Journal of Convex Analysis
Volume 6 (1999), No. 1, 195-206

Existence and Uniqueness of Solution
of Unilateral Problems with L' Data

L. Boccardo

Dipartimento di Matematica, Universitd di Roma 1,
Piazza A.Moro 2, 00185 Roma, Italy.
e-mail: boccardo@mat.uniromal.it

G. R. Cirmi

Dipartimento di Matematica, Universitd di Catania,
Viale A.Doria 6, 95125 Catania, Italy.
e-mail: cirmi@dipmat.unict.it

Received October 10, 1997
Revised manuscript received June 9, 1998

We prove an existence and uniqueness theorem for the solution of unilateral problems with L' data.

1. Introduction

In this paper we consider the obstacle problem with L' data associated to differential
operators A of monotone type and we prove an existence and uniqueness theorem.

We recall that, when the data belong to L'(f2), the classical formulation of unilateral
problems is inadequate. As a matter of fact, even in the case of the equations, the
term fQ fu as no meaning, if u is a weak solution. If A is the p-Laplacian operator this
difficulty is overcome by using a new definition of solution, whose existence is proved in
[5] by approximation. Other proofs of the existence result can be found in [3].

Recently,( in [2]) it was proved that the solutions of nonlinear equations with L' data,
satisfying an additional entropy condition, are unique.

Here, following this idea, we introduce a formulation of unilateral problems with L' data,
quite similar to the definition of entropy solution of the Dirichlet problem with L' data. In
this way, we can prove the uniqueness of solution of the obstacle problem as the uniqueness
of entropy solutions of the Dirichlet problem is proved in [2].

We shall prove the existence of solutions using a classical approximation and a penalization
method. Moreover, we shall present another approach, introduced in [8] in the variational
framework, which allows us to prove the Lewy-Stampacchia inequality.

2. Statement of the results
Let € be an open bounded subset of Y, N > 2.

Let us consider the nonlinear operator
Av = —diva(z, Dv) (2.1)
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where a : Q x RY — RV is a Caratheodory function satisfying the following assumptions,
forae. z € Qand VE,n e RN, (E#£17), 1 <p < oo:

a(z,§)¢ > algl? (2.2)
la(z, )| < Blh(z) + €[] (2.3)
[a(2,€) — a(z, n)][€ —n] >0 (2.4)

with a, 3 > 0 and h(z) € L” (Q) (here p' denotes the conjugate exponent of p).
Assume that

feL'(Q) (2.5)
and
Y € W, P (Q) N L=(Q) (2.6)
Let us define

K={veW;?(Q)NL=Q) :v(z) > ¢(z) in Q}.

In the following, we shall denote by Tj(s) the truncation defined by

kit s>k
Te(s) =¢s if |s| <k
—k if s< -k

The aim of this paper is to prove the following

Theorem 2.1. Let 2 — + < p < N. Under assumptions (2.2), ... , (2.6) there ezists a
unique solution u of the problem

(we Wg'(Q) 1<q< =)
u(z) > ¢Y(z) in Q
S
Ty (u) € WyP(Q) Vk >0
(A, Ti(u —v)) < [ fTi(u—v) Yo ek

As we have stated in the Introduction, in Section 4, under an additional assumption, we
shall prove the following stronger result:
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Theorem 2.2. Assume that the hypotheses of Theorem 2.1 hold and that
Ay e L'(9). (2.8)
Let u be the solution of problem (2.7). Then the following inequality holds
f<Au< f+(f - Ap). (2.9)

Remark 2.3. We point out that the previous definition of solution of the obstacle prob-
lem is similar to the definition of “entropy solution” of the Dirichlet problem, introduced
in [2].

Remark 2.4. The first inequality of the assumption on p (p > 2 — %) guarantees that

the gradient of the solution belongs to L'(2) (% > 1).

Ifp<2-— %, we can adapt the method used in [2] for the study of the Dirichlet problem.

Moreover, if p > N, we are in the “variational framework”, since L*(Q) C (W,”(Q))’ and
the existence of solutions is a consequence of classical results (see for example [11])

Remark 2.5. The existence result still holds if the data have the form f(z) — div(F),
with f € L'(Q) and F € [L” (Q)]V, that is , in particular, if they are measures absolutely
continuous with respect to the p—capacity (see [7]).

Remark 2.6. If the differential operator A is the p-laplacian, an existence result for (2.7)
can be found in [5], [3], where a slight different definition of solution is given.

3. Existence by approximation

Let {fn} be a sequence of smooth functions such that:

i in L'(Q) 1)
N fallh <N fllk VR eEN :
Let u,, be the solution of the problem:
Uun € WoP(Q) un(z) > ¢(z) in Q
(Atn, up —v) < [o fo(un —v) (3.2)

Yo € Wy P(9Q), v(z) > ¢(z) in Q

Thanks to the hypotheses (2.2), (2.3), (2.4) A is a nonlinear operator of Leray-Lions type,
so the existence of u,, follows from the classical results of [11].

In order to prove the existence and uniqueness theorem we need the following:

Lemma 3.1. There ezists a constant cy(q), independent on n, such that:

Np-1)

— (3.3)

”un“WOLQ(Q) < CO(Q) VneN, 1<qg<
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Proof. Let £ > 0 be an integer and ¢, : ® — R be the function defined by:

1 ifs>k+1
(s) s—k Tk<s<k+1
S:

Pk 0 if0<s<k

—pr(—s) ifs<0
Let k > ||9||c0; taking as test function in (3.2)

U = tn — Pk(Un),
we obtain

(Atn, 01 (1)) < / Fun(um) VE > ]l

Thanks to assumption (2.2) we have

[ ol < M vy, (3.4
B} o
where
By ={z€Q: k<|uy(x)] <k+1}.
Let

v =", — Tp(u, — ), k>0

Since v € W, ?(Q) and v(z) > (z) in ©, v is an admissible test function in (3.2), so we
have

[ (e Du)Dlun — ) < kil
{un—19<k}

By virtue of hypotheses (2.2), (2.3) and using Young’s inequality (with exponents p, p’)
we get

a/ | Du,|P <

(0% /
kILA +—/ (Ih(@)" + |Dunl’) + a1l |17
2 i) SW(Q)

and finally

/ [ Du,|P < / [Dun|? < co(k + [$lloo + 19117, + IBIl)),  VE >0
{lun|<k} {un—<k+|¥|l} 0
(3.5)
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Let 1 < g < X221 and & > ||9)]|co. It results:

N=1
/ |Duy,|? <
Q

o0

q 1-4 1 q g q_4g
([ DB s [ DR )
{lun|<k} " Z (T+5)* Jpn " B "
j—k J J
where A = %__qq); observe that A > 1, since 1 < ¢ < %.

From this inequality, using (3.4) and (3.5) we obtain

L/w%w§@+quMMP? (3.6)
Q Q

From this estimate, by Sobolev’s inequality, we get

/ up | < cs.
0

Finally, from (3.6) we obtain (3.3). O

First Proof of Theorem 2.1. The estimate (3.3) guarantees that there exists a subse-
quence, still denoted by {u,}, such that Vg < N(p —1)/(N —1):

Uy — u weakly- W,Y(Q)
un, — u  strongly-L9(Q) (3.7)
U, — u almost everywhere in ()

Since uy,(z) > ¥(z) in Q, Vn € N,
u(z) > ¥(r) in Q.
Moreover, we shall prove that
Du, — Du almost everywhere in (3.8)

As a matter of fact, if we take as test function in (3.2) u, — Tk(un — um) and then
U + Ti(ty — ty), we obtain

Q
and

_<AumaTk(un - um)) S — /Q fmTk(U’n - um)-
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Adding up these inequalities, we get

<Aun - Auma Tk(un - Um)) < /Q(fn - fm)Tk(un - um) (39)

The right hand side of (3.9) tends to zero, if n, m — oo and so, thanks to the monotonicity
of the operator A, also (Au, — Atp, Ti(ty — Um)) — 0. Thus Lemma 1 of [6] implies that

Du,, — Du almost everywhere in €. (3.10)

Let w € W,"(Q) N L®(Q).
We observe that, Vk > 0 the sequence {7} (u, — w)} is bounded in W,”(Q). Indeed:

/\DTk(un—w)\p g%/ \Dun|”+c7/ \Duwl?
Q {lun|<k+||w||oo } Q

and the right hand side of the previous inequality is bounded thanks to (3.5).
Let w € WyP(Q) N L®(Q), w(z) > 9 (x) in Q; the function

Un — Te(tn — w)

is an admissible test function in (3.2).

This choice yields
(Aup — Aw, Ty, (uy, — w)) + (Aw, Tj(uy, — w) < / Tk (un — w) (3.11)
Q
Since {Tj(u, — w)} is bounded in W, ”(Q)and in L®(Q), we deduce:

lim inf{Au, — Aw, T (u, — w)) > (Au — Aw, Tp(u — w))

Hm{Aw, Ty, (un, — w)) = (Aw, T(u — w))

lim /Q FuTi (i — w) = /Q FT(u— w)

Thus, taking the limit as n — oo in (3.11), we have proved that u is a solution of (2.7).

Moreover, its uniqueness can be proved exactly as the uniqueness of the entropy solutions
of the Dirichlet problem for equations is proved in [2]. O

4. The penalization method

For sake of simplicity, in this section, we assume that

= 0. (4.1)
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Let {f¢} be a sequence of smooth functions such that:

fe—=f in L'(Q) w2
[ fells < || flli Ve>0
and
J(s) = s s. (4.3)

Let us consider the following problem:

u. € WP (Q)
{Aue —i(* ) =/ 4o

€

As usual, the existence of u, follows from well-known results (see [11]).
We shall prove the following:

Lemma 4.1. There ezists a constant c(q) > 0, independent on €, such that:

||u6||W01,q(Q) < c(q), Ve >0 (4.5)

- N(p=1)
with 1 < ¢ < 52,

Proof. Let £ > 0. Let us take as test function in the weak formulation of (4.4)

v = ok (ue),
where @ (s) is the function defined in the proof of Lemma 3.1.

This choice yields

((“6)_)p1 () < 111 (4.6)

€

(Au ou(u) ~ [

Q

Since k£ > 0, we have:

and from (4.6) we deduce

|Du.’P <¢; Vk>0,Ve>0, (4.7)

By,

where B is the set defined in the previous section and ¢, is a positive constant independent
on €.

Taking as test function in (4.4) v = Ty(u.), we obtain

/ a(z, Duc)Due < k|| f]l1-
{lue|<k}
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From this estimate, by the ellipticity condition (2.2), we obtain:

/ DTa(u)P < ik Yk > 0. (4.8)
Q

Working as in the previous section, from (4.7) and (4.8) we obtain the estimate (4.5). O

Second Proof of Theorem 2.1. Since {u.} is bounded in W, (), there exists a sub-
sequence, still denoted by {u.}, such that Vg < N(p —1)/(N — 1):

ue —u  weakly- W, 9(Q)
ue — u  strongly-L7(2) (4.9)

ue — v almost everywhere in {2

Now, we shall prove that
u>1 ae inQ (4.10)

Let {6,(s)} be a sequence of increasing functions converging to

1 if s>0
f(s) =<0 ifs=0
-1 ifs<0

Let us choose v = 6,(u. — 1) as test function in the weak formulation of problem (4.4);
then, there exists v € N such that:

_<g”ﬂA«W—w>V*@m%—wsnﬂh Vn > v

€

Passing to the limit as n — oo we get:

[ (= <eisin (4.1)
0
From this inequality we deduce
((ue — 1/))_)1)71 — 0 strongly in L'(Q).
Thanks to (4.9) we obtain:
(u—1) =0 a.e. in Q

which proves (4.10).

Moreover, by (4.11), j((“f_f)_) + fe is bounded in L'(f2), and from the results of [6] it
thus follows

Du, — Du  almost everywhere in Q2 (4.12)
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Let v € Wy P(Q) N L®(Q), v > 1 ae. in Q, and k > 0.

Using the estimate (4.8) we can prove that {T}(u. — v)} is bounded in W,?(Q); moreover,
taking T} (ue — v) as test function in the weak formulation of problem (4.4) we obtain:

<A%_Aun@%—my+gwju%—m>gKygum—uy

Taking the limit as ¢ — 0 in the last inequality we conclude the proof of Theorem 2.1. [

5. The omographic approximation

In this section we shall prove Theorem 2.1 using another approximation, introduced by
[8] in the variational framework and already used in [3] for unilateral problem with L'
data.

We recall that, differently from the previous methods, here we need hypothesis (2.8)
even in the proof of Theorem 2.1. However this approach allows us to prove the Lewy-
Stampacchia inequality.

Let A > 0 and {f\} be a sequence of smooth function such that V¢ < N(p —1)/(N — 1):

= in L'(Q)
Il < N fllh YA>0

Let us consider the following problem:

€ Wy (9
u € ™) , (5.1)
Au)\—i-gm =fi+g inQ
where:
g=(H—AY) .
We observe that g is non negative and ||g||; < ||f|l1 + |[(Aw) ;.
The existence of uy follows from the results of [12].
In order to prove Theorem 2.1 we need the following:
Lemma 5.1. Assume that hypotheses (2.2), (2.3), (2.4) and (2.8) are satisfied.
Then:
uy>1 VYA>0  almost everywhere in 2 (5.2)
Moreover, there exists a constant c¢(q) > 0, independent on \, such that:
N(p—-1)
||U,\||W01q(Q) <clg) Vi<g< N_1 (5.3)
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Proof. Let us take (uy — 1)~ as test function in the weak formulation of (5.1) ; we have

(s = 9)7) + [ gtun =)= = (g (- 0)7)
Since
[ ot -2 =t <o
and
(9= A, (s =) 2.,
we obtain

/ (a(z, Duy) — alz, D)) D(us — ) < 0.
{ux—p<0}

From this estimate, using also assumption (2.4) we obtain
D(ux(z) —(z)) =0 almost everywhere in {z € Q : uy(z) < ¢(x)}.

Then we get:
||(U)\ - ¢)7||W01,p(9) =0

from which easily follows (5.2).

Thanks to (5.2), uy is solution of the following equation

A

Auy — g

Let k > 0; choosing ¢ (uy) (x(s) is the function defined in Section 3) as test function in

the weak formulation of the last equation, we get (fx + Asi— is bounded in L))

A=Y
/ | Duy [P < ¢4,
B}

where By is the set defined in Section 3.
From this estimate, working as in Section 3 we get the proof of (5.3). O

Proof of Theorem 2.1. We point out that we shall use Ay € L'. Using Lemma 5.1
there exists a subsequence, still denoted by {u,}, such that:

uy — u  weakly- W,9(Q)
uy — u strongly-L?(Q) (5.5)

uy — u almost everywhere in €
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Moreover, since u, is solution of (5.4) and fx + As7—5 is bounded in L*(9), reasoning
as before we have
Duy — Du almost everywhere in (2 (5.6)

Let k£ > 0. Choosing T (u,) as test function in the weak formulation of (5.4), we have

ITew) oy < ck Ve >0 (5.7

From this estimate we can prove that
{T}(ux — v)}is bounded in W, (Q), (5.8)

for any v € Wy () N L®(Q).
Let v € W, P(Q) N L>(Q), v > ¢ a.e. in Q; then

(A’U,)\ — A’U, Tk(U)\ — ’U)) -+ (A’U, Tk(’LL)\ — ’U)> =

/QfATk(U,\—U)-I-/Q/\mTk(u,\—v).

Letting A — 0, and taking into account (5.5), (5.6) and (5.8) we can conclude the proof
of Theorem 2.1. O

Proof of Theorem 2.2. Since u, satisfies (5.1) we have
Auy < fa+ (fa — AY)~. (5.9)
Moreover, thanks to (5.4) we obtain
Auy > fi. (5.10)

Taking the limit as A — 0 in (5.9) and (5.10) we get (2.9). O
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