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1. I NTRODUCTION

Abel et al. [5] introduced the Meyer-Konig-Zeller Durrmeyer operators as

(1.1) Mn(f ;x) =
∞∑

k=0

mn,k(x)

∫ 1

0

bn,k(t)f(t)dt, 0 ≤ x < 1,

where

mn,k(x) =

(
n+ k − 1

k

)
xk(1− x)n

and

bn,k(t) = n

(
n+ k

k

)
tk(1− t)n−1.

Very recently H. Wang [6], O. Dogru and V. Gupta [2], A. Altin, O. Dogru and M.A. Ozarslan
[7] and T. Trif [3] studied theq-Meyer-Konig-Zeller operators. This motivated us to introduce
theq analogue of the Meyer-Konig-Zeller Durrmeyer operators.

Before introducing the operators, we mention certain definitions based onq−integers; details
can be found in [10] and [12].

For each non-negative integerk, the q-integer [k] and theq-factorial [k]! are respectively
defined by

[k] :=

{
(1− qk)

/
(1− q), q 6= 1

k, q = 1
,
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2 HONEY SHARMA

and

[k]! :=

{
[k] [k − 1] · · · [1], k ≥ 1

1, k = 0
.

For the integersn, k satisfyingn ≥ k ≥ 0, theq-binomial coefficients are defined by[n
k

]
:=

[n]!

[k]![n− k]!
.

We use the following notations

(a+ b)n
q =

n−1∏
j=0

(a+ qjb) = (a+ b)(a+ qb) · · · (a+ qn−1b)

and

(t; q)0 = 1, (t; q)n =
n−1∏
j=0

(1− qjt), (t; q)∞ =
∞∏

j=0

(1− qjt).

Also it can be seen that

(a; q)n =
(a; q)∞

(aqn; q)∞
.

Theq−Beta function is defined as

Bq(m,n) =

∫ 1

0

tm−1(1− qt)n−1
q dqt

for m,n ∈ N and we have

(1.2) Bq(m,n) =
[m− 1]![n− 1]!

[m+ n− 1]!
.

It can be easily checked that

(1.3)
n−1∏
j=0

(1− qjx)
∞∑

k=0

[
n+ k − 1

k

]
xk = 1.

Now we introduce theq-Meyer-Konig-Zeller Durrmeyer operator as follows

Mn,q(f ;x) =
∞∑

k=0

mn,k,q(x)

∫ 1

0

bn,k,q(t)f(qt)dqt, 0 ≤ x < 1(1.4)

:=
∞∑

k=0

mn,k,q(x)An,k,q(f),(1.5)

where0 < q < 1 and

(1.6) mn,k,q(x) = Pn−1(x)

[
n+ k − 1

k

]
xk,

(1.7) bn,k,q(t) =
[n+ k]!

[k]![n− 1]!
tk(1− qt)n−1

q .

Here

Pn−1(x) =
n−1∏
j=0

(1− qjx).
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PROPERTIES OFq−MEYER-KÖNIG-ZELLER DURRMEYER OPERATORS 3

Remark 1. It can be seen that forq → 1−, the q−Meyer-Konig-Zeller Durrmeyer operator
becomes the operator studied in [4] forα = 1.

2. M OMENTS

Lemma 2.1. For gs(t) = ts, s = 0, 1, 2, . . ., we have

(2.1)
∫ 1

0

bn,k,q(t)gs(qt)dqt = qs [n+ k]![k + s]!

[k]![k + s+ n]!
.

Proof. By using theq−Beta function (1.2), the above lemma can be proved easily. �

Here, we introduce two lemmas proved in [8], as follows:

Lemma 2.2. For r = 0, 1, 2, . . . andn > r, we have

(2.2) Pn−1(x)
∞∑

k=0

[
n+ k − 1

k

]
xk

[n+ k − 1]r
=

∏r
j=1(1− qn−jx)

[n− 1]r
,

where[n− 1]r = [n− 1][n− 2] · · · [n− r].

Lemma 2.3. The identity

(2.3)
1

[n+ k + r]
≤ 1

qr+1[n+ k − 1]
, r ≥ 0

holds.

Theorem 2.4.For all x ∈ [0, 1], n ∈ N andq ∈ (0, 1), we have

Mn,q (e0;x) = 1,(2.4)

Mn,q (e1;x) ≤ x+
(1− qn−1x)

q[n− 1]
,(2.5)

Mn,q (e1;x) ≥
(

1− (1 + qn−2)

[n+ 1]

)
x+ qn−2(1− q)x2,(2.6)

(2.7) Mn,q (e2;x) ≤ x2 +
(1 + q)2

q3

(1− qn−1x)

[n− 1]
x+

(1 + q)

q4

(1− qn−1x)(1− qn−2x)

[n− 1][n− 2]
.

Proof. We have to estimateMn,q (es;x) for s = 0, 1, 2. The result can be easily verified for
s = 0. Using the above lemmas and equation (1.3), we obtain relations (2.5) and (2.6) as
follows

Mn,q(e1, x) = qPn−1(x)
∞∑

k=0

[
n+ k − 1

k

]
[k + 1]

[n+ k + 1]
xk

≤ qPn−1(x)
∞∑

k=0

[
n+ k − 1

k

]
q[k] + 1

q2[n+ k − 1]
xk

= xPn−1(x)
∞∑

k=0

[
n+ k − 1

k

]
xk

+
Pn−1(x)

q

∞∑
k=0

[
n+ k − 1

k

]
xk

[n+ k − 1]

= x+
(1− qn−1x)

q[n− 1]
.

J. Inequal. Pure and Appl. Math., 10(4) (2009), Art. 105, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Also,

Mn,q(e1, x) = qPn−1(x)
∞∑

k=1

[
n+ k − 2

k − 1

]
[k + 1]

[k]

[n+ k − 1]

[n+ k + 1]
xk

≥ Pn−1(x)
∞∑

k=0

[
n+ k − 1

k

](
[n+ k + 1]− 1

[n+ k + 2]

)
xk+1

≥ Pn−1(x)
∞∑

k=0

[
n+ k − 1

k

](
[n+ k + 1]

[n+ k + 2]
− 1

[n+ 1]

)
xk+1

≥ Pn−1(x)
∞∑

k=0

[
n+ k − 1

k

](
1− qn+k+1

[n+ k + 2]

)
xk+1 − 1

[n+ 1]
x

≥ Pn−1(x)
∞∑

k=0

[
n+ k − 1

k

](
1− qn−2 (1− (1− q)[k])

[n+ k − 1]

)
xk+1 − 1

[n+ 1]
x

= x− qn−2x

[n+ 1]
+ qn−2(1− q)x2Pn−1(x)

∞∑
k=0

[
n+ k − 1

k

]
xk − 1

[n+ 1]
x

=

(
1− (1 + qn−2)

[n+ 1]

)
x+ qn−2(1− q)x2.

Similar calculations reveal the relation (2.7) as follows

Mn,q(e2, x) = q2Pn−1(x)
∞∑

k=0

[
n+ k − 1

k

]
[k + 1][k + 2]

[n+ k + 1][n+ k + 2]
xk

≤ 1

q4
Pn−1(x)

∞∑
k=0

[
n+ k − 1

k

]
q3[k]2 + (2q + 1)q[k] + (q + 1)

[n+ k − 1][n+ k − 2]
xk

=
Pn−1(x)

q

∞∑
k=0

[n+ k − 2]!

[k]![n− 1]!
(q[k] + 1)xk+1

+
Pn−1(x)(2q + 1)x

q3

∞∑
k=0

[
n+ k − 1

k

]
xk

[n+ k − 1]

+
Pn−1(x)(1 + q)

q4

∞∑
k=0

[
n+ k − 1

k

]
xk

[n+ k − 1]2

= x2Pn−1(x)
∞∑

k=0

[
n+ k − 1

k

]
xk

+ x
Pn−1(x)

q

∞∑
k=0

[
n+ k − 1

k

]
xk

[n+ k − 1]
+ x

(2q + 1)

q3

(1− qn−1x)

[n− 1]

+
(1 + q)

q4

(1− qn−1x)(1− qn−2x)

[n− 1][n− 2]

= x2 +
(1 + q)2

q3

(1− qn−1x)

[n− 1]
x+

(1 + q)

q4

(1− qn−1x)(1− qn−2x)

[n− 1][n− 2]
.

�
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Remark 2. From Lemma 2.3, it is observed that forq → 1−, we obtain

Mn (e0;x) = 1,

Mn (e1;x) ≤ x+
(1− x)

(n− 1)
,

Mn (e1;x) ≥
(

1− 2

(n+ 1)

)
x,

Mn (e2;x) ≤ x2 +
4x(1− x)

(n− 1)
+

2(1− x)2

(n− 1)(n− 2)
,

which are moments for a new generalization of the Meyer-Konig-Zeller operators forα = 1 in
[4].

Corollary 2.5. The central moments ofMn,q are

Mn,q (ψ0;x) = 1,

Mn,q (ψ1;x) ≤
(1− qn−1x)

q[n− 1]
,

Mn,q (ψ2;x) ≤
(1 + q)2

q3

(1− qn−1x)

[n− 1]
x+

(1 + q)

q4

(1− qn−1x)(1− qn−2x)

[n− 1][n− 2]

+ 2
(1 + qn−2)

[n+ 1]
x2,

whereψi(x) = (t− x)i for i = 0, 1, 2.

Proof. By the linearity ofMn,q and Theorem 2.4, we directly get the first two central moments.
Using simple computations, the third moment can be easily verified as follows

Mn,q (ψ2;x) = Mn,q (e2;x) + x2Mn,q (e0;x)− 2xMn,q (e1;x)

≤ (1 + q)2

q3

(1− qn−1x)

[n− 1]
x+

(1 + q)

q4

(1− qn−1x)(1− qn−2x)

[n− 1][n− 2]

+

(
1− (1 + qn−2)

[n+ 1]

)
x− qn−2(1− q)x2

≤ (1 + q)2

q3

(1− qn−1x)

[n− 1]
x+

(1 + q)

q4

(1− qn−1x)(1− qn−2x)

[n− 1][n− 2]

+ 2
(1 + qn−2)

[n+ 1]
x2.

�

Remark 3. For q → 1−, we get

Mn (ψ2;x) ≤
4x

n− 1
+

2(1− x)2

(n− 1)(n− 2)

which is similar to the result in [4].

Theorem 2.6.The sequenceMn,qn(f) converges tof uniformly onC[0, 1] for eachf ∈ C[0, 1]
iff qn → 1 asn→∞.
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6 HONEY SHARMA

Proof. By the Korovkin theorem (see [1]),Mn,qn(f ;x) converges tof uniformly on [0, 1] as
n→∞ for f ∈ C[0, 1] iff Mn,qn(ti;x) → xi for i = 1, 2 uniformly on[0, 1] asn→∞.

From the definition ofMn,q and Theorem 2.4,Mn,qn is a linear operator and reproduces
constant functions.

Moreover, asqn → 1, then[n]qn →∞, therefore by Theorem 2.4, we get

Mn,qn(ti;x) → xi

for i = 0, 1, 2.
Hence,Mn,qn(f) converges tof uniformly onC[0, 1].
Conversely, suppose thatMn,qn(f) converges tof uniformly onC[0, 1] andqn does not tend

to 1 asn→∞. Then there exists a subsequence(qnk
) of (qn) s.t. qnk

→ q0 (q0 6= 1) ask →∞.
Thus

1

[n]qnk

=
1− qnk

1− qnk
n
→ (1− q0).

Takingn = nk andq = qnk
in Mn,q(e2, x), we have

Mn,qnk
(e2;x) ≤ x+

(1− qn−1
nk

x)(1− q0)

qnk

6= x

which is a contradiction. Henceqn → 1. This completes the proof. �

Remark 4. Similar results are proved for theq−Bernstein-Durrmeyer operator in [11].

3. WEIGHTED STATISTICAL APPROXIMATION PROPERTIES

In this section, we present the statistical approximation properties of the operatorMn,q by
using a Bohman-Korovkin type theorem [9].

Firstly, we recall the concepts ofA-statistical convergence, weight functions and weighted
spaces as considered in [9].

Let A = (ajn)j,n be a non-negative regular summability matrix. A sequence(xn)n is said
to beA-statistically convergent to a numberL if, for every ε > 0, lim

j

∑
n:|xn−L|≥ε

ajn = 0. It is

denoted bystA − lim
n
xn = L. ForA := C1, the Cesàro matrix of order one is defined as

cjn :=

{
1
j

1 ≤ n ≤ j

0 n > j.

A-statistical convergence coincides with statistical convergence.
A weight function is a real continuous functionρ onR s.t. lim

|x|→∞
ρ(x) = ∞, ρ(x) ≥ 1 for all

x ∈ R.
The weighted space of real-valued functionsf (denoted asBρ(R)) is defined onR with the

property|f(x)| ≤ Mfρ(x) for all x ∈ R, whereMf is a constant depending on the functionf .
We also consider the weighted subspaceCρ(R) of Bρ(R) given by

Cρ(R) := {f ∈ Bρ(R) : f continuous onR} .

Bρ(R) andCρ(R) are Banach spaces with the norm‖·‖ρ, where‖f‖ρ := sup
x∈R

|f(x)|
ρ(x)

.

We next present a Bohman-Korovkin type theorem ([9, Theorem 3]) as follows.
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Theorem 3.1.LetA = (ajn)j,n be a non-negative regular summability matrix and let(Ln)n be
a sequence of positive linear operators fromCρ1(R) intoBρ2(R), whereρ1 andρ2 satisfy

lim
|x|→∞

ρ1(x)

ρ2(x)
= 0.

Then

stA − lim
n
‖Lnf − f‖ρ2

= 0 for all f ∈ Cρ1(R)

if and only if

stA − lim
n
‖LnFv − Fv‖ρ1

= 0, v = 0, 1, 2,

whereFv(x) = xvρ1(x)
1+x2 , v = 0, 1, 2.

We next consider a sequence(qn)n, qn ∈ (0, 1), such that

(3.1) st− lim
n
qn = 1.

Theorem 3.2.Let (qn)n be a sequence satisfying (3.1). Then for allf ∈ Cρ0 (R+), we have

st− lim
n
‖Mn,q (f ; ·)− f‖ρα

= 0, α > 0.

Proof. It is clear that

(3.2) st− lim
n
‖Mn,qn(e0; ·)− e0‖ρ0

= 0.

Based on equation (2.5), we have

|Mn,qn(e1, x)− e1(x)|
1 + x2

≤‖ e0 ‖
1

q2
n[n− 1]qn

≤ 1

[n− 1]qn

.

Sincest− lim
n
qn = 1, we getst− lim

n

1
[n−1]qn

= 0 and thus

(3.3) st− lim
n
‖Mn,qn(e1; ·)− e1‖ρ0

= 0.

By using (2.7), we have

|Mn,qn(e2, x)− e2(x)|
1 + x2

≤‖ e0 ‖
(

1

[n− 1]qn

+
1

[n− 1]qn [n− 2]qn

)
≤ 1

[n− 1]qn

+
1

[n− 2]2qn

.

Consequently,

(3.4) st− lim
n
‖Kn,qn(e2; ·)− e2‖ρ0

= 0.

Finally, using (3.2), (3.3) and (3.4), the proof follows from Theorem 3.1 by choosingA = C1,
the Cesàro matrix of order one andρ1(x) = 1 + x2, ρ2(x) = 1 + x2+α, x ∈ R+, α > 0. �
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4. ORDER OF APPROXIMATION

We now recall the concept of modulus of continuity. The modulus of continuity off(x) ∈
C[0, a], denoted byω(f, δ), is defined by

(4.1) ω(f, δ) = sup
|x−y|≤δ;x,y∈[0,a]

|f(x)− f(y)|.

The modulus of continuity possesses the following properties (see [9]):

(4.2) ω(f, λδ) ≤ (1 + λ)ω(f, δ)

and
ω(f, nδ) ≤ nω(f, δ), n ∈ N.

Theorem 4.1.Let (qn)n be a sequence satisfying (3.1). Then

(4.3) |Mn,q(f ;x)− f | ≤ 2ω(f,
√
δn)

for all f ∈ C[0, 1], where

(4.4) δn = Mn,q

(
(qt− x)2;x

)
.

Proof. By the linearity and monotonicity ofMn,q, we get

|Mn,q(f ;x)− f | ≤Mn,q(|f(t)− f(x)|;x)

=
∞∑

k=0

mn,k,q(x)

∫ 1

0

bn,k,q(t)|f(qt)− f(x)|dqt.

Also

(4.5) |f(qt)− f(x)| ≤
(

1 +
(qt− x)2

δ2

)
ω(f, δ).

By using (4.5), we obtain

|Mn,q(f ;x)− f | ≤
∞∑

k=0

mn,k,q(x)

∫ 1

0

bn,k,q(t)

(
1 +

(qt− x)2

δ2

)
ω(f, δ)dqt

=

(
Mn,q (e0;x) +

1

δ2
Mn,q

(
(qt− x)2;x

))
ω(f, δ)

and

Mn,q

(
(qt− x)2;x

)
= q2Mn,q (e2;x) + x2Mn,q (e0;x)− 2qxMn,q (e1;x)

≤ (1− q)2x2 +
(1 + q)2

q

(1− qn−1x)

[n− 1]
x

+
(1 + q)

q2

(1− qn−1x)(1− qn−2x)

[n− 1][n− 2]

+ 2xq2

(
(1 + qn−2)

[n+ 1]

)
− 2qn−1(1− q)x3.

By (3.1) and the above equation, we get

(4.6) lim
n→∞,qn→1

Mn,q

(
(qt− x)2;x

)
= 0.

So, lettingδn = Mn,q ((qt− x)2;x) and takingδ =
√
δn, we finally obtain

|Mn,q(f ;x)− f | ≤ 2ω(f,
√
δn).

�
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As usual, a functionf ∈ LipM(α), (M > 0 and0 < α ≤ 1), if the inequality

(4.7) |f(t)− f(x)| ≤M |t− x|α

for all t, x ∈ [0, 1].

Theorem 4.2.For all f ∈ LipM(α) andx ∈ [0, 1], we have

(4.8) |Mn,q(f ;x)− f | ≤Mδα/2
n ,

whereδn = Mn,q(ψ2;x).

Proof. Using inequality (4.7) and Hölder’s inequality withp = 2
α
, q = 2

2−α
, we get

|Mn,q(f ;x)− f | ≤Mn,q(|f(t)− f(x)|;x)
≤MMn,q(|t− x|α;x)

≤MMn,q(|t− x|2;x)α/2.

Takingδn = Mn,q(ψ2;x), we get

|Mn,q(f ;x)− f | ≤Mδα/2
n .

�

Theorem 4.3.For all f ∈ C[0, 1] andf(1) = 0, we have

(4.9) |An,k,q(f)| ≤ An,k,q(|f |) ≤ ω(f, qn)(1 + q−n), (0 ≤ k ≤ n).

Proof. Clearly

|f(qt)| = |f(qt)− f(1)|
≤ ω(f, qn(1− qt))

≤ ω(f, qn)

(
1 +

(1− qt)

qn

)
.

Thus by using Lemma 2.1, we get

|An,k,q(f)| ≤ An,k,q(|f |)

=

∫ 1

0

bn,k,q(t)|f(qt)|dqt

≤ ω(f, qn)

∫ 1

0

bn,k,q(t)

(
1 +

(1− qt)

qn

)
dqt

= ω(f, qn)

((
1 +

1

qn

) ∫ 1

0

bn,k,q(t)dqt−
1

qn

∫ 1

0

bn,k,q(t)(qt)dqt

)
= ω(f, qn)

((
1 +

1

qn

)
− 1

qn−1

[k + 1]

[k + n+ 1]

)
≤ ω(f, qn)(1 + q−n).

�
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