\infty} x_n(i) e_i \right)$$

$$\geq \frac{1}{k} \left(1 + I_{\Phi} \left(\sum_{i=1}^{i_3} k x_0(i) e_i \right) \right) - \frac{\epsilon}{2} + I_{\Phi} \left(\sum_{i=i_3+1}^{\infty} x_n(i) e_i \right)$$

$$\geq \left\| \sum_{i=1}^{i_3} x_0(i) e_i \right\|_{0} - \frac{\epsilon}{2} + I_{\Phi} \left(\sum_{i=i_3+1}^{\infty} x_n(i) e_i \right) > 1 - \epsilon + I_{\Phi} \left(\sum_{i=i_3+1}^{\infty} x_n(i) e_i \right)$$

for $n \geq n_3$. So we have

$$I_{\Phi}\left(\sum_{i=i_3+1}^{\infty} x_n(i)e_i\right) < \epsilon$$

for $n \geq n_3$. This finishes the proof of the lemma.

Theorem 2.9. If $\Phi \in \delta_2$, then for each sequence (x_n) in $S(l_{\Phi}^0)$ and $x_0 \in S(l_{\Phi}^0)$ such that $x_n(i) \to x_0(i)$ as $n \to \infty$ for i = 1, 2, ..., we have that $x_n \to x_0$ in norm.

Proof. Note that $\Phi \in \delta_2$ yields that Φ vanishes only at zero. In order to prove the theorem, we will consider two cases.

Case I. $K(x_0) = \emptyset$ or $K(x_0)$ is nonempty and unbounded. Assume first that there is a subsequence (z_n) of (x_n) such that $K(z_n) = \emptyset$ for all $n \in \mathcal{N}$. Then, by Corollary 2.5, $||z_n||_0 = A \sum_{i=1}^{\infty} |z_n(i)|$ for each $n \in \mathcal{N}$ and $||x_0||_0 = A \sum_{i=1}^{\infty} |x_0(i)|$. Since l_1 has the Schur property, we get

$$A\sum_{i=1}^{\infty} |z_n(i) - x_0(i)| \to 0$$

as $n \to \infty$. Since

$$||z_n - x_0||_0 \le A \sum_{i=1}^{\infty} |z_n(i) - x_0(i)|$$

for all $n \in \mathcal{N}$, we get

$$\lim_{n \to \infty} \|z_n - x_0\|_0 = 0.$$

Assume now that there is a subsequence (y_n) of (x_n) such that there are $k_n \geq 1$ satisfying

$$||y_n||_0 = \frac{1}{k_n} (1 + I_{\Phi}(k_n y_n))$$

for n=1,2,... In virtue of $\Phi\in\delta_2$, for any $\epsilon>0$ there is $\delta>0$ such that $I_{\Phi}(x)<\delta$ implies $\|x\|_0<\epsilon$. Moreover, there is $i_0\in\mathcal{N}$ such that

$$\left\| \sum_{i=1}^{i_0} x_0(i) e_i \right\|_0 > 1 - \delta$$

and

$$\left\| \sum_{i=i_0+1}^{\infty} x_0(i) e_i \right\|_0 < \epsilon.$$

Since $y_n(i) \to x_0(i)$ as $n \to \infty$ for i = 1, 2, ..., there exists $n_0 \in \mathcal{N}$ such that

$$\left\| \sum_{i=1}^{i_0} y_n(i) e_i \right\|_0 > 1 - \delta$$

for $n \geq n_0$. So,

$$1 = \frac{1}{k_n} \left(1 + I_{\Phi}(k_n y_n) \right) = \frac{1}{k_n} \left(1 + \sum_{i=1}^{i_0} \Phi(k_n y_n(i)) + \sum_{i=i_0+1}^{\infty} \Phi(k_n y_n(i)) \right)$$

$$\geq \frac{1}{k_n} \left(1 + \sum_{i=1}^{i_0} \Phi(k_n y_n(i)) \right) + \sum_{i=i_0+1}^{\infty} \Phi(y_n(i))$$

$$\geq \left\| \sum_{i=1}^{i_0} y_n(i) e_i \right\|_0 + \sum_{i=i_0+1}^{\infty} \Phi(y_n(i)) > 1 - \delta + \sum_{i=i_0+1}^{\infty} \Phi(y_n(i))$$

for $n \geq n_0$. This means that

$$\sum_{i=i_0+1}^{\infty} \Phi(y_n(i)) < \delta$$

for $n \geq n_0$. Hence

$$\left\| \sum_{i=i_0+1}^{\infty} y_n(i) e_i \right\|_0 < \epsilon$$

for $n \geq n_0$. Since $y_n \to x_0$ coordinatewise, there is $n_1 \geq n_0$ such that

$$\left\| \sum_{i=1}^{i_0} (y_n(i) - x_0(i)) e_i \right\|_0 < \epsilon$$

for $n \geq n_1$. Thus

$$||y_n - x_0||_0 = \left\| \sum_{i=1}^{i_0} (y_n(i) - x_0(i)) e_i + \sum_{i=i_0+1}^{\infty} y_n(i) e_i - \sum_{i=i_0+1}^{\infty} x_0(i) e_i \right\|_0$$

$$\leq \left\| \sum_{i=1}^{i_0} (y_n(i) - x_0(i)) e_i \right\|_0 + \left\| \sum_{i=i_0+1}^{\infty} y_n(i) e_i \right\|_0 + \left\| \sum_{i=i_0+1}^{\infty} x_0(i) e_i \right\|_0 < 3\epsilon$$

for $n \ge n_1$. Note that we have proved that we always can find a subsequence (y_n) of (x_n) such that $||y_n - x_0|| \to 0$. So, by the double extract subsequence theorem, there holds $||x_n - x_0|| \to 0$.

Case II. $K(x_0)$ is nonempty and bounded. By Lemma 2.8, we can assume without loss of generality that $K(x_n) \neq \emptyset$ for each $n \in \mathcal{N}$. Now, repeating the procedure from case I, we get

$$\lim_{n \to \infty} \|x_n - x_0\|_0 = 0.$$

We can also get the same conclusion by applying equi-absolute continuity of the norm of (x_n) and the fact that $x_n \to x_0$ coordinatewise. So the proof of the theorem is finished. \square

Remark 2.10. An analogue of Theorem 2.9 for the Luxemburg norm has been proved in [10].

Remark 2.11. Criteria for H-property of Orlicz sequence spaces equipped with the Luxemburg norm and the Orlicz norm, but generated by N-functions, were first given in [19] and [3]. Next the problem of a characterization of H-points in Orlicz sequence spaces was considered in [7], [16] and [10]. Criteria for H-property of Orlicz sequence spaces l_{Φ} equipped with the Luxemburg norm in the case of convex Orlicz functions (without the assumption that it is an N-function) were given in [10]. The next theorem solves an analogous problem for the Orlicz norm for arbitrary Orlicz function. Although the criterion is the same as for N-functions, the proof is much more complicated and it is based on Theorem 2.9, the proof of which use some new techniques in comparison with the ones used in [19] and [3].

Theorem 2.12. The space l_{Φ}^{0} has property **H** if and only if $\Phi \in \delta_{2}$.

Proof. Sufficiency. Assume for a sequence (x_n) in $S(l_{\Phi}^0)$ that $x_n \to x_0$ weakly. This implies that $x_n \to x_0$ coordinatewise. By Theorem 2.9, in view of $\Phi \in \delta_2$, $x_n \to x_0$ in norm

Necessity. Assume first that Φ vanishes only at zero. If $\Phi \notin \delta_2$, there is $x_0 \in S(l_{\Phi})$ such that

$$I_{\Phi}(x_0) \leq 1$$
 and $I_{\Phi}(\lambda x_0) = \infty$

for any $\lambda > 1$ (see [1]). Take an increasing sequence (i_n) of natural numbers such that $i_n \to \infty$ as $n \to \infty$ and

$$\left\| \sum_{i=i_n+1}^{i_{n+1}} x_0(i) e_i \right\|_0 \ge \frac{1}{2}$$

for every $n \in \mathcal{N}$. Put

$$x_n = (x_0(1), ..., x_0(i_n), 0, ...0, x_0(i_{n+1} + 1), x_0(i_{n+1} + 2), ...)$$

and $z_n = x_n / ||x_0||_0$ for n = 0, 1, 2,

We will show that $z_n \to z_0$ weakly. Any $f \in (l_{\Phi}^0)^*$ is uniquely represented in the form f = y + s, where $y \in l_{\Psi}$ and $s \in (h_{\Phi}^0)^{\perp}$. Since $y \in l_{\Psi}$, there is $\lambda > 0$ such that

$$\sum_{i=1}^{\infty} \Psi(\lambda y(i)) < \infty.$$

Moreover, since $x_n - x_0 \in h_{\Phi}^0$, we have $\langle x_n - x_0, s \rangle = 0$ for each $n \in \mathcal{N}$. Hence

$$|\langle x_n - x_0, f \rangle| = |\langle x_n - x_0, y \rangle| = \left| \sum_{i=i_n+1}^{i_{n+1}} x_0(i)y(i) \right|$$

$$\leq \frac{1}{\lambda} \left(\sum_{i=i_n+1}^{i_{n+1}} \Phi(x_0(i)) + \Psi(\lambda y(i)) \right) \to 0$$

as $n \to \infty$. So, $z_n \to z_0$ weakly. Hence, by property **H** of l_{Φ}^0 , $||z_n - z_0||_0 \to 0$. On the other hand,

$$||z_n - z_0||_0 = \frac{1}{||x_0||_0} \left\| \sum_{i=i_n+1}^{i_{n+1}} x_0(i)e_i \right\|_0 \ge \frac{1}{2 ||x_0||_0} > 0$$

for every $n \in \mathcal{N}$. This contradiction shows that $\Phi \in \delta_2$ is necessary for property **H** of l_{Φ}^0 if Φ vanishes only at zero.

Assume now that Φ vanishes outside zero and define

$$a = a(\Phi) = \sup \{u \ge 0 : \Phi(u) = 0\}.$$

Then a > 0. Let x = (a, a, ...). We have $1 + I_{\Phi}(x) = 1$ and

$$\frac{1}{k}\left(1 + I_{\Phi}(kx)\right) > 1$$

for each $k > 0, k \neq 1$. Therefore $||x||_0 = 1$. Define

$$x_n = (\underbrace{a, \dots, a}_{n}, 0, a, a, \dots)$$

for every $n \in \mathcal{N}$. Then we can prove in the same way as for x that $||x_n||_0 = 1$ for each $n \in \mathcal{N}$. Since $x - x_n = ae_{n+1} \in h_{\Phi}$, $x^*(x - x_n) = 0$ for each singular functional x^* over l_{Φ} . Take now any $y = (y_1, y_2, ...) \in l_{\Psi}^0$. There is $\lambda > 0$ such that $I_{\Psi}(\lambda y) < \infty$, whence it follows that $\Psi(\lambda y_n) \to 0$ as $n \to \infty$. Therefore, since Ψ vanishes only at zero, we get $y_n \to 0$ as $n \to \infty$ and consequently

$$\langle x - x_n, y \rangle = ay_{n+1} \to 0 \text{ as } n \to \infty.$$

This shows that $x - x_n \to 0$ weakly. However

$$||x - x_n|| = a ||e_{n+1}|| = a ||e_1|| > 0$$

for each $n \in \mathcal{N}$. So, l_{Φ}^{0} fails to have property **H** if Φ vanishes outside zero, which finishes the proof of the theorem.

Theorem 2.13. The space l_{Φ}^{0} is CLUR if and only if $\Phi \in \delta_{2}$ and $\Psi \in \delta_{2}$.

Proof. Sufficiency. If $\Phi \in \delta_2$ and $\Psi \in \delta_2$, then l_{Φ}^0 is reflexive. Consequently, by the previous theorem and Theorem 6 in [10], both l_{Φ}^0 and l_{Ψ} have property **H**. In virtue of Theorem 2.1, we obtain that l_{Φ}^0 is **CLUR**.

Necessity. Since property CLUR implies property H, in view of Theorem 2.12, we get $\Phi \in \delta_2$. To prove the necessity of $\Psi \in \delta_2$ assume first that Ψ vanishes only at zero. If $\Psi \notin \delta_2$, there is a sequence (u_n) of positive numbers such that $u_n \downarrow 0$ and

$$\Psi\left(\left(1+\frac{1}{n}\right)u_n\right) \ge 2^n\Psi(u_n) \text{ and } \Psi(u_n) \le \frac{1}{2^{n-1}}$$
(2.1)

for each $n \in \mathcal{N}$. Take positive integers N_m such that

$$\frac{1}{2^m} < N_m \Psi(u_m) \le \frac{1}{2^{m-1}} \tag{2.2}$$

for m = 1, 2, ... (we can pass to a subsequence of (u_n) if necessary). Define $k_i = \sum_{m=1}^{i} N_m$ (i = 1, 2, ...),

$$b(\Psi) = \sup \{ u \ge 0 : \Psi(u) \le 1 \},$$

and

$$z_0 = (b(\Psi), 0, 0, \dots),$$

$$z_1 = (\overbrace{u_1, u_1, \dots, u_1}^{N_1}, 0, 0, \dots),$$

$$z_2 = (\overbrace{0, 0, \dots, 0}^{N_1}, \overbrace{u_2, u_2, \dots, u_2}^{N_2}, 0, 0, \dots),$$

$$z_m = (\overbrace{0, 0, \dots, 0}^{k_{m-1}}, \overbrace{u_m, u_m, \dots, u_m}^{N_m}, 0, 0, \dots),$$

Then, denoting by $\|\cdot\|$ the Luxemburg norm in l_{Ψ} , we easily get from inequalities (2.1) and (2.2) that

(i)
$$\frac{m}{m+1} \le ||z_m|| \le 1, \ m = 1, 2, \dots$$

Moreover,

(ii) there is a sequence (x_m) in $S(l_{\Phi}^0)$ such that $x_m(i) = 0$ for $1 \le i \le k_{m-1}$ and $i \ge k_m + 1$, and x_m generate support functionals at z_m , i.e.

$$||z_m|| = \langle z_m, x_m \rangle = u_m \sum_{i=k_{m-1}+1}^{k_m} x_m(i).$$

This follows by the Hahn-Banach theorem and the fact that $(l_{\Psi})^* = l_{\Phi}^0$. Moreover for

$$x_0 = \left(\frac{1}{b(\Psi)}, 0, 0, \dots\right)$$

there holds $||x_0||_0 = 1$. Put

$$g_m = \left(1 - \frac{1}{2^{m-1}}\right) (\overbrace{b(\Psi), 0, 0, \dots 0}^{k_m}, z_m(k_{m-1} + 1), z_m(k_{m-1} + 2), \dots, z_m(k_m), 0, 0, \dots)$$

for $m=1,2,\dots$. Then

$$I_{\Psi}(g_m) \le \left(1 - \frac{1}{2^{m-1}}\right) \left(1 + \frac{1}{2^{m-1}}\right) = 1 - \frac{1}{4^{m-1}} \le 1,$$

whence $||g_m|| \leq 1$. Moreover, in virtue of (ii), we have

$$||x_m + x_0||_0 \ge \langle x_m + x_0, g_m \rangle = \sum_{i=1}^{\infty} (x_m(i) + x_0(i))g_m(i)$$

$$= \left(1 - \frac{1}{2^{m-1}}\right) \left(1 + u_m \sum_{i=k_{m-1}+1}^{k_m} x_m(i)\right) \to 2$$

as $m \to \infty$. But, by the orthogonality of x_m and x_n for $n \neq m$, there holds

$$||x_m - x_n||_0 \ge ||x_n||_0 = 1 \text{ for } n \ne m,$$

which means that l_{Φ}^0 is not CLUR. So, in the case when Ψ vanishes only at zero, $\Psi \in \delta_2$ is necessary for property CLUR of l_{Φ}^0 .

Assume now that

$$c(\Psi) = \sup\left\{u \geq 0 : \Psi(u) = 0\right\} > 0$$

and define

$$u_n = \left(1 - \frac{1}{n^2}\right) c(\Psi)$$
 and $\lambda_n = \frac{n}{n-1}$

for $n = 2, 3, \dots$ Then

$$\lambda_n u_n = \frac{n^2 - 1}{n^2 - n} c(\Psi) > c(\Psi)$$

for each $n \in \mathcal{N} \setminus \{1\}$, but $\lambda_n u_n \to c(\Psi)$ as $n \to \infty$. Let $(N_n)_{n=1}^{\infty}$ be a sequence of natural numbers such that

$$N_{n-1}\Psi(\lambda_n u_n) \ge 1$$

for $n = 2, 3, \dots$ Define

$$z_1 = \sum_{i=2}^{N_1+1} u_2 e_i$$

and

$$z_n = \sum_{i=k_{n-1}+1}^{k_n} u_{n+1} e_i,$$

where $k_n = 1 + \sum_{i=1}^{n-1} N_i$ for n = 2, 3, ... Define also $z_0 = (b(\Psi), 0, 0, ...)$, where $b(\Psi)$ is the number defined above. Then $||z_0|| = 1$ and

$$I_{\Psi}(z_n) = 0, \quad I_{\Psi}(\lambda_n z_n) \ge 1$$

for each $n \in \mathcal{N}$. Hence

$$\lambda_n^{-1} \le ||z_n|| \le 1$$

for each $n \in \mathcal{N}$. Since $z_n \in h_{\Psi}$ for every $n \in \mathcal{N} \cup \{0\}$, there is a sequence $(x_n)_{n=0}^{\infty}$ with $\sup x_n = \sup z_n$ such that

$$||x_n||_0 = 1$$
 and $\langle z_n, x_n \rangle = ||z_n||$

for each $n \in \mathcal{N} \cup \{0\}$. Define $g_n = z_n + z_0$ for each $n \in \mathcal{N}$. Then

$$I_{\Psi}(g_n) = I_{\Psi}(z_n) + I_{\Psi}(z_0) = I_{\Psi}(z_0) \le 1,$$

whence $||g_n|| \le 1$. Moreover, $||g_n|| \ge ||z_0|| = 1$ and consequently $||g_n|| = 1$ for each $n \in \mathcal{N}$. Hence

$$2 \ge ||x_n + x_0||_0 \ge \langle x_n + x_0, g_n \rangle = ||x_n||_0 + ||x_0||_0 \to 2,$$

whence

$$\lim_{n \to \infty} ||x_n + x_0||_0 = 2.$$

Since

$$||x_n - x_0||_0 \ge ||x_n||_0 = 1$$

for every $n \neq m$, the sequence (x_n) contains no convergent sequence, i.e. l_{Φ}^0 is not **CLUR**. This finishes the proof of the theorem.

Denote by p the right derivative of Φ and define

$$\pi_{\Phi}(1) = \sup\{t > 0 : \Psi(p(t)) < 1\}.$$

It is known that if Φ vanishes only at zero and $\Phi \notin \delta_2$, then l_{Φ}^0 does not contain an order isometric copy of l_{∞} since it is then strictly monotone (see [11]) although it contains

an order isomorphic (even an order almost isometric) copy of l_{∞} because it is not order continuous by $\Phi \notin \delta_2$.

Note that $\Phi \notin \delta_2$ whenever Φ vanishes outside zero. We will show in the following lemma that in this special case of $\Phi \notin \delta_2$, l_{Φ}^0 contains an order isometric copy of l_{∞} .

Lemma 2.14. If Φ is an Orlicz function which vanishes outside zero, then l_{Φ}^{0} contains an order isometric copy of l_{∞} .

Proof. To build an isometry P of l_{∞} onto a closed subspace of l_{Φ}^{0} preserving the order it is enough to find a sequence $(x_{n}) \subset S(l_{\Phi}^{0})$ with pairwise disjoint supports and such that $\|\sum_{n=1}^{\infty} x_{n}\| = 1$. Then the operator $P: l_{\infty} \to l_{\Phi}^{0}$ defined by

$$Py = \sum_{n=1}^{\infty} y_n x_n$$

for each $y = (y_n) \in l_{\infty}$ is the desired isometry.

Assume that

$$a = a(\Phi) = \sup \{u \ge 0 : \Phi(u) = 0\} > 0.$$

Divide the set \mathcal{N} of natural numbers into a sequence $(\mathcal{N}_n)_{n=1}^{\infty}$ of pairwise disjoint and infinite sets. Define $x_n = (x_n(i))_{i=1}^{\infty}$, where

$$x_n(i) = \begin{cases} a & \text{if } i \in \mathcal{N}_n \\ 0 & \text{otherwise} \end{cases}$$

for any $n \in \mathcal{N}$. Then $1 + I_{\Phi}(x_n) = 1$ for each $n \in \mathcal{N}$. Moreover,

$$\frac{1}{k}(1 + I_{\Phi}(kx_n)) = \frac{1}{k} > 1$$

for each $k \in (0,1)$ and

$$\frac{1}{k}\left(1 + I_{\Phi}(kx_n)\right) = \infty$$

for each k > 1, because the sets \mathcal{N}_n are infinite and $\Phi(ka) > 0$ for k > 1. This shows that

$$||x_n||_0 = \inf_{k>0} \frac{1}{k} (1 + I_{\Phi}(kx_n)) = 1 + I_{\Phi}(x_n) = 1$$

for each $n \in \mathcal{N}$. In the same way it can be proved that $\|\sum_{n=1}^{\infty} x_n\| = 1$. This finishes the proof.

Corollary 2.15. Let Φ be a finitely Orlicz function satisfying the condition (∞_1) . Then l_{Φ}^0 is smooth if and only if

- (i) $\Phi \in \delta_2$,
- (ii) Φ is smooth on the interval $[0, \pi_{\Phi}(1/2))$,
- (iii) $\Psi(p^{-1}(\pi_{\Phi}(1/2))) = \frac{1}{2}$.

Proof. In the class of Orlicz functions which vanish only at zero, the proof is given in [2]. However, by Lemma 2.14, the fact that l_{∞} is not a smooth space and by the Hahn-Banach theorem, we easily get that l_{Φ}^0 is not smooth if Φ vanishes outside zero.

Theorem 2.16. The space l_{Φ}^{0} is **R** if and only if the following conditions are satisfied:

- (i) Φ vanishes only at zero,
- (ii) there is u > 0 such that $\Psi(p(u)) \ge \frac{1}{2}$,
- (iii) Φ is strictly convex on the interval $[0, \pi_{\Phi}(1)]$.

Proof. Sufficiency. First we prove that if $z \in l_{\Phi}^0 \setminus \{0\}$ and z has at least two coordinates different from zero, then $K(z) \neq \emptyset$. Assume without loss of generality that z(1) > 0 and z(2) > 0. There is k > 0 such that

$$\Psi\left(p(kz(1))\right) \geq \frac{1}{2} \text{ and } \Psi\left(p(kz(2))\right) \geq \frac{1}{2},$$

whence $I_{\Psi}\left(p\circ k\left|z\right|\right)\geq1.$ This yields that

$$k^*(z) := \inf \{k > 0 : I_{\Psi} (p \circ k |z|) \ge 1\} < \infty$$

and consequently $K(z) \neq \emptyset$.

Let $x, y \in S(l_{\Phi}^0)$ and $x \neq y$. It is obvious by the definition of the number $\pi_{\Phi}(1)$ that if $k \in K(x) \neq \emptyset$ and $l \in K(y) \neq \emptyset$, then

$$k|x(i)| \in [0, \pi_{\Phi}(1)]$$
 and $l|y(i)| \in [0, \pi_{\Phi}(1)]$

for all $i \in \mathcal{N}$. Then we can repeat the proof of the sufficiency of Theorem 2.9 from [1] to obtain

$$\left\| \frac{1}{2} \left(x + y \right) \right\|_{0} < 1.$$

Consider now the case $K(x) = \emptyset$ or $K(y) = \emptyset$. Then

$$\lim_{u \to \infty} (\Phi(u)/u) = A < \infty.$$

Assume first that $K(x) = K(y) = \emptyset$. Then it must be

$$\operatorname{supp} x = \operatorname{supp} y = \{i\}.$$

Really, it is obvious by the above considerations that if μ is the counting measure in $2^{\mathcal{N}}$,

$$\mu(\operatorname{supp} x) = \mu(\operatorname{supp} y) = 1.$$

Assume for the contrary that supp $x=\{i\}$ and supp $y=\{j\}$, where $i\neq j$. Then $\mathrm{supp}(x+y)=\{i,j\}$ and we get $K(x+y)\neq\emptyset$. The assumption $K(x)=K(y)=\emptyset$ yields

$$||x||_0 = A|x(i)|$$
 and $||y||_0 = A|y(j)|$.

Assume first additionally that the set K(x + y) is bounded. Then assuming for the contrary that $||x + y||_0 = 2$, we get

$$2 = ||x + y||_0 < A(|x(i)| + |y(j)|) = ||x||_0 + ||y||_0 = 2,$$

a contradiction. So $||x+y||_0 < 2$, which is the desired inequality.

Assume now that K(x + y) is unbounded. Then

$$||x + y||_0 = \lim_{k \to \infty} \frac{1}{k} I_{\Phi} (k(x + y)),$$

whence

$$\left\| \frac{x+y}{2} \right\|_{0} = \lim_{k \to \infty} \frac{1}{2k} I_{\Phi} \left(2k \frac{x+y}{2} \right) = \lim_{k \to \infty} \frac{1}{k} I_{\Phi} \left(k \frac{x+y}{2} \right).$$

Denote x + y = z. By unboundedness of K(x + y) there is an increasing sequence (l_n) in K(x + y) such that $l_n \nearrow \infty$ as $n \to \infty$. Then

$$||z||_{0} \leq \frac{k+l_{n}}{2kl_{n}} \left(1 + I_{\Phi} \left(\frac{2kl_{n}}{k+l_{n}}z\right)\right)$$

$$= \frac{k+l_{n}}{2kl_{n}} \left(1 + I_{\Phi} \left(\frac{l_{n}}{k+l_{n}}kz + \frac{k}{k+l_{n}}l_{n}z\right)\right)$$

$$\leq \frac{k+l_{n}}{2kl_{n}} \left(1 + \frac{l_{n}}{k+l_{n}}I_{\Phi}(kz) + \frac{k}{k+l_{n}}I_{\Phi}(l_{n}z)\right) = ||z||_{0}$$

for any $n \in \mathcal{N}$ and $k \in K(z)$. This shows that

$$||z||_{0} = \frac{k+l_{n}}{2kl_{n}} \left(1 + I_{\Phi}\left(\frac{2kl_{n}}{k+l_{n}}z\right)\right)$$
 (2.3)

for each $n \in \mathcal{N}$ and $k \in K(z)$. Consequently, by the left continuity of I_{Φ} and the fact that $\frac{2kl_n}{k+l_n} \nearrow 2k$ as $n \to \infty$, we get

$$||z||_0 = \frac{1}{2k} (1 + I_{\Phi}(2kz)).$$

Therefore, $2k \in K(z)$. Hence, putting l = 2k and repeating the same argumentation as in the proof of (2.3), we get

$$||z||_0 = \frac{k+l}{2kl} \left(1 + I_{\Phi} \left(\frac{2kl}{k+l} z \right) \right).$$

Since

$$\frac{2kl}{k+l} z(m) = \frac{k}{k+l} l z(m) + \frac{l}{k+l} k z(m),$$

we conclude that $\frac{2kl}{k+l}z(m)$, kz(m) and lz(m) belong to the same interval of affinity of Φ for m=i and m=j. But $k\neq l$, whence $kz(i)\neq lz(i)$ and kz(i), $lz(i)\in [0,\pi_{\Phi}(1)]$, which contradicts the assumption that Φ is strictly convex on the interval $[0,\pi_{\Phi}(1)]$. This contradiction shows that K(x+y) is bounded whenever $K(x)=\emptyset$, $K(y)=\emptyset$, supp $x=\{i\}$, supp $y=\{j\}$ and $i\neq j$. Therefore $\left\|\frac{x+y}{2}\right\|_0<1$, as it was already shown.

Consider now the case when $K(x) = \emptyset$ and $K(y) \neq \emptyset$. Denote $x_0 = \frac{1}{2}(x+y)$ and assume that $0 < k_0 \in K(y)$. If $||x_0||_0 < 1$, then the proof of the sufficiency is finished. So consider the case $||x_0||_0 = 1$. Then for all $n \in \mathcal{N}$ we get

$$2 = \|2x_0\|_0 \le \frac{n + k_0}{nk_0} \left(1 + I_{\Phi} \left(\frac{nk_0}{n + k_0} 2x_0 \right) \right)$$
$$= \frac{n + k_0}{nk_0} \left(1 + I_{\Phi} \left(\frac{n}{n + k_0} k_0 y + \frac{k_0}{n + k_0} nx \right) \right)$$
$$\le \frac{1}{k_0} \left(1 + I_{\Phi} \left(k_0 y \right) \right) + \frac{1}{n} \left(1 + I_{\Phi} \left(nx \right) \right) \xrightarrow[n \to \infty]{} 2,$$

whence we get as above that $2k_0 \in K(x_0)$. If for some $\alpha \in (0,1)$ there holds

$$\|\alpha x + (1 - \alpha)y\|_0 < 1,$$

then, by the convexity of the norm $\|\cdot\|_0$, we get $\|x_0\|_0 < 1$, a contradiction. So assume that

$$\|\alpha x + (1 - \alpha)y\|_0 = 1 \tag{2.4}$$

for all $\alpha \in (0,1)$. This will also give a contradiction, finishing the proof of the sufficiency. Indeed, defining

$$x_n = \frac{x_{n-1} + y}{2}$$

for n=1,2,..., we will get in the same way as for x_0 that $2^{n+1}k_0 \in K(x_n)$. In order to prove that $K(\alpha x + (1-\alpha)y) \neq \emptyset$ for each $\alpha \in (0,1)$ it is enough to prove that if $w,v \in S(l_{\Phi}^0)$ are such that $K(w) \neq \emptyset$ and $K(v) \neq \emptyset$, then $K(\alpha w + (1-\alpha)v) \neq \emptyset$. Let $0 < k \in K(w)$ and $0 < l \in K(v)$. If we can prove that for

$$c = \frac{\alpha k (1 - \alpha)l}{\alpha k + (1 - \alpha)l}$$

there holds

$$||w + v||_0 = \frac{1}{c} (1 + I_{\Phi}(c(w + v)))$$

whenever $||w+v||_0 = ||w||_0 + ||v||_0$, then, by the obvious equalities

$$\|\alpha w\|_{0} = \frac{\alpha}{k} \left(1 + I_{\Phi} \left(\frac{k}{\alpha} (\alpha w) \right) \right)$$

and

$$\|(1-\alpha)v\|_0 = \frac{1-\alpha}{l} \left(1 + I_{\Phi} \left(\frac{l}{1-\alpha}(1-\alpha)v\right)\right),\,$$

we get

$$\frac{(1-\alpha)k+\alpha l}{kl} \in K\left(\alpha w + (1-\alpha)v\right).$$

But we easily get

$$||w||_{0} + ||v||_{0} = ||w + v||_{0} \le \frac{k+l}{kl} \left(1 + I_{\Phi} \left(\frac{kl}{k+l} (w + v) \right) \right)$$

$$= \frac{k+l}{kl} \left(1 + I_{\Phi} \left(\frac{l}{k+l} kw + \frac{k}{k+l} lv \right) \right)$$

$$\le \frac{k+l}{kl} \left(1 + \frac{l}{k+l} I_{\Phi} (kw) + \frac{k}{k+l} I_{\Phi} (lv) \right)$$

$$= \frac{k+l}{kl} + \frac{1}{k} I_{\Phi} (kw) + \frac{1}{l} I_{\Phi} (lv)$$

$$= \frac{1}{k} \left(1 + I_{\Phi} (kw) \right) + \frac{1}{l} \left(1 + I_{\Phi} (lv) \right) = ||w||_{0} + ||v||_{0},$$

whence

$$||w + v||_0 = \frac{k+l}{kl} \left(1 + I_{\Phi} \left(\frac{kl}{k+l} (w + v) \right) \right).$$

Note that $x_0 = \frac{1}{2}(w+v)$, where $w = \frac{3}{4}x + \frac{1}{4}y$ and $v = \frac{3}{4}y + \frac{1}{4}x$. Since $w, v \in S(l_{\Phi}^0)$ and $K(w) \neq \emptyset$, $K(v) \neq \emptyset$, we obtain by strict convexity of Φ on the interval $[0, \pi_{\Phi}(1)]$ that $||x_0||_0 < 1$, which contradicts the assumption (2.4). This ends the proof of the sufficiency.

Necessity. The necessity of the property that Φ vanishes only at zero follows by Lemma 2.14. Let us prove the necessity of the condition $\Psi(p(u)) \geq \frac{1}{2}$ for some u > 0. First we will show that l_{Φ}^0 is not rotund if there is $x \in S(l_{\Phi}^0)$ such that x(1) > 0, x(2) > 0 and $K(x) = \emptyset$. Note that the last assumption implies that

$$\lim_{u \to \infty} \frac{\Phi(u)}{u} = A < \infty.$$

Take $\epsilon \in (0, \min\{x(1), x(2)\})$. Define

$$x_1 = (x(1) + \epsilon, x(2) - \epsilon, x(3), x(4), ...)$$

and

$$x_2 = (x(1) - \epsilon, x(2) + \epsilon, x(3), x(4), ...)$$

Then

$$||x_1||_0 \le A\left(x(1) + \epsilon + x(2) - \epsilon + \sum_{i=3}^{\infty} |x(i)|\right) = A\sum_{i=1}^{\infty} |x(i)| = ||x||_0 = 1$$

and similarly $||x_2||_0 \leq 1$. Hence

$$1 = \|x\|_{0} = \left\| \frac{x_{1} + x_{2}}{2} \right\|_{0} \le \frac{1}{2} \|x_{1}\|_{0} + \frac{1}{2} \|x_{2}\|_{0} \le 1,$$

and consequently $\frac{x_1+x_2}{2}$, x_1 , $x_2 \in S(l_{\Phi}^0)$. But $x_1 \neq x_2$, so l_{Φ}^0 is not rotund. Therefore, to show the necessity of $\Psi(p(u)) \geq \frac{1}{2}$ for some u > 0 it is enough to show that if $\Psi(p(u)) < \frac{1}{2}$

for any u > 0, then there is $x \in S(l_{\Phi}^0)$ with x(1) > 0, x(2) > 0 and $K(x) = \emptyset$. Let a > 0 be such that

$$x = (a, a, 0, 0, ...) \in S(l_{\Phi}^{0}).$$

For any k>0 there holds $I_{\Psi}(p\circ kx)<1$, which shows that $k^*(x)=k^{**}(x)=\infty$, where

$$k^{**}(x) = \sup \{k > 0 : I_{\Psi}(p \circ kx) \le 1\}$$

and

$$k^*(x) = \inf \{k > 0 : I_{\Psi}(p \circ kx) \ge 1\}.$$

Therefore $K(x) = \emptyset$ (see [1], pp. 18-19).

It remains to prove the necessity of strict convexity of Φ on the interval $[0, \pi_{\Phi}(1)]$. Assume that Φ is affine on some interval $[a - \epsilon, a + \epsilon] \subset [0, \pi_{\Phi}(1)]$, where $\epsilon > 0$. Then $\Psi(p(a)) < 1$. Suppose first that $\Psi(p(a)) > 0$. Let $m \in \mathcal{N}$ be the biggest natural number such that $m\Psi(p(a)) < 1$ and define

$$b = \sup \{u > 0 : m\Psi(p(a)) + \Psi(p(u)) < 1\}.$$

Note that 0 < b < a by the definitions of b and m. If $\Phi(u)/u \to 0$ as $u \to 0$, then p(0) = 0, and the inequality b > 0 follows by the right continuity of p. If $\Phi(u)/u \to A < \infty$ as $u \to 0$, then p(0) = A and Ψ vanishes on the interval [0, A], whence b > 0 again. Define

$$k = 1 + m\Phi(a) + \Phi(b)$$

and

$$x = k^{-1}(\underbrace{a, ..., a}_{m \text{ times}}, b, 0, 0, ...).$$

Then $k \in K(x)$ and so

$$||x||_0 = \frac{1}{k} (1 + I_{\Phi}(kx)) = \frac{1 + m\Phi(a) + \Phi(b)}{1 + m\Phi(a) + \Phi(b)} = 1.$$

Since $\mu(\text{supp }x) = 2$ and kx(i) = a is a midpoint of the interval of the affinity of Φ for i = 1, 2, ..., m, x is not an extreme point. We can prove this in an analogous way to the proof of Theorem 2.8, pp. 54-55 in [1]. The only changing that is needed is taking

$$b(\Psi) = \sup \left\{ u > 0 : \Psi(u) \le 1 \right\}$$

instead of $\Psi^{-1}(1)$, since we did not exclude the situation when Ψ vanishes outside zero or attains infinite values.

Assume now that $\Psi(p(a)) = 0$. Then define

$$c = \sup \left\{ u > 0 : \Psi(p(a)) + 2\Psi(p(u)) \le 1 \right\}.$$

By the previous part of the necessity, we may assume that $\Psi(p(u)) \geq \frac{1}{2}$ for some u > 0, whence it follows that $0 < c < \infty$. Define

$$k = 1 + \Phi(a) + 2\Phi(c)$$

and

$$x = k^{-1}(a, c, c, 0, 0, ...).$$

Then it follows by the definition of c that $k \in K(x)$ and so

$$||x||_0 = \frac{1}{k} (1 + \Phi(a) + 2\Phi(c)) = 1.$$

Repeating the same argumentation as above, we conclude that x is not an extreme point, i.e. l_{Φ}^{0} is not rotund, which finishes the proof of the theorem.

Remark 2.17. Note that Theorem 2.16 can be formulated equivalently that l_{Φ}^{0} is rotund if and only if Φ is strictly convex on the interval $[0, \pi_{\Phi}(1)]$ and $K(x) \neq \emptyset$ for any $x \in S(l_{\Phi}^{0})$ with $\mu(\text{supp } x) \geq 2$.

Corollary 2.18. Let Φ be an arbitrary Orlicz function. Then l_{Φ}^0 is LUR if and only if $\Phi \in \delta_2$, $\Psi \in \delta_2$, Φ is strictly convex on the interval $[0, \pi_{\Phi}(1)]$ and $\Psi(p(u)) \geq \frac{1}{2}$ for some u > 0.

Proof. Since a Banach space X is **LUR** if and only if it is **CLUR** and **R** (see [15]), the corollary follows immediately from Theorems 2.12 and 2.13.

Acknowledgements. The Authors are very indebted the Referee for his valuable remarks. Taking them into account improved the paper substantially.

References

- [1] S. Chen: Geometry of Orlicz Spaces, Dissertation Math. 356 (1996) 1–204.
- [2] S. Chen, H. Hudzik, M. Wisła: Smooth points in Orlicz sequence spaces and geometry of the dual and the bidual of Orlicz spaces, Mathematica Japonica 44.2 (1996) 367–376.
- [3] S. Chen, Wang Tingfu: H-property of Orlicz spaces, Chinese Ann. Math. 8A (1987) 61–67 (in Chinese).
- [4] J. A. Clarkson: Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936) 396–414.
- [5] J. Diestel: Geometry of Banach Spaces Selected Topics, Lecture Note in Math. 485, Springer-Verlag, 1975.
- [6] R. Grząślewicz, H. Hudzik: Smooth points of Orlicz spaces equipped with the Luxemburg norm, Math. Nachr. 155 (1992) 31–45.
- [7] H. Hudzik: Orlicz spaces without strongly extreme points and without H-points, Canadian Math. Bull. 36(2) (1993) 173–177.
- [8] H. Hudzik, W. Kurc: Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices, J. Approximation Theory 95 (1998) 353–368.
- [9] H. Hudzik, M. Mastyło: Strongly extreme points in Köthe-Bochner spaces, Rocky Mtn. J. Math. 23 (1993) 899–909.
- [10] H. Hudzik, D. Pallaschke: On some convexity properties of Orlicz sequence spaces equipped with the Luxemburg norm, Math. Nachr. 186 (1997) 167–185.
- [11] A. Kamińska: Strict convexity in Musielak-Orlicz sequence spaces with Orlicz norm, J. Funct. Anal. 50 (1983) 285–305.

- [12] M. A. Krasnoselskii, Ya. B. Rutickii: Convex Functions and Orlicz Spaces, Nordhoff, Groningen, 1961 (translation).
- [13] W. A. J. Luxemburg: Banach Function Spaces, Thesis, Delft, 1955.
- [14] J. Musielak: Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 (1983) 1–222.
- [15] B. B. Panda, O. P. Kapoor: Generalization of local uniform convexity of the norm, J. Math. Anal. Appl. 52 (1975) 300–308.
- [16] R. Płuciennik, T. Wang, Y. Zhang: H-points and denting points in Orlicz spaces, Comment. Math. 33 (1993) 135–151.
- [17] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces, Marcel Dekker Inc., New York-Basel-Hong Kong, 1991.
- [18] C. Wu, T. Wang, S. Chen, Y. Wang: Theory of the Geometry of Orlicz Spaces (in Chinese), Harbin, 1986.
- [19] C. Wu, S. Chen, Y. Wang: H-property of sequence Orlicz spaces, J. Harbin Inst. Tech. (Math. Issue) (1985) 6–11 (in Chinese).