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It is proved that for any reflexive Banach space X, both X and X* are CLUR if and only if both X and
X* have property H. Criteria for rotundity, local uniform rotundity, compact local uniform rotundity and
property H in Orlicz sequence spaces equipped with the Orlicz norm are given. Criteria for property H,
rotundity and LUR were already known in the literature only for finitely valued Orlicz functions which
vanish only at zero and are N-functions (i.e. they satisfy conditions (0;) and (co0p). All our criteria
except Corollary 2.15 are given for arbitrary Orlicz functions. Criteria for smoothness of I in Corollary
2.15 are given for any finitely valued Orlicz function satisfying condition (0o1), extending the respective
result of [2] proved only for Orlicz functions vanishing only at zero.
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1. Introduction

In the whole paper N’ and R stand for the sets of natural numbers and of real numbers,
respectively. Let (X, ||-||) be a real Banach space and B(X) (S(X)) be the closed unit
ball (the unit sphere) of X. By X* denote the dual space of X. Clarkson [4] introduced
the concept of uniform rotundity.

A Banach space X is said to be uniformly rotund (UR for short) if for every sequences (z,)
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and (y,) in S(X) such that lim,_, ||z, + ya|| = 2, there holds lim,,_, |2, — ¥u|| = 0.

A Banach space X is said to be rotund (R for short) if for any z and y in S(X) with
|z + y|| = 2, we have z = y.

A Banach space X is called locally uniformly rotund (LUR for short) if for each z €
S(X) and each sequence (z,) in S(X) such that lim, , ||z, + || = 2, there holds
limy, 00 ||z — z|| = 0.

A Banach space X is said to be compactly locally uniformly rotund (CLUR for short) if
for each z € S(X) and each sequence (z,) in S(X) such that lim, . ||z, + z|| = 2, it
follows that the set {z, : n € N'} is relatively compact in norm topology.

If in a Banach space X a partial order “<” is defined and ||z|| < ||y|| whenever |z| < |y],
then X is said to be a Banach lattice. If X is a Banach lattice and ||z|| < ||y|| whenever
0 <z <wyandz #y, then X is said to be strictly monotone (see [8]).

It is clear that a Banach space X is LUR if and only if it is CLUR and R (see [15]).

A Banach space X is said to have property H if on the unit sphere every weakly convergent
sequence to a point on the sphere is convergent in norm.

For the definitions of these and many other geometric notions, some consequences and
some relationships between them, see [5].

A map ® : R — [0,00] is said to be an Orlicz function if it is even, convex, continuous
and vanishing at 0 and ®(u) — oo as u — oc.

We say that an Orlicz function ® is an N'-function if it satisfies the following condition:
lim ——= = oo. (001)

An N'-function ® is said to be an N-function if

. ®(u)
lim == = 0. ()

We define the Orlicz sequence space by the formula

lg = {x €l’: Iy(cr) = Z@(cx(z)) < oo for some ¢ > 0} ,

i=1

where [° stands for the space of all real sequences. We will consider ls equipped with the
Luzemburg norm
]| = inf{e >0: Ty (f) < 1}
€

or with the equivalent one

1
llll, = inf (1+Is(kz)),

called the Orlicz norm or the Amemiya norm.
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By hg we denote the subspace

he = {x €lp: Ip(cx) = i@(ox(z)) < oo for any ¢ > 0}

i=1
To simplify notations, we put ls = (lg, ||-]|) and I} = (ls, ||],)-

Orlicz spaces lp and I3 are Banach lattices under the partial order z < y iff z(4) < y(7)
for all i € V.

The set of all £’s at which the infimum in the definition of ||z||, for a fixed z € I3 is
attained, will be denoted by K (z). In particular, the set K(z) can be empty if the Orlicz
sequence space 13 is generated by an Orlicz function which does not satisfy condition

(c01).

For every Orlicz function ® the function ¥ : R — [0, 00] complementary to ® in the
sense of Young is defined by the formula

¥ (v) = sup {ufv| - @ (u)}

u>0

for every v € R. It is well known that ¥ is also an Orlicz function.

We say an Orlicz function ® satisfies the d9-condition (® € &9 for short) if there exist
constants k > 2 and ug > 0 such that 0 < ®(ug) < oo and

@ (2u) < kD (u)

whenever |u| < uy.

Let
f(z) = sup{c > 0: Ip(cx) < 0o}

for any z € lg. Obviously, he = {2 € lp : (z) = c0}.

We say an Orlicz function @ is strictly conver on |a, b] if

® (“‘2“’) < %((I)(u) +3()

whenever u,v € [a,b] and u # v. For more details on Orlicz functions and Orlicz spaces
we refer to [1], [12], [13], [14] and [17].

Recall that in the previous papers on rotundity and local uniform rotundity in Orlicz
sequence spaces 5 equipped with the Orlicz norm there was assumed that the function ®
generating the space [} is an N-function (see [1]). We will omit this assumptions here. To

do so it was necessary to use different techniques. We will also give criteria for properties
CLUR and H in 1.

2. Results

We begin with a general result.

Theorem 2.1. If X is a reflexive Banach space, then both X and X* are CLUR if and
only if both X and X* have property H.
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Proof. It is known that if X is CLUR, then X has property H. We only need to
prove that X is CLUR if both X and X* have property H. For every zy € S(X) and
every sequence (z,) in S(X) with lim,_, ||z, + 2o|| = 2, take (f,) C S(X*) such that
fo(Zn + x0) = || + 20|| for every n € M. Then

fn(20) = |20 + 2o|| — fr(7n)
for every n € N and

lim mffn(l‘o) 2 lim ”xn + -TOH — lim sup fn(xn)a
n—0oQ n—,oo n—oo
whence lim,, o fr(20) = limy, 00 fn(zs) = 1.

By the reflexivity of X, there is a subsequence (f,,) of (f,) and f, € X* such that f,,
tends to fy weakly. It is obvious that in virtue of lim,, o fn(2o) = 1 this yields fy(zo) = 1,
whence || fo|| = 1. By property H for X*, we get that f,, — fo in norm. Hence

Jo(xn,) = (fo — fn;)(@n,) + fa,(xn,) = 1 as i — oc.

Using now the reflexivity of X, we can find a subsequence (z;) of (z,,) and z° € X such
that z; tends to z° weakly. Obviously, fo(z°) = 1, whence ||z°|| = 1. By property H for
X, z; tends to z° strongly, i.e. the set {z, : n € N'} is relatively compact in S(X), which
implies that X is CLUR. O

In the following we will consider some geometric properties of Orlicz sequence spaces.

Theorem 2.2. Let x €13 (x #0). If K(z) =0, then

(1 + Is(kz)) .

lell, = lim
= lim -
o k—0(z)— k

Proof. Since the function f(k) = 1 (1+ Ig(kz)) is continuous on the interval (0, 6(z))
and limg_,o4 f(k) = oo, the formula

. 1
lelly =, Tim (1 + Lo(ka))

is true. O

Corollary 2.3. Ifz € 1§ and 0(z) < oo, then K(z) # 0.

Proof. Assume for the contrary that K(z) = (). Then, by Theorem 2.2 and the Fatou
Lemma, we have

N

1
i < Jim (14 To(ka)) = ], < oo,

whence K (z) # (. A contradiction. O
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Corollary 2.4. If x €13 and K(x) =0, then for any n € N we have

1 ~ .
0 = kll)I{.]o EI@ (klzzlx(’l;)ez>

n

Z z(i)e;

=1

and
Z x(7)e; kll)rglo Iq> (k Z )
1=n-+1 0 1=n—+1

Proof. We first claim that the limit lim, ? exists. This follows from the fact that
for 0 < u; < ug, we have

Qw) 1, (ﬂw) _u O(u) _ D(u)

Uy Uy U2

U2 Uy U2

Since K(z) = 0, lim, % is finite, and consequently

llly = lim lilq,(kx) = klglglo% (14, (ka(i)eZ) + Iy (k 'Z x(i)ei>)

i=1

1 ~ 1 S
lggo k.lcp (ka(z)eZ) +klg£10 E.I@ (ki_zlx(z)eZ)

=1 =n+
n o0

> > x| +| D z(ie
1=1 0 1=n—+1 0

for every n € N. On the other hand, by the triangle inequality, we have

n o
lzlly <D z@e| +| > z(i)e
=1 0 1=n-+1 0
for every n € N. So the corollary is proved. O

Corollary 2.5. If z €13 and K(z) =0, then

ey = 43 [«(i)

where A = lim,_, &)

Proof. Since we can assume without loss of generality that x(7) # 0 for any 7 € N, by
Corollary 2.4, we have

n

Z x(i)e;

=1

=i e (’“Z )

0
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n

1
= Jim 2o 00kl0) = Jim Y1) G = 43 e

=1

, we obtain
0

for every n € N. Since ||z||, = limy,_,o0

i:znjl x(i)e;

1l = AZ |z (7))

Corollary 2.6. Assume that ® is an Orlicz function with

lim (®(u)/u) = A < o0

U—00

and a > 0 is the number satisfying ®(a) = 1. If there exists b € (0,1) such that Au—b <
®(u) for all u > %, then K(x) =0 for some z € S(13).

Proof. Define y = (4,0,0,...). Then Is(y) = 1, whence ||y|]| = 1 and ||y||, < 2|ly|| = 2.
So, for = y there holds ||z, < 1. Assuming for the contrary that K(z) # 0, we
conclude that there is £ > 1 such that

On the other hand

a contradiction, which shows that K(z) = . O

Remark 2.7.

(i) If @ is an N'-function, then K(x) # () for any x € I3\{0}.

(ii) Let @ be an Orlicz function satisfying condition (0,). If z € (3\{0} and K (z) = 0,
then supp zx is a finite set.

Proof. The assertion (i) has been proved in [6]. To prove (ii) assume for the contrary
that supp « is infinite. Denote by p the counting measure. Then

1
,u{iEN:|x(i)|>—}—>oo as n — oo.
n
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By the assumption (0;), we conclude that both functions ¥ and p vanish only at zero.
Fix @ > 0 and denote b = p(a), where p is the right hand derivative of ® on R,. Let
m € N satisfy m¥(b) > 1. Next, let ny € N be such that

p&eNﬂﬂM>%}2m

for n > ng. Let kK = nga and

)

A=&eNﬂdM>i}.

Then k |z(i)| > a and consequently p (k |x(7)|) > b for any i € A. Therefore,
Ly(po ko)) > p(A)B(E) > m¥(b) > 1.
This yields
kr:=inf{k >0: Ig(poklz|) > 1} < o0,
whence K (z) # 0 (see [1]). O

Lemma 2.8. Let o € S(I3) be such that K(xq) is nonempty and bounded. If (z,) C
S(13) is coordinatewise convergent to g, then there exists ng € N such that K(z,) # 0
for all n > ngy and sup,,s, {kn} < 0o for any sequence (k) with k, € K(z,) (n € N). If
additionally ® € 0y, then there ezists a subsequence (zn,) of (zn) such that all elements
of (zn,) have equi-absolutely continuous norms, i.e. for any € > 0 there is i € N such

that
Z T, (7)€

1=t

0

forallk e N.

Proof. Suppose that K(z) is nonempty and bounded. First, we will prove that there
is n; € N such that K(z,) # 0 for n > n;. Otherwise, we may assume without loss of
generality that K(z,) =0 (n = 1,2,...). This implies that lim, ,(®(u)/u) = A < o0
because otherwise K () # () for any x € 13 (see [6]). Since K(xo) # 0 and it is bounded,
there is €y > 0 such that

||.T0||0 + 2¢p < hm Iq, ]C.T() AZ |.’E0

Next, there exists 4, € N such that

1
[[zollo + €0 < A Z |20(3)]

=1

Since z,, — o coordinatewise, there is no, € N such that

S lead)] > 3 laoi)] - 55
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for n > ny. Hence

1
1=zl = klggo ELD(kxn)

—AZ\xn \—AZ\:E” +AZ |2, (1)

i=t1+1

>A(i:|330(i) >+A2|xn |—A2|xo =LA S [aal0)

=1 1=11+1 1=11+1

00

€0 . €o

> ||370||0 + € — 5 +AZZZ+1 |$n(l)‘ >1+ 5
=i

for n > ny. This contradiction shows that there is n; € N such that K(z,) # 0 for
n > ny. Without loss of generality, we may assume that K(z,) # 0 for all n € N.
Therefore, there are k, > 1 such that

1
|7nllo = 7= (14 Lo (knzn)), 7= 0,1,2,....

We will prove that sup{k, : n = 0,1,2,...} < co. If not, we can assume that k, 1 oo.
Since

loly + 2€0 < Jim LI, ko) AZm

there exists i € AN such that

12
[zolly + €0 < AZ |0 (2)]

i=1

Hence
1
1= ”xn”o = = (1 + I (knzn))

_ kin (1 +Z<I>(knxn(z'))> B /~ci (1 +Z‘I’ (knzn (@) + Y q’(k"x"(i))>

=1 i=1 i=t2+1

> T (1 +;¢(kn$n(i))> = A |zo(i)] > 1+ €,

=1

a contradiction which shows that sup{k, : n = 0,1,2,...} < co whenever K(z,) # 0 for
all n € N. Taking ng large enough and using the fact that K(z,) # 0 for all n > ny, we
get the first part of the lemma.

Now, suppose that ® € d,. Passing to a subsequence if necessary, we may assume without

loss of generality that there is k£ € [1, 00) such that

lim &, = k.

n—oo
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Now, we will prove that the elements of (x,,) have equi-absolutely continuous norms. Since
® € §y, we only need to prove that for every € > 0 there is 3. € N such that

& (an(z)ez> <e€

for all n € M. Fix € > 0. Then there is i3 € N such that

13
Z xo(i)e;
i=1 0

Since z,, — x coordinatewise, there is n3 € N such that

for n > n3. Hence

1= k—ln (1 + I (knzn)) = % (1 + Iy (i knxn(z’)ei> + Iy ( i kn:cn(i)ei>)

i=1 i=ig+1

1 > .
k_ (1 + Ip (ZE 1 knxn (1) )) + Ip (i:Ei3+1 xn(z)ei>
1 i3 . € oo .
= k (1 e (izl kxO(’)ez)) 2 e (z‘_i3+1xn(1)ei)

Zxo — = +Iq, ( Z xn(i)ei> >1—e+ 1 ( Z xn(i)ei>

i=ig+1 i=ig+1
for n > n3. So we have

€
>1-—.
2

v

Iy ( Z xn(i)eZ) <e€

i=ig+1
for n > ng3. This finishes the proof of the lemma. O
Theorem 2.9. If ® € &y, then for each sequence (z,,) in S(I}) and zy € S(I3) such that
2n(7) = xo(7) as n — oo fori=1,2,..., we have that x, — xo in norm.
Proof. Note that & € 5 yields that ® vanishes only at zero. In order to prove the

theorem, we will consider two cases.

Case I. K(z9) = 0 or K(zo) is nonempty and unbounded. Assume first that there is a
subsequence (z,) of (z,) such that K(z,) = 0 for all n € N. Then, by Corollary 2.5,

llznlly = A D" |2a(7)| for each n € N and ||zo]|, = A |zo(7)|. Since I; has the Schur
i=1 i=1

property, We_get
A Z |zn (1) — 20(i)] = 0
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as n — 00. Since

||Zn_$0||0<AZ|Zn — (1)

for all n € N, we get
lim ||z, — xol|, = 0.
n—oo

Assume now that there is a subsequence (y,,) of (z,) such that there are k,, > 1 satisfying

1
||yn||0 = k_ (1 + I@(knyn))

for n = 1,2,.... In virtue of ® € 4y, for any € > 0 there is § > 0 such that Is(z) <
implies ||z||, < e. Moreover, there is iy € N such that

10
Zxo(i)ei >1-9§
1=1 0
and
o0
Z zo(i)e;]| < e
i=io+1 0

Since y,(i) = xo(7) as n — oo for s = 1,2, ..., there exists ng € N such that

Z yn(i)e

>1—-94
0

for n > ng. So,

= ki” (1+ L (knyn)) = i (1 + ZO‘I)(’“"«”"@) > q)(k"y"(i))>

zki(urz:cb o Un (i >+ Yoo

1=10+1

+i<1> >1—5+Z

i—=t9+1 1=10+1

for n > ng. Hence
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for n > ng. Since y,, — o coordinatewise, there is n, > ng such that
10

> (d) — o (@)

i=1

<e€
0

for n > ny. Thus

10

D (ali) — zo(i)) e+ Y ynli)es — Z zo(i)e;

[y — zollp =
i=1 i=io+1 i=io+1 0
10 o0 oo
<D (i) =@ el + [ Y wm@e| +| D zoli)es| < 3e
i=1 0 1=ip+1 0 i=to+1 0

for n > n;. Note that we have proved that we always can find a subsequence (y,,) of (z,)
such that ||y, — zo|]| — 0. So, by the double extract subsequence theorem, there holds
|zn, — zo|| = 0.

Case II. K(zg) is nonempty and bounded. By Lemma 2.8, we can assume without loss of
generality that K (x,) # () for each n € N. Now, repeating the procedure from case I, we
get

Jim [l — 2l = 0.

We can also get the same conclusion by applying equi-absolute continuity of the norm of
() and the fact that x,, — x coordinatewise. So the proof of the theorem is finished. [

Remark 2.10. An analogue of Theorem 2.9 for the Luxemburg norm has been proved
in [10].

Remark 2.11. Criteria for H-property of Orlicz sequence spaces equipped with the Lux-
emburg norm and the Orlicz norm, but generated by N-functions, were first given in [19]
and [3]. Next the problem of a characterization of H-points in Orlicz sequence spaces
was considered in [7], [16] and [10]. Criteria for H-property of Orlicz sequence spaces
le equipped with the Luxemburg norm in the case of convex Orlicz functions (without
the assumption that it is an N-function) were given in [10]. The next theorem solves
an analogous problem for the Orlicz norm for arbitrary Orlicz function. Although the
criterion is the same as for N-functions, the proof is much more complicated and it is
based on Theorem 2.9, the proof of which use some new techniques in comparison with
the ones used in [19] and [3].

Theorem 2.12. The space 1S has property H if and only if ® € b,.

Proof. Sufficiency. Assume for a sequence (z,) in S(I%) that z, — zo weakly. This
implies that z, — zy coordinatewise. By Theorem 2.9, in view of ® € §5, x,, — z¢ in
norm.

Necessity. Assume first that ® vanishes only at zero. If ® ¢ d,, there is o € S(lg) such
that

Is(zo) <1 and Igp(Axg) = 0



102 Y. Cui, H. Hudzik, M. Nowak, R. Pluciennik / Some geometric properties in Orlicz spaces

for any A > 1 (see [1]). Take an increasing sequence (i,) of natural numbers such that
i, —> 00 as n — oo and

Z.TH—I

Z i (z)ez

1=tp+1

>

0

1
2

for every n € N. Put
Tp = (370(1), ceey ,’L‘()(?;n), 0, 0, 370(7:”4_1 + 1), $0(in+1 + 2), )

and z, = z,, /||zo||, forn =0,1,2,....

We will show that z, — zy weakly. Any f € (I3)* is uniquely represented in the form
f=y+s, where y € Iy and s € (h%)*. Since y € Iy, there is A > 0 such that

o0

Z U(Ay(7)) < 0.

i=1
Moreover, since x, — o € h%, we have (x, — xo, s) = 0 for each n € V. Hence
Tn+1

> wo(i)y(i)

1=ip+1

|<$n _$0:f>| = |<xn _$an>| =

< % ( Z (0 (1)) —i-\Il()\y(z'))) 0

i=in+1
as n — 00. So, z, — 2o weakly. Hence, by property H of 13, ||z, — 2o]|, — 0.
On the other hand,

in+1

Z xo(i)e;

i=in+1

1

= 3lwo]
0 xOO

>0

1
|20 — 20y = Tolle
0

for every n € N. This contradiction shows that ® € d, is necessary for property H of (3
if ® vanishes only at zero.

Assume now that ® vanishes outside zero and define
a=a(®) =sup{u>0:0(u)=0}.
Then a > 0. Let z = (a,a,...). We have 1 4+ I3(z) = 1 and

1
z (1+Is(kzx)) >1

for each k£ > 0,k # 1. Therefore ||z||, = 1. Define

Tn = (a,...,a, 0,a,qa,...)
——

n
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for every n € N. Then we can prove in the same way as for = that ||z,||, = 1 for each
n € N. Since x — z,, = aepy1 € he, 2*(x — z,,) = 0 for each singular functional xz* over
lp. Take now any y = (y1,¥s,...) € I3. There is A > 0 such that Iy(\y) < oo, whence
it follows that W(Ay,) — 0 as n — oo. Therefore, since ¥ vanishes only at zero, we get
yn — 0 as n — oo and consequently

(* — Tp,y) = aYnt1 = 0 as n — oo.
This shows that z — z,, — 0 weakly. However
|2 = znll = allentall = alles]| > O

for each n € N. So, 1 fails to have property H if ® vanishes outside zero, which finishes
the proof of the theorem. O

Theorem 2.13. The space I3 is CLUR if and only if ® € §, and ¥ € 5.

Proof. Sufficiency. If ® € §, and ¥ € §,, then [3 is reflexive. Consequently, by the
previous theorem and Theorem 6 in [10], both I3 and Iy have property H. In virtue of
Theorem 2.1, we obtain that {3 is CLUR.

Necessity. Since property CLUR implies property H, in view of Theorem 2.12, we get
® € §5. To prove the necessity of ¥ € §, assume first that ¥ vanishes only at zero. If
U ¢ 0o, there is a sequence (u,,) of positive numbers such that u,, | 0 and

1 1
1 <(1 + —) un) > 2"U(u,) and ¥(u,) < 1 (2.1)

n n-

for each n € N. Take positive integers N,, such that
1
form =1,2,... (we can pass to a subsequence of (u,) if necessary). Define k; = > N,
m=1

(i=1,2,.),

b(¥) =sup{u>0:¥(u) <1},
and

20 = (b(9),0,0,...),

Ny
P —
21 = (U1, Uty .-y U, 0, 0, ),

Ny No

—
29 = (0,0, ...,0, U2, U2, ...,U,Q,O, 0, ),

km— 1 Nm
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Then, denoting by ||-|| the Luxemburg norm in ly, we easily get from inequalities (2.1)
and (2.2) that

() o <lall <1 m=12,..

Moreover,

(ii) there is a sequence (z,,) in S(I$) such that z,,(7) = 0 for 1 < i < ky_q and 4 > k,+1,
and x,, generate support functionals at z,,, i.e.

km

|2l = (2m, Tm) = Um Z T (7).

i:km—1+1

This follows by the Hahn-Banach theorem and the fact that (Ig)* = 3. Moreover for

7o = (ﬁoo)

there holds ||zol|, = 1. Put

km
]_ /_/%
gn = (1= gt ) ((9),0,0,.0, 2 (ki1 + 1), 2 (k1 +2), s 2 (k). 0,0, )

form=1,2,.... Then

1 1 1
I‘Il(gm) S 1= 2m—1 1 + 2m—1 =1- 4m—1 S 1’

whence ||gn|| < 1. Moreover, in virtue of (ii), we have

o

”wm + 330“0 Z <$m + Zo, gm) = Z(mm(l) + xO(Z))gm(l)

=1

k
1 B )
= (1 - Qm_l) 1+ Uy, E Tm(7) | =2

i=km—1+1
as m — oo. But, by the orthogonality of x,, and z,, for n # m, there holds
| = Znllg = [|znlly = 1 for n # m,
which means that {3 is not CLUR. So, in the case when ¥ vanishes only at zero, ¥ € J,

is necessary for property CLUR of [3.

Assume now that
c(¥) =sup{u>0:T(u)=0}>0

and define
n

n? n—1

Uy = (1 - i) o(T) and A, =
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forn =2,3,... . Then

2
-1
Aplly = n c(¥) > ¢(T)

n2—n

for each n € N\ {1}, but A\yu, — ¢(¥) as n — oco. Let (IV,,); be a sequence of natural
numbers such that
Nyt O (Anttn) > 1

for n =2,3,... . Define
Ni1+1

21 = E U2€;
i=2
and

kn
Zn = E Unp+16€4,

1=kp—1+1

where k, = 1+ 377" N, for n = 2,3, ... . Define also z, = (b(¥),0,0,...), where b(¥) is
the number defined above. Then ||z|| = 1 and

Iy(z,) =0, Ig(Apz,) >1

for each n € A. Hence
At S lzall €1

for each n € V. Since z, € hy for every n € N'U {0}, there is a sequence (z,), with
supp x,, = supp z, such that

”3371”0 =1 and (zn,7s) = ||z
for each n € N'U{0}. Define g,, = 2, + 2, for each n € N. Then

Iy(gn) = Tw(2n) + Tw(20) = Tu(20) < 1,

whence ||g,|| < 1. Moreover, ||g,|| > ||20]| = 1 and consequently ||g,|| = 1 for each n € N.
Hence
2 2 ||zn + zollg 2 (Tn + 20, gn) = [|Zally + [|lZolly — 2,

whence
Jim [l2, + ol], = 2.
Since
|20 = ollg = [lznlly =1
for every n # m, the sequence (z,) contains no convergent sequence, i.e. 13 is not CLUR.

This finishes the proof of the theorem. O

Denote by p the right derivative of ® and define

7o(l) =sup{t > 0: ¥ (p(t)) < 1}.

It is known that if ® vanishes only at zero and ® ¢ J,, then I3 does not contain an
order isometric copy of [y, since it is then strictly monotone (see [11]) although it contains
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an order isomorphic (even an order almost isometric) copy of l, because it is not order
continuous by ® & ds.

Note that ® ¢ J, whenever ® vanishes outside zero. We will show in the following lemma
that in this special case of ® & d, 13 contains an order isometric copy of lu..

Lemma 2.14. If ® is an Orlicz function which vanishes outside zero, then 1S contains

an order isometric copy of lso.

Proof. To build an isometry P of I, onto a closed subspace of {3 preserving the order it
is enough to find a sequence (z,) C S(I3) with pairwise disjoint supports and such that
I3°2° , || = 1. Then the operator P : lo, — 13 defined by

Py = Z YnTn
n=1

for each y = (yn) € loo is the desired isometry.

Assume that
a=a(®) =sup{u>0:P(u)=0}>0.

Divide the set A/ of natural numbers into a sequence (N;)32; of pairwise disjoint and
infinite sets. Define z,, = (z,(7))$°,, where

5ai) = {a ifi e N,

0 otherwise

for any n € N. Then 1+ I(z,) =1 for each n € N. Moreover,

(1+ To(kan)) = % > 1

| =

for each k£ € (0,1) and
(1+ Ip(kzy,)) = 00

x| =

for each k > 1, because the sets N,, are infinite and ®(ka) > 0 for k¥ > 1. This shows that
a1
|znlly = }CI;E % (14 Ip(kzp)) = 14 Ip(zn) =1

for each n € N. In the same way it can be proved that ||>" ", z,|| = 1. This finishes the
proof. O

Corollary 2.15. Let ® be a finitely Orlicz function satisfying the condition (0o01). Then
1% is smooth if and only if

(i) @ €6y,

(ii) @ is smooth on the interval [0,74(1/2)),

(i) @ (" (ra(1/2)) = .
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Proof. In the class of Orlicz functions which vanish only at zero, the proof is given in [2].
However, by Lemma 2.14, the fact that [, is not a smooth space and by the Hahn-Banach
theorem, we easily get that {3 is not smooth if ® vanishes outside zero. O

Theorem 2.16. The space I3 is R if and only if the following conditions are satisfied:

(i) @ vanishes only at zero,
(ii) there is u > 0 such that ¥(p(u)) > 3,
(iii) @ is strictly convex on the interval [0, 7 (1)].

Proof. Sufficiency. First we prove that if z € [3 \ {0} and z has at least two coordinates
different from zero, then K (z) # (). Assume without loss of generality that z(1) > 0 and
2(2) > 0. There is k£ > 0 such that

U (p(kz(1))) = 5 and ¥ (p(kz(2))) =

7

| =
|

whence Iy (po k|z|) > 1. This yields that
k*(z) :=inf{k > 0: Iy (poklz|) > 1} < 0

and consequently K(z) # 0.

Let z,y € S(I3) and = # y. It is obvious by the definition of the number 74(1) that if
ke K(z)# 0 and l € K(y) # 0, then

klz()] € [0,m(1)] and []y(i)] € [0,me(1)]
for all i € M. Then we can repeat the proof of the sufficiency of Theorem 2.9 from [1] to
obtain

< 1.

2 0

Hl(ﬂy)

Consider now the case K(z) =0 or K(y) = 0. Then
lim (®(u)/u) = A < oo.

U—00

Assume first that K(z) = K(y) = (). Then it must be
suppz = suppy = {i}.
Really, it is obvious by the above considerations that if y is the counting measure in 2V,
p(suppx) = p(suppy) = 1.

Assume for the contrary that suppx = {i} and suppy = {j}, where ¢ # j. Then
supp(z + y) = {4,j} and we get K(z + y) # 0. The assumption K(z) = K(y) = () yields

[zl = Alz()] and lylly = Aly(5)]-

Assume first additionally that the set K(z + y) is bounded. Then assuming for the
contrary that ||z 4 y||, = 2, we get

2=le+ylly < Az@)| +ly()) = llzlly + lyllo = 2,
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a contradiction. So ||z + yl|, < 2, which is the desired inequality.
Assume now that K(z + y) is unbounded. Then

1
Iz +ylly = Jim - Ts (k(z +y)),

whence
r+vy
2

1 T+y 1 T+y
=l gt (2550) = e (1552
Denote = + y = z. By unboundedness of K (x + y) there is an increasing sequence (l,) in
K (x + y) such that I, /oo as n — oo. Then

k+1, %L,
< 1+1
I=lly < 2%, < + ‘I’<k+zn Z))

k41, L, k
- 141 K
2%, ( * q’<k+znkz+k+znl"z)>

k+ b ln k
< 1 I I =
= "2k, ( T, T ‘I’(l"z)) I=lo

for any n € A and k € K(z). This shows that

k+l 2kL,
lells = 5 <1+LI, (Hln z)) (2.3)

for each n € N and k € K(z). Consequently, by the left continuity of I and the fact

that 2% 7 2k as n — oo, we get

1
el = g (14 Ia (262))

Therefore, 2k € K(z). Hence, putting | = 2k and repeating the same argumentation as
in the proof of (2.3), we get

k+1 2kl
o .
=llo = <7 < + ¢<k+l'z>>

2 oy = ¥
k+1 k41

Since

lz(m )+%+lkz( ),

we conclude that ,?frll z(m), kz(m) and lz(m) belong to the same interval of affinity of

® for m = i and m = j. But k # [, whence kz(i) # [2(:) and kz(3), l2(i) € [0,78(1)],
which contradicts the assumption that & is strictly convex on the interval [0, 74 (1)]. This
contradiction shows that K(z + y) is bounded whenever K(z) = 0, K(y) = (),suppz =
{i},suppy = {j} and ¢ # j. Therefore szﬂHo < 1, as it was already shown.
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Consider now the case when K (z) = 0 and K (y) # 0. Denote 2o = 5(z + y) and assume
that 0 < ko € K(y). If ||zo||, < 1, then the proof of the sufficiency is finished. So consider
the case ||zg]|, = 1. Then for all n € N we get

n + ko nk
2=12 < 1+ 1. 2
” xO“O - TLkQ < tle (n—i— ko $o>>

n + ko n ko
= 141 k
nko ( + ¢<n+k0 0y+n+k0nx))

< kiou + I (koy)) + — (1 + I (n2)) —> 2,

n n—00

whence we get as above that 2kq € K(xg). If for some « € (0, 1) there holds
laz + (1 — a)y||, <1,

then, by the convexity of the norm ||-||,, we get ||zo||, < 1, a contradiction. So assume
that

oz + (1 —a)yll, =1 (2.4)

for all a € (0,1). This will also give a contradiction, finishing the proof of the sufficiency.
Indeed, defining

_ Tn—-1 + Y

2

T

for n = 1,2, ..., we will get in the same way as for z, that 2"k, € K(z,). In order
to prove that K(az + (1 — a)y) # 0 for each a € (0,1) it is enough to prove that if
w,v € S(I3) are such that K(w) # 0 and K(v) # 0, then K(aw + (1 — a)v) # 0. Let
0<keK(w)and 0 <! € K(v). If we can prove that for

_ak(l—a)l
T ak+ (1—-a)l

there holds

L (14 In(c(w + v)))

l|lw + U”o = -

whenever ||w + v]|, = ||w||, + ||v]l,, then, by the obvious equalities

ool = & (15 10 (E(ow))
ja=aply =272 (1416 (o0 -ap) )

(1—a)k+ al c
kl

and

we get

K (ow+ (1 — a)v).
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But we easily get

k+1 kl
ol + lolly = oo+ ol < 2557 (14 10 (250 +0) )

kot z k
= (1+I¢(—k+lkw+k+llv))
kot z k
< | I I
= T <+k+z‘b(kw)+k+z‘b(w)>

_k+l 1 1

= L (14 Ta(kw)) + 7 (14 Ta()) = ol + 1ol

k+1 kl
1+ | —— .
lw+ ]|, = i E ( + ¢<k+l(w+v))>
Note that 2y = 3(w + v), where w = 3z + 1y and v = 3y + 2. Since w,v € S(13) and

K(w) # 0, K(v) # 0, we obtain by strict convexity of ® on the interval [0, 74(1)] that
||zo|lq < 1, which contradicts the assumption (2.4). This ends the proof of the sufficiency.

?rli—l

whence

Necessity. The necessity of the property that & vanishes only at zero follows by Lemma
2.14. Let us prove the necessity of the condition ¥(p(u)) > § for some u > 0. First we
will show that {3 is not rotund if there is z € S(I) such that z(1) > 0, z(2) > 0 and
K (z) = (). Note that the last assumption implies that

lim %

u—o0 U

= A < o0.

Take € € (0, min{z(1),z(2)}). Define
z1 = (z(1) + €,2(2) — €,2(3), z(4), ...)

and
zy = (2(1) — €,2(2) + €,2(3),z(4), ...) .

Then

[y < A (m(l) +teta(2) —et Z \x(i)\> = AZ |z (2)] = [lzllp =1

and similarly ||z,[|; < 1. Hence

T+ X2

1
5 <3 lz1llo + 5 ||$2||o <1,

1= lzll, =

and consequently ”“Qﬂ, T1, T2 € S(13). But x; # T9, so I3 is not rotund. Therefore, to
show the necessity of ¥(p(u)) > £ for some u > 0 it is enough to show that if U(p(u)) < 3
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for any u > 0, then there is x € S(I3) with z(1) > 0, (2) > 0 and K(z) = (. Let a > 0
be such that
r = (a,a,0,0,..) € S(I3).

For any &k > 0 there holds Iy(p o kx) < 1, which shows that £*(z) = k**(z) = oo, where
E**(x) =sup{k >0: Iy(pokx) <1}
and
k*(x) =inf{k > 0: Iy(po kx) > 1}.
Therefore K(z) =0 (see [1], pp. 18-19).
It remains to prove the necessity of strict convexity of ® on the interval [0, 74 (1)]. Assume
that @ is affine on some interval [a — €, a+ €] C [0, me(1)], where € > 0. Then ¥(p(a)) < 1.

Suppose first that ¥(p(a)) > 0. Let m € N be the biggest natural number such that
m¥(p(a)) < 1 and define

b=sup{u>0:m¥(p(a)) + ¥(p(u)) <1}.

Note that 0 < b < a by the definitions of b and m. If ®(u)/u — 0 as u — 0, then p(0) = 0,
and the inequality b > 0 follows by the right continuity of p. If ®(u)/u — A < oo as
u — 0, then p(0) = A and ¥ vanishes on the interval [0, A], whence b > 0 again. Define

k=14 m®(a)+ ®(b)

and
r=k""(a,..,a,b,0,0,..).
—

m times

Then k € K(z) and so

1+ m®(a) +®(b)
L+ Lotke) = 1 G T o) ~

=

1]l =

Since pu(suppz) = 2 and kz(i) = a is a midpoint of the interval of the affinity of ® for
1 =1,2,...,m, T is not an extreme point. We can prove this in an analogous way to the
proof of Theorem 2.8, pp. 54-55 in [1]. The only changing that is needed is taking

b(¥) =sup{u>0:¥(u) <1}

instead of ¥~1(1), since we did not exclude the situation when ¥ vanishes outside zero or
attains infinite values.

Assume now that ¥(p(a)) = 0. Then define
c=sup{u>0:¥Y(p(a))+2¥(p(u)) <1}.

By the previous part of the necessity, we may assume that ¥(p(u)) > 3 for some u > 0,
whence it follows that 0 < ¢ < co. Define

k=1+ ®(a) + 29(c)
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and
r=k"a,cc,0,0,..).

Then it follows by the definition of ¢ that k¥ € K(x) and so

lelly = 3 (1+ ®(a) +28(c) = 1.

Repeating the same argumentation as above, we conclude that z is not an extreme point,
i.e. 1 is not rotund, which finishes the proof of the theorem. O

Remark 2.17. Note that Theorem 2.16 can be formulated equivalently that [3 is rotund
if and only if @ is strictly convex on the interval [0, 75(1)] and K (z) # 0 for any z € S(I$)
with p(suppz) > 2.

Corollary 2.18. Let ® be an arbitrary Orlicz function. Then 13 is LUR. if and only if
P € by, U e by, B is strictly convez on the interval [0,7s(1)] and U(p(u)) > 3 for some
u > 0.

Proof. Since a Banach space X is LUR if and only if it is CLUR and R (see [15]), the
corollary follows immediately from Theorems 2.12 and 2.13. O

Acknowledgements. The Authors are very indebted the Referee for his valuable remarks.
Taking them into account improved the paper substantially.
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