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Let K; and K3 be two nonempty closed convex sets in some normed space (H,|| - ||). This paper
is concerned with the question of finding a “good” decomposition, with respect to K; and K, of a
given element of the Minkowski sum K; + K3. We introduce and discuss the concept of least deviation
decomposition. This concept is an extension of the Moreau orthogonal decomposition with respect to a
pair of mutually polar cones. Techniques of convex analysis are applied to obtain some sensitivity and
duality results related to the decomposition problem.
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1. Introduction

In a recent work by Martinez-Legaz and Seeger [9], a general formalism has been intro-
duced to discuss the question of finding a “good” decomposition

z2 =71, + 7Yy, withy, € Kj and 3y, € K», (1.1)
of a vector z belonging to the Minkowski sum
Ki+ Ky ={y1 +y2: 1 € Ky, yo € K>}

of two given convex cones K and K,. The decomposition theory developed in [9] is based
on the notion of efficiency. For the sake of completeness, we recall below the definition of
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an efficient decomposition. In what follows we denote

D(z) :={(y1,%2) € K1 x K3 2=y + 9} (1.2)
the set of all (admissible) decompositions of z.

Definition 1.1 ([9]). Let K; and K, be two convex cones in some real vector space H.
A decomposition (¥;,7,) € D(z) is said to be efficient (or minimal, or nondominated) if
(71,7,) is an efficient point of the set D(z) with respect to the partial order induced by
Kl X KQ, i.e.

(y1,92) € D(2)

- (Y, ¥y Ky x K. 1.3

W1,7) — (Y1, 92) € Ky X Ky } = Wo) = ol € Ko ’ (13)
The above definition yields a powerful and elegant decomposition theory, but unfortu-
nately it relies heavily on the conic structure of the sets K; and K,. The decomposition
problem (1.1) is also of interest in the case in which K; and K, are two arbitrary convex
sets. In this paper we will place ourselves in this more general setting. Besides extending
some results of [9], we will introduce several new concepts and discuss various aspects of
the decomposition problem (1.1). As an alternative to the concept of efficient decompo-
sition, we propose the notion of least deviation decomposition. Perhaps the main merit
of this new notion is that of extending the classic concept of Moreau orthogonal decom-
position to a much more general setting. Due to space limitation, we will not indulge in
discussing the numerous applications of the least deviation decomposition theory. Two
simple examples will be appropriate as illustration.

Example 1.2. Denote by DC() the class of functions that can be represented as dif-
ference of two convex functions defined on some compact convex set {2 C R". Which is
the “best” way of decomposing f € DC(f) as difference of convex functions ? This is a
question which is asked once and over again in the literature. Observe that DC(S2) is the
Minkowski sum of the convex cones

Ky:={g9:Q2— R:gisconvex },
Ky :={h:Q — R: his concave } .

To our knowledge, DC(2) has not a Hilbert space structure and therefore the concept of
Moreau orthogonal decomposition does not apply. Trying to find an efficient decomposi-
tion [9] of a given f € DC(R), turns out to be a very difficult task in practice. However,
DC () can be equipped with a norm || - || (even with a complete norm; cf. [15]). The
concept of least deviation decomposition of f does make sense in this case.

Example 1.3. Let S,, denote the set of symmetric matrices of order n-by-n. Recall that
a matrix () € S,, is said to be stochastically copositive if for each positive semidefinite
matrix X € S, with nonnegative entries, and each random vector x with zero mean
and covariance matrix X, the expected value of z7Qz is nonnegative. It is known [6,
Theorem 3.2.4] that a matrix @ € S, is stochastically copositive if and only if it belongs
to K1 + K5, where

Ky ={A €S, : A is positive semidefinite },
K, ={B € S, : B has only nonnegative entries }.
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In this particular example, K; and K, are closed convex cones with nonempty interiors,
the space S,, being equipped with the standard trace inner-product.

Of course one may consider other examples in which K; and K5 are not necessarily cones
(for instance, finding a point in the intersection AN B of two convex closed sets amounts
to decomposing the origin 0 with respect to K; = A and K, = —B). The purpose of
this work is to develop the theoretical aspects of the decomposition problem. Some basic
results obtained in this paper are subsequently used by Seeger [13] to design numerical
algorithms that solve effectively the decomposition problem (1.1), at least in a Hilbert
space setting.

The organization of the paper is as follows:

Section 2. On least deviation decompositions.

Section 3. Topological properties of the admissible decomposition mapping.
Section 4. Continuity of optimal values and optimal solutions.

Section 5. Subdifferential analysis of the least deviation function.

Section 6. Miscellaneous results.

Section 7. Decomposing with respect to moving sets.

Section 8. Decomposing with respect to cones.

2. On Least Deviation Decompositions

Unless otherwise specified, K; and K, are two nonempty closed convex sets in some
common normed space (H, || -||). The class of such sets is denoted by C(H).

Definition 2.1. Let K, Ky € C(H). The pair (4,,7,) € H x H is called a least deviation
decomposition of z if

(#1,7) € D(2), } 2.1)

191 = Ball < [lyr — w2l for all (y1, y2) € D(2).

The first condition in (2.1) is just an admissibility requirement. The second condition in
(2.1) says that the deviation ||y, —¥,|| is smaller than the deviation ||y; — y2|| of any other
admissible decomposition (y1,y2) € D(z). As shown in the next proposition, the least
deviation problem

Minimize{||y1 — vo| : (v1,%2) € D(2)} (2.2)
is equivalent to the minimal norm problem
Minimize{||v|| : v € [K1, K], }, (2.3)
where
(K1, K], := (—2 + 2K;) N (z — 2K5). (2.4)
Proposition 2.2. Let K1, Ky € C(H) and z € K1 + K5. One has:

(i)  Ifv is a solution of (2.3), then (%52, %52) is a solution of (2.2);

(il)  If (y1,y2) is a solution of (2.2), then y1 — yo is a solution of (2.3);
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(iii) The optimal values

f(z) := nf{[lys — ol (y1,92) € D(2)} (2.5)

g(z) :=inf{||v]| : v e Ky, Ky} (2.6)
are equal.

Proof. By introducing the variable v = y; — y5, one clearly has

f(z) = JQIE ol = 1 —y2=v, y1 +y2 = 2}
(y1,92)€EK1 x K2

But,

Y — Y2 =7 Z24+v Z =
S oy = and yp = . (2.7)
Y1+Y2=2 2

Hence,

z+v

fz) = inf o]l

= 12£{||v|| v e (—z+2K)N (2 —2K,y)}

EKl and % EKQ}

= g(2).

This completes the proof of (iii). Parts (i) and (ii) follow from the equivalence (2.7). O

The above theorem provides us with a method for constructing a least deviation decom-
position of z. From a theoretical point of view, the decomposition problem is a matter of
projecting the origin 0 € H onto the closed convex set K7, Ks],. Projection techniques
can also be applied in the context of the next proposition.

Proposition 2.3. Let K1, Ky, € C(H) and z € K; + Ky. Then the following statements
are equivalent:

(i) (¥1,Ys) is a least deviation decomposition of z;
(ii) v, and Y, are projections of z/2 onto K1 N (z — Ks) and Ko N (z — K1), respectively,
1.€.

Proof. (ii) = (i). Let 7, and g, be as in (2.8). A lemma of Martinez-Legaz and Seeger
[9] on decomposability through projections shows that the pair (7,,7,) is a decomposition
of z. This takes care of the admissibility concern. The least deviation requirement is
shown as follows. Starting from the equality

: y1€K1ﬂ(Z—K2)},

VA _ . yA
\b—ylzuﬁW§—%
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one gets
Iz =7 = Gull = inf{llz —y1 — vl s y1 € Ki N (2 — Ka)},

or equivalently,
152 — 7|l = inf{{lya — 91l : (v1,92) € D(2)}.

(i) = (ii). Just read the above three equalities in the backward order. O
Corollary 2.4. Let Ky, K, € C(H). One has:

(i)  If (H,||-||) is a reflexive Banach space, then every z € K+ Ky has a least deviation
decomposition,

(ii)  If the norm || - || is strict, then each z € K1+ Ky admits at most one least deviation
decomposition.

Proof. If (H,|| - ||) is a reflexive Banach space, then the function y; € H — n(y;) =
H% -1 H attains its minimum over the closed convex set K;N(z— K3). Note that this set
is nonempty whenever z € K| + K. If the norm || - || is strict, the function n? is strictly
convex; hence it may have only one minimum point over K; N (z — K3). O

The reader may wonder why we have chosen the concept of least deviation as a criterion
for selecting a suitable decomposition of z € K; 4+ K. In fact, there are different reasons
for this choice. For instance, from a formal point of view, one can consider the statistical
notion of standard deviation

5y 1/2

} : (2.9)

O'( ) — l _ n + Y2
Y1, Y2) - 5 U1 5
which is a measure of the deviation of the “sample” {y;,y2} with respect to its average
(y1 + y2)/2. A straightforward calculation shows that the quantity (2.9) reduces to

2

1 Y1+ Yo
+2H 2 9

1
o(y1,v2) = sy — v2ll,
2

that is to say, the deviation ||y; — y»|| and the standard deviation o(y;,y2) differ only by
a multiplicative constant. Thus, the concepts of least deviation decomposition and least
standard deviation decomposition coincide.

What happens if we replace the deviation ||y; — y|| by the Euclidean norm

N(y1, ) = [llyal® + llyel’]? (2.10)

of the pair (||y1]|, ||y2/])? Is the minimization problem

Minimize{ N (y1,y2) : (y1,¥2) € D(2)} (2.11)

somehow related with the least deviation problem (2.2)? These questions are addressed
next. Roughly speaking, the following proposition says that a least deviation decomposi-
tion is also a least Euclidean norm decomposition, and vice versa. Observe that a least
Euclidean norm decomposition is a projection of (0,0) € H x H onto D(z).
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Proposition 2.5. Let Ki,Ky € C(H) and z € K, + Ky. Assume that H is a Hilbert
space. Then, the optimal solution of (2.2) is the same as the optimal solution of (2.11).
Moreover, the optimal value

e(z) := min{N(y1,y2) : (y1,42) € D(2)} (2.12)
is related to f(z) by means of the identity
[f(2)] = 2[e(2)]* = ||=]I*. (2.13)

Proof. From the Hilbert space parallelogram identity

llys + all” + llys = wa2ll® = 2 [llyall” + llgell®]

one gets

1/2
1 = el = {2 [l ll” + ly2l*] = llya + w2l )

Taking the minimum with respect to (y1,42) € D(z) on both sides of the above equality,
one obtains

z) = min 2 24 2] _ |42 1/2
P =, min {2l + el - D2}

1/2
_ {z min [||y1||2+||y2||21—||z||2}

(y1,y2)€D(2)
1/2
= {20e2)]? - |22} 2.

This proves the identity (2.13), and also the first part of the proposition. O

There is yet another way of looking at the concept of least deviation. In a Hilbert space
framework, consider the maximization problem

Maximize{(y1, y2) : (y1,¥2) € D(2)}. (2.14)

Proposition 2.6. Let H, Ky, Ky, and z be as in Proposition 2.5. Then the optimal so-
lution of (2.2) is equal to the optimal solution of (2.14). Moreover, the optimal value

b(z) := max{(y1,42) : (y1,92) € D(2)} (2.15)
is related to f(z) as indicated below:
[f ()] = |2l — 4 b(2). (2.16)

Proof. Take z € K; + K;. For every (y;,y2) € D(2), one has

1207 = Ty ll* + ly2ll” + 2(y1, o).

By combining this with the identity

lyall® + llyell” = llyr = well” + 2(y1, 1),

one gets

lyr — ll? = ||211> = 4(y1, y2)- (2.17)

It suffices now to take on both sides the minimum with respect to (y1,y2) € D(%). O
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3. Topological Properties of the Admissible Decomposition Mapping

One can see the least deviation problem (2.2) as a particular instance of a parametric
optimization problem. From this point of view, it is important to understand the behavior
of the optimal value (2.5) as a function of the “parameter” z € H. One would also like
to know how the set of optimal solutions depends on this parameter. To answer these
questions, it is helpful to study first the topological nature of the admissible decomposition
mapping D : H — H x H defined by the expression (1.2).

To start with, we record the following trivial result.
Proposition 3.1. Let K1, Ky € C(H). Then

(i)  the domain of the mapping D is dom D :={z € H : D(z) # ¢} = K1 + Ky;
(ii) the graph of D is a closed conver set in H x (H x H). In particular, for each
z € K1 + Ky, the set D(z) is closed and convez.

In general, the mapping D is not bounded-valued. This is due to the fact that no bound-
edness assumption has been made on the sets K; and K5. In connection with this issue,
we recall the following notions:

Definition 3.2. Let C be a nonempty closed set in some normed space (X, || - ||). Then

(i) C is said to be boundedly compact if every bounded sequence in C' admits a conver-
gent, subsequence;

(ii)) (cf. [11]) C is said to be asymptotically compact if every sequence {z,/||z.||}nen,
with z, € C and 731)11010 ||z, || = oo, admits a convergent subsequence.

(iii) (cf. [4]) The asymptotic cone of C, denoted by Rec C, is the cone consisting of all
limits lim t,c,, with {¢,} } 0 and ¢, € C.
n—oo

Remark 3.3. If the closed set C' is convex, then Rec C is the cone of all vectors v € H
such that x 4+ tv € C for every t € R, and x € C. Such a cone is sometimes denoted by
O*C (cf. Rockafellar [12, Section 8]). If the closed convex set C is boundedly compact,
then it is also asymptotically compact.

In the next lemma we do not look at the mapping D : H — H x H itself, but at its
“asymptotic” version z € H — [Rec D](z) := Rec D(z).

Lemma 3.4. Let K|, K, € C(H) and z € Ky, + Ky. Then (v1,v2) € [Rec D](z) if and
only if

0 = vy + v9, with vi € Rec K1 and vy € Rec K. (3.1)
Proof. Take any (vi,vs) € [Rec D](z). Since D(z) C K; x Ky, one has
[Rec D](z) C Rec(K; x Ks) C Rec Ky X Rec K.

Hence, v; € Rec K7 and vs € Rec K. Now, pick any (y1,y2) € D(z). We have (y1,y2) +
t(vl,w) € D(z) for all t € Ry, and in particular (y; —|— v1) + (y2 + v2) = 2. Hence
v1 + v = 0. Conversely, let v; and vy be as in (3.1). If (y1,92) € D(z), then clearly
(y1,y2) + t(v1,v2) € D(z) for all t € R,. This shows that (vi,v2) € Rec D(z). O



122 D. T. Luc, . E. Martinez-Legaz, A. Seeger / Least deviation decomposition

The condition (3.1) says that the pair (vy,v,) € H X H is a decomposition of 0 € H with
respect to the cones Rec K; and Rec K5. As an immediate consequence of Lemma 3.4,
one has:

Corollary 3.5. The mapping RecD : H — H x H 1is constant over its domain, i.e.
[Rec D](z) = [Rec D](2") for all z,2' € K| + K.

Corollary 3.6. Let K, K, € C(H). Then the following statements are equivalent:

(i) [RecD](z) ={(0,0)} for all z € K; + Ky;
(ii) [RecD](z) ={(0,0)} for some z € K| + K.
(iii) Rec K3 N —Rec Ky = {0}.

Now we can address the question relative to the boundedness of the mapping D.
Proposition 3.7. Let K1, Ky € C(H). Consider the following statements:

(i)  D(z) is bounded for all z € K1 + Kj;
(ii) D(z) is bounded for some z € Ky + Koy;
(iii) Rec K1 N —Rec Ky = {0}.

Then one has the relationship (i) = (ii) = (iii). Moreover, the above three statements
are equivalent if one assumes that either K1 or Ky is asymptotically compact.

Proof. The implication (i) = (ii) is obvious. To prove that (ii) = (iii), suppose that D(zp)
is bounded for some z; € K;+ K, and that there is a nonzero vector u € Rec K1N— Rec K.
Now, pick any (y1,%2) in D(2). In this case one has (y1,y2) + t(u, —u) € D(z) for all
t € R,. Obviously, this contradicts the boundedness of D(zp). To prove that (iii) =
(i) one needs a further assumption. Suppose, for instance, that K; is asymptotically
compact. Take any z € K; + K,. If D(z) was not bounded, one should have a sequence
{8 }en € D(2) such that nh_)nolo{Hy{‘H + [|[¥3||} = +oo. Because y} + yi = z for all

n € N, one must have
: njl _ 1: n|| __
Jim ly[| = lim Jlyz]| = +o0.

The asymptotic compactness of K; implies that {y7/||y?||}neny admits a subsequence
converging to some limit point u # 0. Let P C N be the index set of this subsequence.
Now, observe that

(73 z yr

ly2ll — w2l 2l

converges to —u as n — oo, with n € P. In this way we have shown that there is a
nonzero vector v € H such that © € Rec K; and — u € Rec K5. This fact contradicts
the assumption (iii). O

Remark 3.8. Since D(z) = {(y1,2 —v1) : y1 € K1 N (z — K3)}, the boundedness of D(z)
is equivalent to the boundedness of K; N (z — K3).
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Proposition 3.9. Let K1, Ky € C(H) be such that Rec K1 N — Rec Ky = {0}. Suppose
that either K; or Ky is asymptotically compact. Then, D maps bounded sets of H into
bounded sets of H x H, i.e.

D(B) := U D(z) is bounded whenever B is bounded .

2€EB

Proof. Suppose that K; is asymptotically compact, and let B be any bounded set in H.
If D(B) was not bounded, then one should have sequences {(y},y5)}neny and {2"},en
such that (y7,y3) € D(z"), 2" € B, lim,,of[ly7|l + [ly3]l} = +oo. Since 7 +y5 = 2"
and {z"},cn is bounded, one must have

lim {ly7]| = lim [[y5] = +oo.
n—oQ n—00

As in Proposition 3.7, one can show that there is a nonzero vector u € H in the set
Rec K1 N — Rec K5, a fact which contradicts our assumptions. O

Corollary 3.10. Let (H,|| - ||) be a Banach space, and let K, Ky € C(H) be as in
Proposition 3.9. Then, the mapping D is locally Lipschitz on int(K; + K,), i.e., for each
Z € int(K; + K5) there exist a neighborhood U C int(K; + Ks) of Z and a constant L > 0
such that

D(z) C D(2') + L||z = 2'||B for all z,7' € U,
where B = {(y1,y2) € H X H : ||ly1|| + ||y2l| < 1} is the unit ball in H x H.

Proof. Suppose K; + K5 has a nonempty interior, otherwise there is nothing to prove.
The inverse mapping of D is given by

D (1, ) = {vyi+y2}  if (y1,92) € K1 x Ko,
b [0) otherwise .

The graph of D! is a closed convex set in (H x H) x H. Also, by Proposition 3.9 we know
that D maps bounded sets of H into bounded sets of H x H. The Lipschitz property of
D follows then by applying Corollary 1 in Aubin and Cellina [1, p. 54]. O

Now we will discuss some continuity properties of the set-valued mapping D. The following
continuity notions are well known and can be found in standard references (cf. [1], [2]).

Definition 3.11. Let X and Y be two topological spaces. A set-valued mapping M :
X — Y is said to be lower- (resp. upper-) semicontinuous at T € X, if for every open set
V CY with VN M(z) # ¢ (resp. M(Z) C V), there is a neighborhood U of T such that
VN M(xz)# ¢ (resp. M(z) CV) forall z € U. M is said to be closed if its graph is a
closed set in the product space X x Y.

Proposition 3.12. Let Ky, K, € C(H). Then the following properties hold for the map-
ping D:

(i) D is upper-semicontinuous at any z € K; + Ky, provided at least one of the sets
K1, Ky is boundedly compact and RecK; N — Rec Ky = {0};
(ii) D is lower-semicontinuous at any z € int Kq + int Ks.
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Proof. To prove the statement (i), we consider any particular z € K; + K,. If D
was not upper-semicontinuous at z, then there should exist an open set V C H x H
containing D(Z), a sequence {2"},cn converging to z, and a sequence {(y7, y%)}nen such
that (y7,y%) € D(z"), (yt,y5%) ¢ V. Suppose, for instance, that K; is boundedly
compact. In this case, K; is also asymptotically compact and we can apply Proposition
3.9 to show that {y?},en is bounded. Moreover, we may suppose that a subsequence
{y}}nep converges to some y; € K;. Hence, yj = 2™ — y} converges to y, :=Z — y; € Ko
as n — oo, with n € P. The convergence of {(y7,y5)}nep towards (yi,y2) € D(Z)
contradicts the fact that (y7,y5) ¢ V for all n € N.

To prove the statement (ii), consider any particular Z € int K; +int K. Let V; and V5 be
two open sets in H such that V; x Vo N D(Z) # ¢. Take any (%, %2) in this intersection,
ie. yr € KiNVy, g € KoNVyand 41 + 9o =2Z.  We need to construct a neighborhood
U of Z such that V; x Vo N D(z) # ¢ for all z € U. For this purpose, we decompose Z
in the foorm 2z =7, +7¥,, with 7; € int K; and 7, € int K. We may suppose that the
decomposition (y,,7,) is close enough to (71, %) so that

{(y1,92) € H x H = ||(y1,y2) — (G, @) || < |(@1,%2) — (G2, Go)[|} € Vi x Vo (3:2)
Indeed, if the inclusion (3.2) does not hold, then we replace (¥, 9,) by the decomposition
(i, 95) = (L —t) (1, B2) + t(T1,%a), t €]0,1[.

In such a case, we have
zZ =19y + 9., with yf € int K| and y € int Ko,

and the new ball centered at (71, %2) has a radius

(v, 5) — (@, G2)l = @1, 72) — (@1, 52)l,

that is to say, a radius which can be made as small as desired by choosing ¢ close to 0. So,
we suppose that (3.2) holds. In this case there is a positive number € with the property
that

{(y1,92) € H X H : ||(y1,52) — (11, Vo)l < €} C (K1 x K) N (Vi x V).

Define a neighborhood U of Zby U :={z € H: ||z—Z|| < €}. Now, for every z in this
neighborhood, we consider the pair (y;,y2) given by

Z—z _ zZ—z
y1:y1+ .

9 7 y2:y2+

Observe that y; + y2 = 2, and

_ Z—Z z2—2Z2 _
o) = Gumoll = | (255557 )| =t <

Hence, (y1,y2) € Vi x Vo N D(z). This proves the lower-semicontinuity of D at Z. O
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Remark 3.13. If (H,| - ||) is a Banach space, then one can invoke Robinson-Ursescu’s
theorem to prove that D is lower-semicontinuous at each z € int(K; + K3). Indeed, the
inverse mapping D! has a closed convex graph. Hence, D is lower-semicontinuous on
the interior of its domain, cf. Theorem 1 in [1, p. 54].

Remark 3.14. Proposition 3.12 (ii) is of interest only if the sets K; and K, have interior
points. For instance, in Example 1.3 one has

int K1 ={A €S, : A is positive definite },
int Ko = {B € S,, : B has only positive entries }.

Example 1.2 is more involved. If DC(f) is equipped with the norm
[ £lloo = Max| f(z)],
then int K; = int K5 = (). One may think also of the norm (cf. [15])

= inf M ) h I
171 = inf Max{lgllee , [1c}

but once again K; and K, fail to have interior points. If one defines
K;:={g:Q — R:g is convex and of class C*} ,
Ky :={h:Q — R: his concave and of class C°} ,

then the vector space K; + K, can be equipped with the usual C?-norm
1flle2e@) = [I.flloo + I1fllo + 1/ lo0 5

the meaning of each term being clear from the context. In this favorable setting, both
cones K; and K5 have interior points.

The interiority condition in Proposition 3.12 (ii) can not be omitted: notice that, according
to Definition 3.11, D : H — H x H is not lower-semicontinuous at any point in (K; +
Ky)\ int(K; + K3). Even the restriction of D to dom D = K; + K, may fail to be lower-
semicontinuous at boundary points of dom D (in this case, of course, dom D is equipped
with the topology induced by the normed space H). To see this, consider the case when K
is the convex hull of {(z,0,2) € R*: 2+ (2 +1)*=1, >0, z > —-1}U{(0,1,0)}, and
K, is the segment with endpoints (0,0, 0) and (0, —1,0). The restriction of D to K;+ K is
not lower-semicontinuous at (0,0, 0), because D(0,0,0) = {(0,¢,0),(0,—%,0): t € [0,1]},

while D(t, —t,v/1—1> —1) = {(¢,0,v1 — > — 1), (0, —¢,0) } for ¢ close to 0.

According to the statement (i) in Proposition 3.12, the upper-semicontinuity of D requires
some additional assumptions on the sets K;, Ky € C(H). The next example shows that
the upper-semicontinuity of D can no longer be ensured if none of the sets Ki, K, is
boundedly compact.

Example 3.15. Let us consider the space of sequences H = ¢? equipped with the norm

o 1/2
|zl = [Z |$z|2] , T = (x1,%9,...) € H,
i=1
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and K := {z € H: |z|| < landz; > 0, ¢ = 1,2,...}. The sets K; = K and
K, = —K are closed convex and bounded. Hence Rec K; = Rec K3 = {0}. Observe that
Rec K1 N — Rec Ky = {0}, but neither K; nor K, is boundedly compact. We will show
that D is not upper-semicontinuous at the point z = (1/2,0,0,...) € K; + K,. For each

(y1,12) € D(Z) one has (y1); < V/3/2 and (y2); > —/3/2 for i > 2. Let us define

1 3 1 3 1\°
Vi = {er:—§<x1<—, ——<mi<£+<—>, i:2,3,...},

2 2 2 2
3 1 V3 (1Y 1
Vo = {.’L’EHI—§<£L’1<§, —7—<§> <xi<§, 7,22,3,...},

so that V1 x V5 is an open set in H x H which contains D(Z). Now consider the sequence
L _
2

every set D(z") contains a pair {(y}, y5)} which is not in V; x V,. To see this, observe
that for each n > 2 one can find a large ¢ such that

{#"}>2 whose general term is 2" = ( %, 0,0,.. ) This sequence converges to z, and

- [ (;_;)T” VL)

So, we define y7 € K; as the vector having % — % as first coordinate, s, as i-th coordinate,
and 0 elsewhere. The coordinates of y§ € K are all 0, except the i-th coordinate which

is —sy,.

The next example shows that the upper-semicontinuity of D can no longer be ensured if
one drops the assumption Rec K; N — Rec Ky = {0}.

Example 3.16. In H = R?, consider the sets K; = Ry x {0} and K, = R_ x R_. Both
sets are boundedly compact, but Rec K1 N —Rec Ky = Ry x {0} # {(0,0)}. The mapping
D fails to be upper-semicontinuous at z = (0,0). To see this, consider the open sets

1
Vi = € R?*: <——— 11> -1p, Vo =-V.
1 {(351,%2) \$2\ 1+ 2 T } 2 1

One can see that D(z) = {((«,0), (—,0)) : « € R, } is contained in V; x V5. Consider
now the sequence {2"},ecn given by 2" = (0, —%) This sequence converges to z but
D(z") = {((,0), (—a,—%) : @ € R, } is not contained in V; x V.

In many applications the condition Rec K1 N — Rec Ky = {0} does not hold, and therefore
the mapping D may fail to be upper-semicontinuous. However, a property slightly weaker
than upper-semicontinuity can be expected.

Definition 3.17 (cf. [3], [8]). Let X and Y be two normed spaces. A set-valued map-
ping M : X — Y is said to be upper-hemicontinuous at z € X if for all ¢ > 0 there is a
neighborhood U of 7 such that M(xz) C M(Z) + eBy for all z € U, where By denotes the
closed unit ball in Y.
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Proposition 3.18. Let K1, Ky € C(H). Suppose there are a compact set A C K; x Ko
and a neighborhood U of Z € K1 + Ky such that

D(z) C A+ RecD(z) forallzeU. (3.3)
Then D 1is upper-hemicontinuous at Z.

Proof. Suppose to the contrary that D is not upper-hemicontinuous at z. Then, there ex-
ist a positive number ¢, a sequence {2"},cn converging to Z, and a sequence {(y7, y5) }nen
such that

(y1,y5) € D(2"), and (y7,93) € D(z) +€eB foralln € N,
where B is the unit ball in H x H. It follows from the condition (3.3) that
(W7, y3) = (a7, a3) + (v, v3), with (af,a3) € A and (v, v5) € Rec D(2").

By using Lemma 3.4 one gets 2" = y' +y5 = al +aj. We may assume that {(a}, a}) }nen
converges to some (a;,as) € A. Hence, Z = a; + ag, with a; € K; and as € K», that is to
say, (a1, a9) € D(Z). Now, consider the set

Q = {(a1,a9) + (v7,v5) : n € N}

Since the mapping Rec D is constant over its domain (cf. Corollary 3.5), each (v}, v})
belongs to Rec D(z). Consequently, the set @) is contained in D(Z), and the distance from
(y?,y%) to D(Z) can be estimated as follows:

dist[(47, 95); D(2)] < dist[(y7, y5), (a1 + 07, a2 + v3)] < dist[(a7, a3), (a1, a2)].

So, dist[(y7,vy5); D(Z)] converges to 0, contradicting the fact that {(y}, %) }neny remains
away from D(Z) + eB. O

Next on our agenda is a discussion on the continuity properties of the optimal value
function f and the set of optimal solutions to the least deviation problem (2.2). Such a
discussion is the object of the coming section.

4. Continuity of Optimal Values and Optimal Solutions

The purpose of this section is to study the continuity of the least deviation function
f : H — [0,400]. By definition, f is the optimal value function associated to the
parametric program (2.2), i.e.

i — : D if K| + K.
F(2) = inf{{[y1 — voll : (y1,92) € D(2)} ifze .1 + Ko, (4.1)
400 otherwise .
We will also study the behavior of the set of optimal solutions
S(z) =A{(y1,52) € D(2) : ly1 — v2ll = f(2)} (4.2)

as a function of the parameter z € H.
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Proposition 4.1. Let K1, Ky € C(H). Then,

(i)  f is upper-semicontinuous at any z € int Ky + int Ky;
(ii)  f is lower-semicontinuous at any point Z € Ky + Ky at which D is upper-hemicon-
tinuous (cf. Proposition 3.18).

Proof. The first assertion is by the classical Berge’s theorem and by Proposition 3.12
(ii). For the second assertion, let D be upper-hemicontinuous at zZ € K; + K, and let
{2"}nen be a sequence in K 4+ K, converging to Z. We have to show that
f(Z) < liminf f(2"). (4.3)
n—oo
Let € be an arbitrary positive number. Due to the upper-hemicontinuity of D, there exists

an integer ng such that D(z") C D(z) +eB x B for all n > ng, where B is the closed
unit ball in H. A simple calculation shows that

f(z")

inf{|ly1 — vall : (v1,%2) € D(2")}

inf{[ly; — wall : (y1,%2) € D(Z) + ¢B x B}

inf{|ly1 — yo| — €llvr — w2l : (41,92) € D(2), (v1,v2) € B x B}
f(Zz) — e-diam B,

AVARAY

where diam B = sup{||vy — vo|| : v1,v2 € B} =2 < 400. Since € is arbitrary, we obtain
(4.3) and complete the proof. O

Proposition 4.2. Under the same assumptions as in Proposition 3.9, the least deviation
function f maps bounded subsets of K1 + Ky into bounded subsets of R..

Proof. It is immediate from Proposition 3.9. 0

Remark 4.3. The assumption Rec K; N — Rec Ky = {0} is essential in the statement of
Proposition 4.2. To see this, consider the case in which H = R?, K; = {(x1,1,) € R? :
x1 >0, x1-29 > 1}, and Ky = {0} x R_. One can check that ]0, 1] x {0} is a bounded subset
of Ky + Ks, but f(z1,0) goes to +oo as z; > 0 decreases to 0. The lack of boundedness
of f(]0,1] x {0}) is due to the fact that Rec K1 N — Rec Ky = {0} x R, # {(0,0)}.

We now turn our attention to the set of optimal solutions to the problem (2.2). The
elements of S(z) are nothing else but the least deviation decompositions of z.

In some special instances, it may happen that S is empty-valued at a given point z €
K, + K,. For this reason it helps sometimes to consider an enlargement of the set S(z),
namely

Se(z) == {(y1,52) € D(2) : [ly1 — w2 < f(2) + €} (4.4)
Here € is any nonnegative real number. With the choice ¢ = 0 one recovers, of course, the

set S(z). Each element of S.(z) is called an e-least deviation decomposition of z.

Proposition 4.4. Let K1,K, € C(H) and ¢ € R,. Then, for each z € K; + Ko,
Se(2) € H x H is a convez closed bounded set.
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Proof. Clearly Sc(z) is convex and closed. If (y1,92) € Sc(2), then

1291 — 2l = lly1 — 2ll < F(2) +¢

12 = 292l = [lyn = %ell < f(2) + ¢,

and consequently

max{{lyll [vell} < 5 12l + £(2) + ).

This proves that
(e, y2)ll == Nlyall + llwall < llzll + f(2) + € (4.5)
that is to say, S(z) is contained in a ball of radius r(¢, z) := ||z|| + f(2) + €. O

Proposition 4.5. Let Ky, Ky € C(H). Then, the set-valued mapping (¢,z) € Ry X H —
Se(z) is closed at any (€,Z) € Ry x (int Ky +int Ky). In particular, for any fized € € R,
the mapping z € H — S¢(z) is closed over int K; + int Ks.

Proof. Consider any particular (€,z) € R, X (int K; + int K5). Let the sequences
{7, v8) Ynen, {z" }nen, and {€,}nen converge to (¥;,7,), z, and €, respectively, and be
such that (y7,y%) € S, (2") for all n € N. From Proposition 3.1 (ii) it follows that
(¥1,92) € D(2). From the inequality |3 — y5]| < f(2") + €, one gets [[7, — P, <
limsup,,_,., f(2") + € But, according to Proposition 4.1 (i), the function f is upper-
semicontinuous at z. Thus, ||7; — ¥,|| < f(Z) + €. This proves that (7;,7,) € Se(2). O

Proposition 4.6. Suppose that at least one of the sets K1, Ky € C(H) is boundedly
compact. Then, the set-valued mapping (€,2) € Ry x H — S¢(z) is upper-semicontinuous
at any (€,z) € Ry X (int Ky + int K>). In particular, for any fized € € Ry, the mapping
z € H — S.(z) is upper-semicontinuous over int K; + int Ks.

Proof. Consider any particular (¢,Z) € Ry x (int K; + int K5). Suppose to the contrary
that S is not upper-semicontinuous at (€,%Z). In this case one can find an open set V C
H x H containing S:(Z), a sequence { (e, 2")}nen converging to (€,z), and a sequence
{7, y5) }nen such that

W1, 43) € S, (2"), (W1, 03) ¢ V.

By using the inequality (4.5) and the upper-semicontinuity of f at z € int K; + f K>, one
concludes that {(y}, y5) }nen is bounded. Due to the bounded compactness assumption,
we may suppose that {(y?, y5)}nen admits a subsequence {(y7, y¥) }nep Which converges
to some (y,,7,). Proposition 4.5 implies that (7,,7,) € Se(Z), contradicting the fact that
{(yT, y%) }nen lies outside the open set V. O
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5. Subdifferential Analysis of the Least Deviation Function

Continuity properties of the function f have been examined in Section 4. Now we explore
the first-order behavior of f around a reference point, say z € Ky + K,. To carry out this
analysis we rely on the following representation of the least deviation function:

f@) =, b (L@ )l + Y (41, 92)} (5.1)

1,Y2)=

Here 9i stands for the indicator function of the set K, i.e.

Yi(p) =

0 ifpe K,
+00  otherwise .

The continuous linear operators A: H x H —- H and L : H x H — H are defined by
A(y1,v2) = y1 + y2 and L(y1,¥2) = y1 — ¥, respectively.

Directly from the representation (5.1) it follows that:

Proposition 5.1. The least deviation function f: H — [0, +00] is convex.

Proof. f is the image of the convex function

(y17y2) €EHXHw m(ylayQ) = ||L(y17y2)|| +¢K1><K2 (ylayZ)

under the linear operator A; cf. [12, p. 38]. O]

First-order information on the behavior of the convex function f is captured by the
subdifferential mapping 0f : H — H*. The subdifferential of f at a given point zZ €
K, + K, is defined by

0f(z) ={we H" : f(2) > f(Z) +(w,z—Z) forall z € H}. (5.2)
Some comments on the notation are in order. In this section we suppose that (H, ||-||) is
a reflexive Banach space, H* is the topological dual of H, and (-,-) : H* x H — R stands
for the duality pairing between H and H*. The notation || - ||, refers to a norm in H*
which is dual to || - ||, i.e.
lw]ls = sup (w,h) and [|b]| = sup (w,h). (5.3)
lIn[I<1 [|w]l-<1

It is our intention to derive a formula for computing the subdifferential 0f(%). In fact, we
will obtain a formula which applies to a whole family {0.f(Z) : € € R, } of sets including
0f(Z) as a particular case. Given a number ¢ € R, one defines the e-subdifferential of f
at Z as the set

0.f(z) ={we H" : f(z) > f(zZ) + (w,z2—Z) —e forall z€ H}. (5.4)
Recall that if p belongs to the set K € C(H), then
OYr(p) ={w € H* : (w,p—p) < ¢ forallpe K}

is referred to as the set of e-normal directions to K at p; see, for instance, Hiriart-Urruty

[5].
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Theorem 5.2. Let (H,||-||) be a reflexive Banach space and let K1, Ko € C(H). Suppose
zZ € K1 + Ky admits (Y,,7,) as a least deviation decomposition. Then, for every e € R,
one has

aef(z) = U U {[u + a0417va1 (yl)] N [_u + aazwlﬁ (ZQ)]} ’

€120,62>0  ueM(er)
€1tea=€  q;>0,a2>0
a1 taz2=€3

where M(e1) :={u € H*: ||u|l. <1, (u, 5, —7y) > f(Z) — €1}

Proof. Let (¥;,7,) € S(Z). The e-subdifferential at z of the function
z € H = f(2) = inf{m(y1,92) : A(y1,92) = 2}
is given by
0.f(Z) ={w e H" : A"w € 0.m(y,,7,) } (cf. [5], [16])

where A* : H* — H* x H* denotes the adjoint operator of A, i.e. A*w = (w,w). By
applying general calculus rules on e-subdifferentials, one gets

6em(y17y2) = U {L*aﬂ” ) ”(L(ghy2)) + 862¢K1><K2(y17y2)} :

€120,e22>0
€1+€ea=¢

But,

L0 || - (L1, 92)) = {(w,—u) € H* X H" s u € Oq || - |1 — V2) }
= {(u,—u) e H* x H": |lull. <1, (u, 7, = 72) > f(2) — er},

and

8€2¢K1><K2(ylay2) = U {8011/11(1 (g) X 8062"/11(2(@2)}'

a120,a320
a1 taz=€3

Therefore, w € 0.f(z) if and only if there exist (e1,6) € Ry X Ry, (a1, a0) € Ry X Ry,
and u € H* such that

€1+ € =€ a1ty =¢€, UE M(el)a (w —u,w +U) € aalq/}Kl(yl) X aa2¢K2(yZ)'

To complete the proof it suffices to write the last condition in the form

w e [u + 3(11le (gl)] N [_u + a042 wKz (gQ)] :
[

Remark 5.3. The formula stated in Theorem 5.2 can be written in several equivalent
ways; for instance,

of@= U At 0tk @)N[~u+ dutbr 7))} (5.5)

a1 20,a22>0
a1 +az2<e
uEM(e—a1—a3)

The choice ¢ = 0 yields a formula for the (exact) subdifferential of f at zZ. This case
deserves to be recorded as a separate result. The notation Nk (p) := 09k (p) refers to the
normal cone to K € C'(H) at the point p € K.
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Corollary 5.4. With the same assumptions as in Theorem 5.2, one has the formula

0f() = |J {lu+ N, @) N [—u+ Nk, @)1}, (5.6)
where
M:={ue H" :|lull. <1, (u,y, —¥) = f(z)}. (5.7)

Further simplifications in the formula (5.7) occur in the cases described below.

Corollary 5.5. With the same assumptions as in Theorem 5.2, one has:

(i) Ifze€2(KiNKy), then f(Z) =0 and

ore = U {us ma (2)] 0 o e (2]

(il) Ifz ¢ 2(K1 N Ksy) and if the norm || - ||+ is strict, then M contains a single element,
say u, and

0f(2) = [U+ N, ()] N [T + Ny (35)] - (5-8)

6. Miscellaneous Results
6.1. Optimality Conditions

Techniques of convex analysis have been used in the previous section to derive a formula
for the subdifferential of the least deviation function. In fact, convex analysis provides us
with useful tools for handling several questions related to the least deviation problem (2.2).
By way of example, we record below a characterization of the set of optimal solutions to
(2.2).

Theorem 6.1. Let (H, || - ||) be a reflexive Banach space. Let Ki,Ky € C(H) and Z €
int K1 +int Ky. Then, the following statements are equivalent:

(1) (¥1,Ys) is a least deviation decomposition of Z;
(ii) ¥, +7, =7 and there is some u € M such that

[u+ N, ()] O [=u + Nie, (92)] # ¢-

Proof. We use the same notation as in the proof of Theorem 5.2. Under the “constraint
qualification” assumption zZ € int K; +int K5 , the standard optimality conditions for the
convex minimization problem

Minimize{m(y1,y2) : A(y1,y2) = Z} (6.1)
are as follows: (7;,7,) is an optimal solution to (6.1) if and only if

{ A, 7,) = 7,
Range A" N Om(y,,7,) # ¢-
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The second condition in (6.2) says that the set
om(Y,,Y) = {(u, —u) 1w € M} + Nk, (¥1) X N, (¥2)
intersects the diagonal Range A* = {(w,w) : w € H*}. This amounts to saying that
(w—u,w+u) € Nk, (1) X Nk, (¥2) (6.3)

for some w € H* and u € M. Now it suffices to observe that (6.3) can be written in the
form w € [u + Nk, ()] N [—u + Nk, (5)]- O

Corollary 6.2. Let H, Ky, Ky, and Z be as in Theorem 6.1. Then the least deviation
function f is subdifferentiable at Z in the sense that Of(Z) # .

6.2. Duality

The next topic addressed in this section also lies within the realm of convex analysis.
Recall that the Legendre-Fenchel conjugate of f is the function f* : H* — RU {400}
given by

fr(w) :=sup{{w, z) — f(2)} forallwe H".

z€EH
The following proposition provides a formula for f* when f is given by (4.1).

Proposition 6.3. Let H, K, K5 be as in Theorem 6.1. Then, for all w € H*, one has
frw) = inf {¥k, (w—u)+ vk, w+u)}, (6.4)

[lul[«<1

where ¥y, and Y, denote the support functions of K1 and Ko, respectively.

Proof. For all w € H*, one has

ra = s fwn - il )

zeK1+K> (y1,y2)€D(2
= sup sup {{w, 2) = [y — w2}
2€EK1+K2  (y1,92)€K1 XKy
Yy1+y2=2

= sup {w, 1 + ) — |lyr — wall}-
(y1,y2)EK1 X K>

Since  |ly1 — yall = supyy, <1{u; y1 — y2), one obtains

[f(w) = sup inf {{w,y1 +y2) — (u, y1 — ya)}.
(y1,y2) €K1 x Ko [[ull«<1

But, in the above expression, it is possible to exchange the order of the supremum and
the infimum (cf. [14]). Thus

ff(w) = inf sup {{w,y1+y2) — (u,y1 — y2)}
HUH*SI y1 €K,
y2€K>

= inf { sup (Y1, w — u) + sup (Yo, w —|—u>}
[Jull« <1 Y1€K1 Yy2€K>

This completes the proof of formula (6.4). O
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6.3. Minimization of f

Consider now the question of the minimization of the least deviation function f. In the
next proposition we derive a simple expression for computing the infimal value of f.

Proposition 6.4. Let K|, Ky € C(H). Then, the infimal value of f over H is equal to
the gap between the sets K1 and K, i.e.

inf f(z) = 6(Ky, Ko) := inf{|lys — vo|| : 1 € K1, 42 € Ky} (6.5)

z2€EH

Proof. As a matter of direct computation, one has:

f = inf  inf —
BEIC) = e (=l + v+ 1 = 2)}
Y2 2

= inf inf {||y1 Yol| + Vg3 (1 + 12 — 2)}

Y1 €K 2EK1+ K>
y2€K>

Now, observe that the inner infimum is attained at z = y; + y5. This shows that i%f fis

equal to §(Ky, K>). O

A different expression for irbl[f f is obtained by using the duality formula (6.4).

Proposition 6.5. Let H, Ky, K5 be as in Theorem 6.1. Denote by

Whnin (K1, K3) := inf {101(1 u) + Yk, (u )}

llull«<1
the minimal width of the pair (K1, K3). Then

inf f( ) Wmin(Kla KQ) (66)

2€H

Proof. The result follows from Proposition 6.3. It suffices to take w = 0 in the formula
(6.4). O

7. Decomposing With Respect to Moving Sets

This rather technical section deals with the algorithmic aspect of the decomposition prob-
lem. In many applications one has to consider an “approximate” version of the decom-
position problem, namely

z =11 + Yo, with y; € K7 and yy € KJ. (7.1)

Here {K7},en and {KJ},cn are sequences of simple structured sets which serve to ap-
proximate K; and Ks, respectively. In what follows, the notation

D™"(z) @ ={(y1,92) € KT x K} 1 y1 +y2 = 2}, (7.2)
frz) + =inf{llyr — gl : (y1,42) € D"(2)}, :
S*(z) = ={(y,92) € D"(2) : llyr — wall = " (2)}, (7.4)



D. T. Luc, . E. Martinez-Legaz, A. Seeger / Least deviation decomposition 135

will refer, respectively, to the admissible set, the optimal value, and the set of optimal
solutions to the approximate problem

Minimize{[[y1 — v2| - (41, 92) € D"(2)}. (7.5)

The specific goal of this section is to examine the limiting behavior of D™(z), f™(z), and
S™(z), as n goes to +oo. Here z is no longer regarded as a parameter, but as a fixed
element in H. The qualitative behavior of the sequences { K" },ecn and {K7 },en will be
expressed in terms of standard convergence notions.

Definition 7.1 (cf. [7], [3]). Let {K™},cn be a sequence of sets in C'(H). The lower
and the upper limits of { K™},cn are the sets defined by

liminf K" := {p € H : p=Ilimp", p" € K" for alln € N},
and

limsup K" :={p€ H:p= limp", p" € K" forallne N C N},
nenN’

respectively. If lim inf K™ = lim sup K", then the common limit is denoted by lim K™ and
one says that {K"},cn is convergent in the sense of Painlevé-Kuratowski.

Proposition 7.2. Let K1, Ko, KT, K3 € C(H) be such that

limsup K C K; and limsup K3 C K. (7.6)

Then,
limsup D™(z) C D(z) for all z € K1 + Ko. (7.7)
Proof. It is immediate. 0

Proposition 7.3. Let K1, Ko, KT, Ky € C(H) be such that

int(K; x Kp) € | () int(KT x K7). (7.8)
meN n>m
Then,
D(z) Climinf D"(z) for all z € int K + int K. (7.9)

Proof. Suppose that int(K; x K3) is nonempty, and take z € int K + int K5. Pick up
any pair (y1,y») in D(2). To prove that (y;,y2) € liminf D™(z), we consider first the case
(y1,y2) € int(K; x Ks). The assumption (7.8) implies that there is some integer m € N
such that

(y1,92) € int(KT x K3)  for all n > m.

Hence (y1,y2) € D™(z) for all n > m, and, consequently, (y1,y2) € liminf D"(z). Consider
now the case (y1,y2) ¢ int(K; x K3). Decompose z in the form z = 7, +7, with 3, € int K
and 7, € int K5. For each ¢ €]0, 1], the new pair

(yfa ?Jé) =1 =t)(y1,92) + (U1, Y)



136 D. T. Luc, . E. Martinez-Legaz, A. Seeger / Least deviation decomposition

belongs to D(z) Nint(K; x K3). As we have seen before, this implies that (y!,v) €
lim inf D™(z). Since the set lim inf D"(2) is closed, it follows that

(Y1, 92) = %ij)%(yia y5) € liminf D"(z).

O

Remark 7.4. Proposition 7.3 can be proved also by using general results on the inter-
section of two lower-semicontinuous set-valued mappings.

Corollary 7.5. Let H be a finite dimensional space. Let K1, Ky, K", K} € C(H) be such
that

K; Climinf K" and K, Climinf K7. (7.10)
Then,
D(z) C liminf D"(2)  for all z € int K + int K.

Proof. In view of the preceding proposition, we need only to show that the inclusion
(7.8) holds. Take any (7;,7,) € int(K; x Ks). If (7,,7,) were not in the set appearing on
the right hand side of (7.8), then for all m € N there would be some n > m such that

(1, 7,) ¢ int(KT' x K3). (7.11)

Let n(m) be the smallest integer greater than m such that (7.11) holds. For each n in the
index set N’ := {n(m) : m € N} one can separate (,,7,) from the convex set KJ' x K,
that is to say, one can find a normalized vector w™ = (w}, wy) € H* x H* such that

(w", M1, 72)) = (" (y1,92))  for all (y1,42) € KT x K.

We may assume that {w™},cn converges to some w = (wq,ws) # (0,0). Hence,

(w, (@1, %2)) = (w, (y1,92)) (7.12)

for all y; € liminf K7 and y, € liminf K2'. Due to the assumption (7.10), the inequality
(7.12) holds, in particular, for all y; € K; and y, € K. This contradicts the fact that
("1, 7s) € int(K; x K>). O

The next proposition describes the limiting behavior of the sequence {f™(z)}ncn. Recall
that { K" },cn is said to be uniformly compact if all the sets K", n € N, are contained
in some common compact set.

Proposition 7.6. Let K1, Ko, K", Ky € C(H). Then,
(i) If (7.6) holds, and if either {K}}pen or { K3 }nen is uniformly compact, then

f(z) <liminf f*(z)  for all z € K; + Ko;
(ii) If (7.8) holds, then

limsup f"(z) < f(z) for all z € int K; + int K.
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Proof. Part (ii) follows from Proposition 7.3. The proof of the part (i) is based on
Proposition 7.2 and the following fact: If limsup D"(z) C D(z), and if either {K7},en
or { K%} en is uniformly compact, then for every e > 0, there is an integer ny € N such
that D"(z) C D(z) + eB x B for all n > ng, where B is the closed unit ball in H.
Thus, we are in the same kind of situation as in the proof of Proposition 4.1 (ii). O
Finally, we discuss the limiting behavior of the sequence {S™(2)}nen-

Proposition 7.7. Let the sets K1, Ko, K", K € C(H) be such that (7.6) and (7.8) hold.
Assume that either { K]} pen or { K3 }nen is uniformly compact. Then,

limsup S™(z) C S(z) for all z € int K + int K. (7.13)

Proof. Let z € int K7 + int Ky and (y1,y2) € limsup S™(z). Then, for some index set
N'" C N, one can write

(yla 112) = }l_glo (y?a yg)a
neN’

with
(yt,y3) € D™(2) and f™(z) = ||yf — y5|| for all n € N' C N.
But, Proposition 7.2 shows that (y1,y2) € D(z), and Proposition 7.6 yields

f(z) = lim f"(z) = lim f*(z) = [ly1 — v2|-

neN neN'

In this way one proves that (yi,y2) € S(2). O

8. Decomposing With Respect to Cones

In a wide range of decomposition problems, the underlying sets K; and K, turn out to
be cones. This section examines this particular case more closely, and establishes some
links with the earlier work by Martinez-Legaz and Seeger [9].

In what follows we denote by Q(H) the class of closed convex cones in the space H. Our
first two results concern the mapping D.

Proposition 8.1. If K; and Ky belong to Q(H), then the graph of D is a closed convez
cone in H x (H x H).

Proof. It is immediate. ]

Proposition 8.2. Let (H, | -||) be a Banach space, and let K1, Ky € Q(H) be such that
K1+ Ky = H. Then, the set-valued mapping D is Lipschitz, i.e. there is a constant L > 0
such that

D(z) C D(Z")+ L||z = 2'||B for all z,2' € H,
where B s the unit ball in H x H.

Proof. Apply Corollary 3 in Aubin and Cellina [1, p. 55]. O
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Next we state some results related to the least deviation function f.
Proposition 8.3. Let Ky, Ky belong to Q(H). Then, the least deviation function f is
positively homogeneous.

Proof. It is immediate. ]

By combining Propositions 5.1 and 8.3, one sees that f is a sublinear function. Therefore,
the lower-semicontinuous hull ¢/f of f is a support function. More precisely, if K~ :=
{€ € H*: (¢,p) <0 for all p € K} denotes the negative dual cone of K, then one has:

Proposition 8.4. Let (H,| - ||) be a reflerive Banach space, and let K, K, € Q(H).
Then,

[cl fl(2) = ¥ (2) :==sup({w, z)  for all z € H,

weN
where

Q= |J {u+ K ]n[-u+K,]} (8.1)

[lull«<1

Hence, the Legendre-Fenchel conjugate f* of f is equal to the indicator function of the set
Q.

Proof. The lower-semicontinuous hull of the sublinear function f coincides with the
support function of the set 2 = 0f(0). Now, observe that (,,7,) = (0,0) is a least
deviation decomposition of Z = 0. Formula (8.1) follows directly from Corollary 5.4.
Finally, the Legendre-Fenchel conjugate f* is given by  f* = [¢f f]* = [0 = Y. O

Further information on f can be derived under additional assumptions regarding the
relative positioning of the cones K; and Ko.

Proposition 8.5. Let (H,(:,-)) be a Hilbert space, and let K1, Ky € Q(H). If the cones
Ky and Ky are mutually obtuse in the sense that

(y1,92) <0 for all y, € K1 and y, € Ky,
then
2|l < f(2) for all z € Ki + K. (8.2)

The converse 1s also true.

Proof. Let z € K; + K,. Mutual obtusity implies that

b(z) == max , <0.
(2) (m)eD(z)(yl ya) <

It suffices now to apply the identity (2.16). To prove the converse, suppose that (8.2)
holds, and that (y;,y2) > 0 for some pair (y;,y2) € K; X K. In this case,

Flyr +y2) <l — vell < llya + vl

which is clearly a contradiction. O
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Proposition 8.6. Let (H,(-,-)) be a Hilbert space, and let K1, Ky € Q(H). Then z
admits an acute decomposition, i.e. there is some (y1,y2) € D(2) such that (y1,y2) > 0,

if and only if  f(2) < ||z|l-

Proof. The existence of an acute decomposition of z is equivalent to b(z) > 0. The
inequality f(z) < ||z|| follows then from the identity (2.16). O

The next theorem deals with the case in which K; and K5 are two mutually polar cones
in a Hilbert space (H, (-,-)), i.e. K1 = K; and Ky = K; . This is a particular instance of
a pair of mutually obtuse closed convex cones.

Theorem 8.7. Let (H,(-,-)) be a Hilbert space, and let K;, Ky € Q(H). Consider the
following assertions:

(i) K and Ky are mutually polar;

i f=1-1

(iii) for each z € H, there is a decomposition (y1,y2) € D(z) such that |y1 — yaf| = ||2|[;

(iv) each z € H admits a decomposition (y1,y2) € D(z) satisfying the orthogonality
condition (y1,ys) = 0.

Then, one has the relationship (i) < (ii) = (iii) & (iv).

Proof. (i) = (iv). This implication corresponds to a celebrated theorem due to Moreau
[10]. In fact, the decomposition mentioned in (iv) is unique, and it is known as the Moreau
orthogonal decomposition of the given z € H.

(iii) < (iv). It follows from the identity (2.17). We note, incidentally, that a decompo-
sition like in (iii) is necessarily unique. In fact, it coincides with the Moreau orthogonal
decomposition.

(i) = (ii). The Minkowski sum of the cones K; and K, is the whole space H. Take any
z € H. From Proposition 8.5 we know that ||z|| < f(z). To prove the reverse inequality,
it suffices to show that z admits an acute decomposition (cf. Proposition 8.6). But, this
is clearly the case since the Moreau orthogonal decomposition is acute.

(il) = (i). According to Proposition 8.5, the condition f(z) = ||z|| implies that K7 C K5
and Ko C K;. Let us prove, for instance, the reverse inclusion K, C K;. Take any
z € K5 and let (y;,y2) be a least deviation decomposition of z. Then

1 = yell = f(2) = Izl = lly1 + v2l|-
Hence, (y1,y2) = 0 and
0 < |lvall® = (ya, y2) = (1 + ¥2, ¥2) = (2, 92) < 0.
It follows that y, = 0 and 2 = y; € K;. This proves the inclusion K; C Kj. O

Remark 8.8. That K; and K, are cones has not been used in the previous three results.
In fact, Theorem 8.7 and Propositions 8.5 and 8.6 apply to arbitrary sets in C(H).
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We end this paper by mentioning in an explicit way one of the most important conclusions
of Theorem 8.7:

“If Ky and K5 are mutually polar cones in a Hilbert space H, then for any z € H,
the least deviation decomposition of z coincides with its Moreau orthogonal
decomposition.”

The above statement should not be underestimated. It says, in particular, that the concept
of least deviation decomposition is a natural extension of the Moreau decomposition to
the case in which H is not necessarily a Hilbert space, or the sets K, Ky € C'(H) are not
necessarily cones.

Acknowledgements. Thanks are due to Jean-Paul Penot for stimulating criticism.
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