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In this short note, we sharpen and generalize a geometric inequality by J. Sandor.
As applications of our results, we give an alternative proof of Sandor’s inequality
and solve two conjectures posed by Liu.
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1. Introduction and Main Results

Let P be an arbitrary point in the plane of triangleABC. Let a, b, ¢ be the
lengths of these sideg) the areas the semi-perimeter the circumradius and
the inradius, respectively. Denote By, R,, R5 the distances fron® to the vertices
A, B, C, respectively.

The following interesting geometric inequality from 1986 is due to J. Sar@jor [ Seomet Inequalty by 5. Séndor

a proof of this inequality can be found in the monogragjh [ Yu-Dong Wu, Zhi-Hua Zhang
and Xiao-guang Chu

Theorem 1.1. For triangle ABC and an arbitrary pointP, we have el 610 55 /b . S 20

16
(1.1) (RiR2)* + (RoR3)* + (R3R1)* > — A%
9 Title Page

Recently, J. Liu ¢] also independently proved inequality. ().

In this short note, we sharpen and generalize inequality) @énd obtain the fol- Contents
lowing results. <« >
Theorem 1.2. We have < S

2 2 2 a’b?c® Page 3 of 15
1.2 RiR RsR RsR)* > ———. age > o
(1.2) (12)+(23)+(31)_a2+b2+02 k
Go Bacl
Theorem 1.3.If
2(1 31 2) Full Screen
no—1n
k>ky= ————= ~ 1.549800462
= 3m3—4m?2 ’ Close
then journal of inequalities
4 k in pure and applied
(1.3) (R1Ry)* + (RoRs)* + (RsRy)F >3 (5\/%) . mathematics
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2. Preliminary Results

Lemma 2.1 (Hayashi's inequality, seeT, pp. 297, 311]).For any AABC and an

arbitrary point P, we have
(21) CLRQR?, + bRgRl + CR1R2 > CLbC,

with equality holding if and only i’ is the orthocenter of the acute triangleBC'
or one of the vertices of the triangleBC.

Lemma 2.2 (see?] and [4]). For AABC, if

In9 —1n4

Vs tsth=my

then we have
t
(2.2) a4+ b+t <3 <\/§R> .

Lemma 2.3. Let

2(In3 —In2)
> foo= 22T ) ] 549800462,
k= ko 3In3 —4In?2 54980046
Then
be)k 4 k
(2.3) (abe) — 23<§¢§A) .

k k k
[am + bF-1 + cm]
Proof. From the well known identitiesbc = 4Rrs andA = rs, inequality ¢.3) is

equivalent to
ARrs)* 4 ¥
(48rs) 1 2 3 (—\/grs) ,
k k k - 9
|:ak71 + br—1 + Ck71:|

J
|l\;|m

P
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or

k

(2.4) N R (ﬁ}z)m .
It is easy to see that the function
x
f(.’L') - €T — 1 Geometric Inequality by J. Sandor
Yu-Dong Wu, Zhi-Hua Zhang
is strictly monotone decreasing ¢h +oco). If we let and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009
k 2(In3 —1In?2
s A (kzko:za(ln?) 431;)’
- o =2 Title Page
then
n9 —1n4 Contents
0< flk)=t< —— = f(k
Jh) =t < g — /o) «“ 3
and inequality 2.4) is equivalent to%.2). < >
The proof of Lemma&.3is thus complete from LemniaZ2. O
Page 5 of 15
Lemma 2.4 (3]). Forany\ > 1, we have
Go Back
(2.5) [R=A(A+1)r]s* +7[4(N* —4) R?+ (N> + 12X +4) Rr+ (A +3A+2)r?] > 0.
Full Screen
Lemma 2.5. In triangle ABC', we have Close

919 L 9 _ 98 _ 6 2 2 2y A4
a’+ b + ¢’ =2s[s" — 18r(R + 2r)s” + 18r°(21Rr + Tr° + 12R")s eutelen meselies

— 6r°(105r% R + 240rR? + 147 4+ 160R%)s* + 9r*(r 4+ 2R)(r + 4R)?). in pure and applied
mathematics
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Proof. The identity directly follows from the known identities+ b + ¢ = 2s,
ab + bc + ca = s* + 4Rr + r?, abc = 4Rrs and the following identity:

a’ +b” + ¢
= 3a’b’c® — 45abc(ab + be + ca)(a + b+ ¢)* + Hdabe(ab + be + ca)?*(a + b + ¢)?
—27a*V*c*(ab+ be +ca)(a+b+c) + (a+b+c)°
—9(ab+be +ca)(a+b+c)" +9(ab+ be+ ca)*(a + b+ c)
—30(ab + bc + ca)*(a + b+ ¢)® + 18a*b*c*(a + b + ¢)*
+27(ab + be + ca)*(a + b+ ¢)® + 9abe(a + b + ¢)® — 9abe(ab + be + ca)?.

O
Lemma 2.6 (B]). If z,y,2z > 0, then

r+y+z+3Fryz > 2 (\/:By+ VYyz + \/zm) .
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3. Proof of the Main Result

The proof of Theoreni.? is easy to find from the following inequality3 (1) for
k = 2 of the proof of Theorem..3. Now, we prove Theorer.3.

The proof of Theoreml.3. Hoélder’s inequalityand Lemma2.1 imply for £ > 1
that

k—1

aFT 4 bET 4 cﬁ] 5 [(RiRy)* + (RaRs)* + (RsRy)F]*
> aRyRs + bR3Ry + cRy Ry > abc,
or
(abe)*

(31 (RiRo)" + (RoRs)* + (RsRa)* > — - TS
a*1 + bF-1 + cm]

Combining inequality §.1) and Lemma2.3, we immediately see that Theorenh®
is true. O
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4. Applications

4.1. Alternative Proof of Theorem 1.1

From Theoreml.2, in order to prove inequalityl(1), we only need to prove the
following inequality:

2b2 2 16
(4.1) _AvC S DN
a? + b2 + 2 9
With the known identitieabc = 4Rrs and/AA = rs, inequality ¢.1) is equivalent to
a® 4+ b+ < 9R%

This is simply inequality .2) for t = 2 < t, in LemmaZ2.2. This completes the
proof of inequality (.1).

Remarkl. The above proof of inequalityi(1) is simpler than Liu’s proofg].

4.2. Solution of Two Conjectures

In 2008, J. Liu p] posed the following two geometric inequality conjectures?)
and @.3), involving Ry, R,, R3, R andr.

Conjecture 4.1. For AABC and an arbitrary pointP, we have

(4.2) (RiRy)* + (RyR3)* + (R3Ry)? > 8(R* + 2r?)r?,
and
(4.3) (R1Rs)? + (RoRs)? + (R3Ry)2 > 241,
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Proof. First of all, fromGerretsen’s inequalityl, pp. 50, Theorem 5.8]
s* <AR* + 4Rr + 3r®
andEuler’s inequality[1, pp. 48, Theorem 5.1]
R > 2r,
we have
2r*(4R* + 4Rr + 3r* — 5%) + (R — 2r)(4R* + Rr + 2r*)r > 0
16 R?r?s?
2(s?2 —4Rr — r?)
Using Theoreml.2 and the known identities/[ pp.52]
abc = 4Rrs and @’ + b+ = 2s(s* — 6Rr — 3r?),

we see that inequality!(2) holds true.
Secondly, from$.1), in order to prove inequalityd(3), we only need to prove

(abc)?
[a3 + b3 + 03]%
With the known identitiesq, pp. 52]
abc = 4Rrs and @’ + b+ = 2s(s* — 6Rr — 3r?),
inequality ¢.4) is equivalent to

4 3
: (4Rrs)? > o4y3
25(s? — 6Rr — 3r?)]2
= 18r°(4R* + 4Rr + 3r° — 5°) + R*(s® — 16Rr + 5r%)
+ Rr(R — 2r)(16 R* + 27Rr — 18r%) > 0.

> 8(R? + 2r?)r?.

> 2473,

(4.4)

(4.5)
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From Gerretsen’s inequalityl, pp. 50, Theorem 5.8]
16Rr — 5r? < s> < 4R?> + 4Rr + 3r?
andEuler’s inequality[1, pp. 48, Theorem 5.1]
R > 2r,

we can conclude that inequality.©) holds, further, inequality4 ) is true.
This completes the proof of Conjectutel. O]

Corollary 4.2. For AABC and an arbitrary pointP, we have

(4.6) R} + R+ Ry + 3R RyRy > 4813,

Proof. Inequality ¢.6) can directly be obtained from Lemmniat and inequality
(4.9. 0
4.3. Sharpened Form of Above Conjectures

The inequalities4.2) and ¢.3) of Conjecturet.1 can be sharpened as follows.

Theorem 4.3. For AABC and an arbitrary pointP, we have

(4.7) (R1R2)? + (RyR3)* + (RsRy)? > 8(R + ) Rr?,
and
(4.8) (R1Rs)? + (RoR3)? + (R3Ry)? > 12Rr?.

Proof. The proof of inequality4.7) is left to the readers. Now, we prove inequality
(4.9).
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From inequality 2.5) for A = 2 in LemmaZ2.4, the well-knownGerretsen’s in-
equality[1, pp. 50, Theorem 5.8]

16Rr — 512 < s* < 4R%* + 4Rr + 3r?,
Euler’s inequality[1, pp. 48, Theorem 5.1]
R>2r
and the known identities’[ pp. 52]
abc = 4Rrs and a® +b* + ¢ = 2s(s* — 6Rr — 31%),
we obtain that
(4.9) [(R—6r)s® + 12r*(4R + 1)] + 3r(4R? + 4Rr + 3r* — %)
+ R(s* = 16Rr +5r%) +r(R — 2r)(4R — 3r) > 0
(4Rrs)2
[2s(s? — 6Rr — 37“2)]%

3
(@be)> o Jopy2.
(a3 + b3 + 32

Inequality ¢.8) follows by Lemma?2.4.
Theorem4.3is thus proved. O

> 12Rr?

4.4. Generalization of Inequality (4.3)

Theorem 4.4.1f k > 2, then

(4.10) (RiR)* + (RoR3)" + (RgRy)* > 3(4r%)".
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Proof. From the monotonicity of the power mean, we only need to prove that in-
equality ¢.10 holds fork = % By using inequality §.1), we only need to prove the

following inequality
(abc)s
(a® + 10 + )3
FromGerretsen’s inequalityl, pp. 50, Theorem 5.8]
s?> > 16Rr — 5r?
andEuler’s inequality[1, pp. 48, Theorem 5.1]
R > 2r,

(4.11) > 3(4r?)5.

it is obvious that

P = (R — 2r)[4096 R™ + 12544 R%r 4 34992 R%r* 4+ 89667 R"r> + 218700 R%*
+ 516132R°r° + 1189728 R*% + 2493180 R*r" + 6018624(R — 2r) Rr®
+ 67534567 + 201204(R? — 4r*)Rr"] + 27993607 > 0,

and

Q = (s* = 16Rr + 5r){R%(s* — 16 Rr + 51?)
+ 3R (R — 2r)(16 R° + 27R*r + 54R*r?
+ 108 R*r® 4+ 216 Rr* + 432r°) + 3247 [8(R* — 12r*)* + 30r*(R — 2r)?
+ 39Rr® + 2677} + 1749607 (R* — 3Rr + 6r°)(R* — 12Rr + 24r?)?
+3r%(R — 2r){(R — 2r)[256 R + 864 R®*r + 2457 R*r?(R® — 32r°)
+ 6372R*r3(R* — 167%) + 15660 R*r*(R® — 8r%) + 31320R*r°(R? — 4r?)

+ 220104 R*rS(R — 2r) + 2618784(R — 2r)r® 4 51840 R*r" + 501120 Rr®]

+ 687312r'%1 > 0.

Geometric Inequality by J. Sandor
Yu-Dong Wu, Zhi-Hua Zhang

and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents
44 44
< >
Page 12 of 15
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

Therefore, with the fundamental inequali®; pp.1-3]
—s* 4+ (4R* + 20Rr — 2r%)s? —r(4R +1)* > 0,

we have

W = (R — 13122r°)s® + 236196r™° (2r + R)s® — 2361967 (7 + 12R* + 21Rr)s*

+ 7873272 (105Rr* 4+ 160 R® + 240R*r + 141%)s®
— 118098r"* (2R + r) (4R + r)?

= 13122r7[s* + (2R + 1)][—s" + (4R* + 20Rr — 2r?)s®> — r(4R + r)?]
+735*(R —2r)P + s*(s*> — 16Rr + 5r°)Q

> 0.

Hence, from Lemma&.4, we get that

Rs\”’ s
412 =) —(a”+ b 9) — >
( ) 3(3r) (a® +b”" + ¢”) 65617"9W_0’
or
Rs\’ 9 9 9

Inequality ¢.13) is simply ¢.11). Thus, we complete the proof of Theorém. [J
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5. Two Open Problems

Finally, we pose two open problems as follows.

Open Problem 1. For a triangle ABC and an arbitrary pointP, prove or disprove
(5.1) R} + Ry + RS + 6R Ry Rg > 7217,

Open Problem 2. For a triangle ABC' and an arbitrary pointP, determine the best
constantt such that the following inequality holds:

3
2

(5.2) (RiRs)? + (RoR3)? + (R3R1)? > 12[R + k(R — 2r)]r™.
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