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1. INTRODUCTION

Abel et al. [5] introduced the Meyer-Konig-Zeller Durrmeyer operators as

(L.1) M) = Y male) [ bos O 0<w <,
k=0 0

M () = (" “; - 1) (1 = 2)

bu(t) = n (” ;‘ k) (1 — 1yt

Very recently H. Wang [6], O. Dogru and V. Gupta [2], A. Altin, O. Dogru and M.A. Ozarslan
[7] and T. Trif [3] studied the;-Meyer-Konig-Zeller operators. This motivated us to introduce
theq analogue of the Meyer-Konig-Zeller Durrmeyer operators.

Before introducing the operators, we mention certain definitions basedintegers; details
can be found in[10] and [12].

For each non-negative integ&r the ¢-integer [k] and theqg-factorial [k]! are respectively

defined by
1-4¢"/0-q), q#1
[k] :=
k, q=1

where

and

I
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and
][k —1]---[1], k=1
(k]! =
1, k=0
For the integers, £ satisfyingn > k£ > 0, theg-binomial coefficients are defined by

=
k1= [K]![n— K]V
We use the following notations

n—1
(a+b)y = H(a +¢'b) = (a+b)(a+gb)---(a+q"'b)
=0
and
n—1 e’}
Lo=1, Gon=]]0-1), (“ow=]]0—d).
j=0 Jj=0
Also it can be seen that ()
a;q)o
a5 Q) = 7
(@9) (aq™; q)oo

Theg—Beta function is defined as

1
B,(m,n) = / "1 — qt)’;_ldqt
0

for m,n € N and we have

~m—1]![n —1]!
(1.2) B,(m,n) = p—T
It can be easily checked that
n—1 o)
, —1
(2.3) H(l—qjx)z {n—'—llj ] zF =1.
§=0 k=0

Now we introduce thg-Meyer-Konig-Zeller Durrmeyer operator as follows

00 1
(1.4) Myg(fi2) = My pg() / bokg()f(qt)dyt, 0<z<1
k=0 0
(1.5) = Mo kg (T) An kg (),

k=0

where0 < ¢ < 1 and

n+k—1
(1.6) M g(T) = Pro1(2) { f } k.
(1.7) buka(t) = [k[ff[; _k]i],t’%l —at);
Here B
Pua(e) =[]0 - ¢
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Remark 1. It can be seen that fay — 1-, the g—Meyer-Konig-Zeller Durrmeyer operator
becomes the operator studiedlin [4] tor= 1.

2. MOMENTS

Lemma 2.1. For g,(t) = t°,s =10,1,2,..., we have

1 s+ Kk + s]!
(2.1) /0 b kg () gs(qt)dgt = g DT

Proof. By using theg—Beta function|(1.R), the above lemma can be proved easily. O

Here, we introduce two lemmas proved|in [8], as follows:

LemmaZ2.2.Forr=0,1,2,...andn > r, we have

“[n+k—-1 z® [[=,(1—q" )
(22) Fo-i(a) % [ k } n+k—1] n—1] '
whereln — 1|* = [n—1|[n — 2] ---[n —7].
Lemma 2.3. The identity

1 1
2. < >
(2:3) m+k+r] — ¢gtn+k—1) r20
holds.
Theorem 2.4.Forall z € [0,1],n» € Nandq € (0,1), we have
(2.4) M, (ep;x) =1,
(1-q"'2)
2.5 M, ) < ~ -
( ) n,q (617 :L‘) = + q[n _ 1} )
(1+4¢"?) n

(26) Mn,q (61; l’) > (1 o [n + 1] T+q 2(1 q)x27

L+ (—g'z) L+ (- ¢"'z)(1 - ¢" %)
¢ [n —1] q* [n—1][n —2]
Proof. We have to estimaté/,, , (es; ) for s = 0,1,2. The result can be easily verified for

s = 0. Using the above lemmas and equatipn](1.3), we obtain relafions (2.5) and (2.6) as
follows

(.7) M, (eyz) <2+

“n+k—-1] [k+1
Mag(er,@) = aPama(@) 3|77 ﬁxk

“[n+k—1] q[k]+1
SC]Pn—l(w)Z L L k

—~| | q2[n+k:—1]x
:xPn_l(a:)f: _n—l—/;—l_ 2"
k=0 L -
P, S k—1 g
* qlx);[wk }[n%—xk:—l]
1 — n—1
=t Q[nq— Hx
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Also,

B [n+k—2][k+1][n+k—1]
A%AQJQ_QBPK@EZ{ k—1 } w][n+k+uxk

k=1
[n+k+1] -1 LR
n+k + 2]

(n+k—1]
Z Pn—l(w)z L

m+k+2] [n+1]

1 — q'ﬂ"rk"rl ZL‘k+1 o 1
n+k+ 2]

EILEY IS PR
[n+k—1]

> [n+k—1]
Z Pn—l(w) Z

[n+k+ 1] 1 > k1
/{5 e

Z [n+k—1]
Z Pn—l(m)z k

> [n+k—1]
Z Pn—l(m) Z

_ _q z n—2 . 2 - n+k_1 E 1
=z [n+1]+q (1 q)a:Pn_l(x);{ i }a: 1]m

Similar calculations reveal the relatidn (2.7) as follows

) —~[n+k—1 [k + 1]k + 2] L
M"’q(@’l")_qpn‘l(x)z{ 3 Ln+k+1][n+k+2]$

1 = {n—kk—l} Alk)? + 2+ Dalk] + (g +1)
n+k—1]n+k—2|

=Bl bk Al gy
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Remark 2. From Lemma 23, it is observed that fpr— 1, we obtain
M, (eg; ) = 1,

(1-2)
(n—1)

M, (ey;z) <z +

4x(1 — x) 2(1 — z)?
(n—1) (n—1)(n—2)’

which are moments for a new generalization of the Meyer-Konig-Zeller operatotis=fot in
[4].

Corollary 2.5. The central moments af,, , are

Mn,q (¢0; [L’) = 17
< L=d")
Mn,q <¢17 ) < q[n _ 1] ’
< 1Fa?-g) | (1+q)(1-¢" )1 -q¢" ")
Mg (Y25 ) < e [n — 1] + g [n —1][n — 2]
+2(1 +q"%) 2

[n 4+ 1]
wherey;(z) = (t — z)" fori =0, 1, 2.

Proof. By the linearity ofM,, , and Theorer 2|4, we directly get the first two central moments.
Using simple computations, the third moment can be easily verified as follows

M, (a5 2) = M, 4 (e9; ) + szn,q (€0; ) — 2x M, 4 (e1; )
(1+q)’1-q""2) LA+a - ¢"'x)(1 - ¢" )

<

¢ [n —1] q* [n —1][n — 2]
(14+q¢"?) n—2 2
+<1_—[n+1] >x—q (1—-q)z
(I+gf(l-¢""2)  (+g1-¢"2)d-¢""x)
¢ [n —1] q* [n —1][n — 2]
(1+¢"72) ,
+ 2—[n Y .

Remark 3. Forq — 17, we get

dx 2(1 — x)?

My (g52) < — + (n—1)(n—2)

which is similar to the result in [4].

Theorem 2.6. The sequenc#/, ., (f) converges tg uniformly onC|[0, 1] for eachf € C10, 1]
iff g, — 1asn — oc.
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Proof. By the Korovkin theorem (seel[1])\/, .. (f;x) converges tof uniformly on[0,1] as
n — oo for f € C[0,1] iff M, ,, (t';2) — 2" fori = 1,2 uniformly on|0, 1] asn — oo.

From the definition ofM,, , and Theoreny 2]4)M,, ,, is a linear operator and reproduces
constant functions.

Moreover, agy, — 1, then[n],, — oo, therefore by Theorefn 2.4, we get

an%’b (t,L? ‘r) - :Ui

fori=0,1,2.

Hence,M,, ,, (f) converges tgf uniformly onC'[0, 1].

Conversely, suppose that, , (f) converges tg uniformly onC'0, 1] andg,, does not tend
to 1 asn — oo. Then there exists a subsequefige) of (¢,) S.t. ¢, — qo (o # 1) ask — oc.
Thus

1 _ 1—qn, S
[n]an L —qn,"

Takingn = ny, andq = ¢, in M,, ,(e2, z), we have

1 —qO)

M, g, (e2;7) <+

which is a contradiction. Hengg, — 1. This completes the proof. OJ

Remark 4. Similar results are proved for the-Bernstein-Durrmeyer operator in [11].

3. WEIGHTED STATISTICAL APPROXIMATION PROPERTIES

In this section, we present the statistical approximation properties of the opéfatoby
using a Bohman-Korovkin type theorem [9].

Firstly, we recall the concepts of-statistical convergence, weight functions and weighted
spaces as considered lin [9].

Let A = (a;,);» be a non-negative regular summability matrix. A sequefgg,, is said

to be A-statistically convergent to a numbeérif, for everye > 0,lim > a;, = 0. Itis
J n:|xp—L|>e
denoted byt 4 — limz,, = L. For A := (', the Cesaro matrix of order one is defined as

0 n>jy.

A-statistical convergence coincides with statistical convergence.
A weight function is a real continuous functi@gronR s.t. lim p(z) = oo, p(z) > 1 for all

|z|—o0
r e R.
The weighted space of real-valued functigh&enoted as3,(R)) is defined orR with the
property| f(z)| < Mp(x) for all z € R, wherel/; is a constant depending on the functibn
We also consider the weighted subspagéeR) of B,(R) given by

C,(R) :={f € B,(R) : f continuous orR} .

B,(R) andC,,(R) are Banach spaces with the nojf ., where|| /| , := sup L.
zeR

We next present a Bohman-Korovkin type theorem ([9, Theorem 3]) as follows.
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Theorem 3.1.Let A = (a;,);, be a non-negative regular summability matrix and(lgt,),, be
a sequence of positive linear operators fréfy (R) into B, (R), wherep, and p, satisfy

im p1() _
jal =00 p2(2)
Then
sta—lim||L,f — f[|,, =0 forall fe€C,(R)
if and only if

sta—lim||L,F, — F], =0, v=0,1,2,

whereF, (z) = 524, v =0,1,2.

We next consider a sequen@g),,, ¢, € (0,1), such that
(3.1) st — liTIann =1.
Theorem 3.2. Let(q,),, be a sequence satisfyirjg (3.1). Then forfat C,, (R,.), we have
st — lirrln [ Mg (f;) = fll,, =0, a>0.
Proof. It is clear that
(3.2) st — h£n [ My,q, (€05 ) — €oll ,, = 0.

Based on equation (2.5), we have

Mo (enm) —a@]
14 22 = 2l — 1],
1
N [n - 1]Qn.
Sincest — lim ¢, = 1, we getst — lim ﬁ = 0 and thus
(3.3) st — li}zn [My,q,(€15°) — el ,, = 0.

By using [2.7), we have

| Mg, (€2,2) — ea()] 1 1
1+ 22 sleol ([n_l]q +[n_1]Qn[n_2]Qn>

SR S
T =g, =200

qn

Consequently,

(3.4) st — lirrln [ K g, (€25 ) — €|, = 0.

Finally, using [(3.2),[(3]3) and (3.4), the proof follows from Theofen 3.1 by choasirgC},
the Cesaro matrix of order one apdz) = 1+ 22, po(z) = 1 + 27, 2 € Ry, a > 0. O
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4. ORDER OF APPROXIMATION

We now recall the concept of modulus of continuity. The modulus of continuitf{oj €
C'[0, a], denoted byv(f,0), is defined by

(4.1) w(f,0)= " sup  [f(z) = fy)|-

lz—y|<8;z,y€(0,a]
The modulus of continuity possesses the following properties[(see [9]):
(4.2) w(f,Ad) < (1 4+ Nw(f,0)

and
w(f,nd) <nw(f,6), neN.

Theorem 4.1. Let(g,),, be a sequence satisfyirjg (3.1). Then

(43) |Mn,q<f; $> - f| S 2w(f7 \/5n>
forall f € C0, 1], where
(4.4) 6 = My ((gt — )% 2).

Proof. By the linearity and monotonicity atZ, ,, we get

| Mig(f52) = fI < Mug(£() = f(2)];2)
= > masa®) [ usal015at) — )t
Also -

(gt —x)°
@5) s = s < (1+ P wir0),
By using [4.5), we obtain

M :2) = 11 3 maaale) [ bl (10 S5t

- (M (ca52) + 353 ((at = 2752) ) 10
and
Mo (0t — 2)%12) = Moy (e3:2) + Mg (e0:2) — 200 Mg (e15)
L+ (1—q"a)

S(l—q)2x2+(

1]
(1+¢) (1 —-g¢"'2)(1-q¢"*2)
q* [n—1}[n — 2]
o ((1+ qn_Q) n—1 3
+ 2xq <W) —2¢" (1 —q)x”.

By (3.1) and the above equation, we get
(4.6) lim M,  ((¢t — z)*z) = 0.

n—o0,qn—1

So, lettingd,, = M,,, ((q¢t — z)*; z) and taking = /4,,, we finally obtain
|Mn7q<f,l') - | < QW(f, \/571)
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As usual, a functiorf € Lipy(«), (M > 0 and0 < o < 1), if the inequality
(4.7) F(t) = f(@)] < Mt —af*
forallt,z € [0,1].
Theorem 4.2.For all f € Lipy/(«) andz € [0, 1], we have
(4.8) | My q(f52) = f| < MSY?,
whered,, = M,, ,(19; x).
Proof. Using inequality) and Hdlder’s inequality with= % q= ﬁ we get

M g(F32) — I < Moy (I£(8) — F(@)); 2)
< MM, (|t — 2| )

< MM, (|t — :E]Q; :U)a/Q.
Takingé,, = M, ,(12; z), we get

|M,,q(f;2) — f] < M&2/2.

Theorem 4.3.For all f € C|0, 1] and f(1) = 0, we have

(4.9) [ Ak (N < Anpg([f]) Sw(f,¢") (A +¢7"), (0<k<n).

Proof. Clearly

|f(gt)] = |f(qt) — f(1)]

<wth) (145210,

Thus by using Lemmia 2.1, we get
|An,k7q(f>| < An,k7q(|f|)

= [ busaOlr @it
<ulra) | bl (1+ 521 4y

= w(f,q") ((1 + qin) /0 1 Droig(t)dyt — qin /0 1 bn,m(t)(qt)dqt)

con (1) gl

<w(f,q")1+q").
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