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ABSTRACT. In this short note, we solve an interesting geometric inequality problem relating to
two points in triangle posed by Liu]7], and also give two corollaries.
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1. INTRODUCTION AND MAIN RESULTS

Let P, @ be two arbitrary interior points il ABC, and leta, b, c be the lengths of its sides,
S the areaR the circumradius and the inradius, respectively. Denote B, R,, R3 andr,
r9, T3 the distances fron® to the vertices4, B, C' and the sideBC, C'A, AB, respectively.
For the interior point), defineD,, D,, D3 andd;, ds, d; similarly (see Figurg 1]1).

The following well-known and elegant result (see [1, Theorem 12.13, pp.105])

(1.1) Ry + Ry + R > 2(r1 + 12+ 13)
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Figure 1.1:

concerningR; andr; (i = 1,2, 3) is called theErdds-Mordell inequality . Inequality (I.1) was
generalized as follows$ [9, Theorem 15, pp. 318]:

(1.2) Riz® + Ryy® + Rs2® > 2(r1yz + roza + razy)
forall x,y,z > 0.

And the special case = 2 of [9, Theorem 8, pp. 315-316] states that
(13) \/R1D1 + \/R2D2 + \/R3D3 Z 2 (\/Tldl + \/T2d2 + \/ngg) s

which also extend$ (1.1).
Recently, for alkz, y, z > 0, J. Liu [8, Proposition 2] obtained

(14) AV R1D1.’E2 -+ \V R2D2y2 + vV R3D322 Z 2 (\/ rldlyz + nggZ.ﬁI) “+ \/ nggxy)

which generalizes inequality (1.3).
In 2008, J. Liu[[7] posed the following interesting geometric inequality problem.

Problem 1.1. For a triangleA BC' and two arbitrary interior point®, Q, prove or disprove that

(15) R1D1 + R2D2 + R3D3 Z 4(7’27”3 + r3ry + 7”17”2).

We will solve Problen 1]1 in this paper.
From inequality[(1.5), we get
R1D1 + RyDs + R3Ds > 4(dods + dsdy + didy).

Hence, we obtain the following result.

Corollary 1.1. For any AABC and two interior pointsP, (), we have
(16) R1D1 + R2D2 + R3D3 Z 4\/(7”27'3 + r3ry + Tlrg)(dgdg + d3d1 —+ dldg).
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From inequality[(1.5), and by making use of an inversion transformdtion [2, pp.48-49] (see
also [3, pp.108-109]) in the triangle, we easily get the following result.

Corollary 1.2. For any AABC' and two interior pointsP, 2, we have

D, D, Dy 1 1 1
1.7 >4.|PQ)| - )
(2.7) Riry * Rary * Rsrs — PQ (RIRQ i RyR3 * R3R1)

Remark 1. With one of Liu’'s theorems [8, Theorem 3], inequality (1.2) impl[es](1.4). However,
we cannot determine whether inequalities |(1.1) (1.3) imply inequility (1.5) or inequality
(1.8), or inequalitied (1]5) anfl (1.3) imply inequality (1.1).

2. PRELIMINARY RESULTS

Lemma 2.1. We have for any\ ABC' and an arbitrary interior pointP that

(2.1) aRy > bry + crs,
(2.2) bRy > crs + ary,
(2.3) cR3 > ary + brs.

Proof. Inequalities[(2.]1) -{(2]3) directly follow from the obvious fact
ary + b”/’z +crg = 25,

the formulas of the altitude

2 2 2
ha:_Sa hb:_S7 hc:_Sa
a b c
and the evident inequalities [11]
Rl + 7 Z hm
Ry + 19 > Iy,
Rg +7r3 > hc.

Lemma 2.2([4,5]). For real numbersey, x5, 3, 41, 2, y3 such that
T1ZT9 + Tox3 + x321 > 0
and
Y1y2 + Y2ys + ysyr 2 0,
the inequality
(2.4) (y2+ys)o1 + (ys + y1)z2 + (11 + Y2)73
> 2\/ (2129 + 2223 + 2371) (Y1Y2 + YUz + Y3y1)
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holds, with equality if and only @% = % = ”;—;

Lemma 2.3 (Hayashi’s inequality,[[9, pp.297, 311]For any AABC and an arbitrary point
P, we have

Ry Ry . Ry Ry n R3 Ry > 1.

25
(2.5) ab be ca

Equality holds if and only ifP is the orthocenter of the acute triangléBC' or one of the
vertexes of triangled BC'.

Lemma 2.4(Klamkin's inequality, [6/ 10]) Let A, B, C' be the angles o ABC'. For positive
real numbers., v, w, the inequality

u+v+w

1
(2.6) usin A+vsin B+ wsinC < —(uwv + vw + wu)
2 Uvw

holds, with equality if and only it = v = w and AABC'is equilateral.

Lemma 2.5. For any A ABC and an arbitrary interior pointP, we have

(2.7) \/abrlm + bergrs + carsry > 2(rars + rary + r1ra).

Proof. Suppose that the actual barycentric coordinate® @fre (z,y, z), Thenz = area of
APBC, and therefore

x _aredAPBC)  ria 2 a  2Rn
Try+z S ~besinA o be 2sinA - be
Therefore
be x
rHn—-— —: ——
"TOR a4y +z
ca Yy
ro — —+ ——————
TO2R r4y+z
ab z
rg=—m —— .
TR z4y+z

Thus, inequality[(2]7) is equivalent to

(2.8) a—bc\/x + z+zz>a—bc = z+izx—l—ix
' 2R(x +y+ 2) vy ~ Rlz+y+2)? or”" T 2R or"Y

or

1
(2.9) §(m +y+2)Vay +yz +zx > yzsin A+ zzsin B + xysin C.

Inequality [2.9) follows from Lemmfa 2.4 by taking

111
(u,v,w) = <_7_7 _) .
xr Yy z

This completes the proof of Lemra R.5. O
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3. SOLUTION OF PROBLEM [1.1

Proof. In view of Lemmas 21 | 2|3 afd 2.5, we have that
RiD; + RoDsy + R3Ds

D D D
—aRy- 22 + bRy 22 4 cRy- 2
a b c
D D D
> (brg +crs) - 71 + (ers +ary) - TQ + (ary + bry) - 73
DD D>D DsD
> 24 [ (abriry + berars + carsry) 172 278 8]
ab bc ca
> 2\/ab7"17”2 + berars + carsry
> A(rors + 131y +1179).
The proof of inequality] (1]5) is thus completed. O
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