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1. Introduction and Main Results

Let P be an arbitrary pointP in the plane of triangleABC. Let a, b, c be the
lengths of these sides,4 the area,s the semi-perimeter,R the circumradius andr
the inradius, respectively. Denote byR1, R2, R3 the distances fromP to the vertices
A, B, C, respectively.

The following interesting geometric inequality from 1986 is due to J. Sándor [8],
a proof of this inequality can be found in the monograph [9].

Theorem 1.1.For triangleABC and an arbitrary pointP , we have

(1.1) (R1R2)
2 + (R2R3)

2 + (R3R1)
2 ≥ 16

9
42 .

Recently, J. Liu [6] also independently proved inequality (1.1).
In this short note, we sharpen and generalize inequality (1.1) and obtain the fol-

lowing results.

Theorem 1.2.We have

(1.2) (R1R2)
2 + (R2R3)

2 + (R3R1)
2 ≥ a2b2c2

a2 + b2 + c2
.

Theorem 1.3. If

k ≥ k0 =
2(ln 3− ln 2)

3 ln 3− 4 ln 2
≈ 1.549800462,

then

(1.3) (R1R2)
k + (R2R3)

k + (R3R1)
k ≥ 3

(
4

9

√
34

)k

.
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2. Preliminary Results

Lemma 2.1 (Hayashi’s inequality, see [7, pp. 297, 311]).For any4ABC and an
arbitrary pointP , we have

(2.1) aR2R3 + bR3R1 + cR1R2 ≥ abc,

with equality holding if and only ifP is the orthocenter of the acute triangleABC
or one of the vertices of the triangleABC.

Lemma 2.2 (see [2] and [4]). For4ABC, if

0 ≤ t ≤ t0 =
ln 9− ln 4

ln 4− ln 3
,

then we have

(2.2) at + bt + ct ≤ 3
(√

3R
)t

.

Lemma 2.3. Let

k ≥ k0 =
2(ln 3− ln 2)

3 ln 3− 4 ln 2
≈ 1.549800462.

Then

(2.3)
(abc)k[

a
k

k−1 + b
k

k−1 + c
k

k−1

]k−1
≥ 3

(
4

9

√
34

)k

.

Proof. From the well known identitiesabc = 4Rrs and4 = rs, inequality (2.3) is
equivalent to

(4Rrs)k[
a

k
k−1 + b

k
k−1 + c

k
k−1

]k−1
≥ 3

(
4

9

√
3rs

)k

,
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or

(2.4) a
k

k−1 + b
k

k−1 + c
k

k−1 ≤ 3
(√

3R
) k

k−1
.

It is easy to see that the function

f(x) =
x

x− 1

is strictly monotone decreasing on(1, +∞). If we let

t =
k

k − 1
= f(k)

(
k ≥ k0 =

2(ln 3− ln 2)

3 ln 3− 4 ln 2

)
,

then

0 < f(k) = t ≤ ln 9− ln 4

ln 4− ln 3
= f(k0),

and inequality (2.4) is equivalent to (2.2).
The proof of Lemma2.3 is thus complete from Lemma2.2.

Lemma 2.4 ([3]). For anyλ ≥ 1, we have

(2.5) [R−λ(λ+1)r]s2+r[4(λ2−4)R2+(5λ2+12λ+4)Rr+(λ2+3λ+2)r2] ≥ 0.

Lemma 2.5. In triangleABC, we have

a9 + b9 + c9 = 2s[s8 − 18r(R + 2r)s6 + 18r2(21Rr + 7r2 + 12R2)s4

− 6r3(105r2R + 240rR2 + 14r3 + 160R3)s2 + 9r4(r + 2R)(r + 4R)3].
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Proof. The identity directly follows from the known identitiesa + b + c = 2s,
ab + bc + ca = s2 + 4Rr + r2, abc = 4Rrs and the following identity:

a9 + b9 + c9

= 3a3b3c3 − 45abc(ab + bc + ca)(a + b + c)4 + 54abc(ab + bc + ca)2(a + b + c)2

− 27a2b2c2(ab + bc + ca)(a + b + c) + (a + b + c)9

− 9(ab + bc + ca)(a + b + c)7 + 9(ab + bc + ca)4(a + b + c)

− 30(ab + bc + ca)3(a + b + c)3 + 18a2b2c2(a + b + c)3

+ 27(ab + bc + ca)2(a + b + c)5 + 9abc(a + b + c)6 − 9abc(ab + bc + ca)3.

Lemma 2.6 ([5]). If x, y, z ≥ 0, then

x + y + z + 3 3
√

xyz ≥ 2
(√

xy +
√

yz +
√

zx
)
.
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3. Proof of the Main Result

The proof of Theorem1.2 is easy to find from the following inequality (3.1) for
k = 2 of the proof of Theorem1.3. Now, we prove Theorem1.3.

The proof of Theorem1.3. Hölder’s inequalityand Lemma2.1 imply for k > 1
that[

a
k

k−1 + b
k

k−1 + c
k

k−1

] k−1
k

[(R1R2)
k + (R2R3)

k + (R3R1)
k]

1
k

≥ aR2R3 + bR3R1 + cR1R2 ≥ abc,

or

(3.1) (R1R2)
k + (R2R3)

k + (R3R1)
k ≥ (abc)k[

a
k

k−1 + b
k

k−1 + c
k

k−1

]k−1
.

Combining inequality (3.1) and Lemma2.3, we immediately see that Theorem1.3
is true.
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4. Applications

4.1. Alternative Proof of Theorem 1.1

From Theorem1.2, in order to prove inequality (1.1), we only need to prove the
following inequality:

(4.1)
a2b2c2

a2 + b2 + c2
≥ 16

9
42 .

With the known identitiesabc = 4Rrs and4 = rs, inequality (4.1) is equivalent to

a2 + b2 + c2 ≤ 9R2.

This is simply inequality (2.2) for t = 2 < t0 in Lemma2.2. This completes the
proof of inequality (1.1).

Remark1. The above proof of inequality (1.1) is simpler than Liu’s proof [6].

4.2. Solution of Two Conjectures

In 2008, J. Liu [6] posed the following two geometric inequality conjectures, (4.2)
and (4.3), involving R1, R2, R3, R andr.

Conjecture 4.1. For4ABC and an arbitrary pointP , we have

(4.2) (R1R2)
2 + (R2R3)

2 + (R3R1)
2 ≥ 8(R2 + 2r2)r2,

and

(4.3) (R1R2)
3
2 + (R2R3)

3
2 + (R3R1)

3
2 ≥ 24r3.
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Proof. First of all, fromGerretsen’s inequality[1, pp. 50, Theorem 5.8]

s2 ≤ 4R2 + 4Rr + 3r2

andEuler’s inequality[1, pp. 48, Theorem 5.1]

R ≥ 2r,

we have

2r2(4R2 + 4Rr + 3r2 − s2) + (R− 2r)(4R2 + Rr + 2r2)r ≥ 0

⇐⇒ 16R2r2s2

2(s2 − 4Rr − r2)
≥ 8(R2 + 2r2)r2.

Using Theorem1.2and the known identities [7, pp.52]

abc = 4Rrs and a3 + b3 + c3 = 2s(s2 − 6Rr − 3r2),

we see that inequality (4.2) holds true.
Secondly, from (3.1), in order to prove inequality (4.3), we only need to prove

(4.4)
(abc)

3
2

[a3 + b3 + c3]
1
2

≥ 24r3.

With the known identities [7, pp. 52]

abc = 4Rrs and a3 + b3 + c3 = 2s(s2 − 6Rr − 3r2),

inequality (4.4) is equivalent to

(4.5)
(4Rrs)

3
2

[2s(s2 − 6Rr − 3r2)]
1
2

≥ 24r3

⇐⇒ 18r3(4R2 + 4Rr + 3r2 − s2) + R3(s2 − 16Rr + 5r2)

+ Rr(R− 2r)(16R2 + 27Rr − 18r2) ≥ 0.
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FromGerretsen’s inequality[1, pp. 50, Theorem 5.8]

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2

andEuler’s inequality[1, pp. 48, Theorem 5.1]

R ≥ 2r,

we can conclude that inequality (4.5) holds, further, inequality (4.4) is true.
This completes the proof of Conjecture4.1.

Corollary 4.2. For4ABC and an arbitrary pointP , we have

(4.6) R3
1 + R3

2 + R3
3 + 3R1R2R3 ≥ 48r3.

Proof. Inequality (4.6) can directly be obtained from Lemma2.6 and inequality
(4.3).

4.3. Sharpened Form of Above Conjectures

The inequalities (4.2) and (4.3) of Conjecture4.1can be sharpened as follows.

Theorem 4.3.For4ABC and an arbitrary pointP , we have

(4.7) (R1R2)
2 + (R2R3)

2 + (R3R1)
2 ≥ 8(R + r)Rr2,

and

(4.8) (R1R2)
3
2 + (R2R3)

3
2 + (R3R1)

3
2 ≥ 12Rr2.

Proof. The proof of inequality (4.7) is left to the readers. Now, we prove inequality
(4.8).
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From inequality (2.5) for λ = 2 in Lemma2.4, the well-knownGerretsen’s in-
equality[1, pp. 50, Theorem 5.8]

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2,

Euler’s inequality[1, pp. 48, Theorem 5.1]

R ≥ 2r

and the known identities [7, pp. 52]

abc = 4Rrs and a3 + b3 + c3 = 2s(s2 − 6Rr − 3r2),

we obtain that

[(R− 6r)s2 + 12r2(4R + r)] + 3r(4R2 + 4Rr + 3r2 − s2)(4.9)

+ R(s2 − 16Rr + 5r2) + r(R− 2r)(4R− 3r) ≥ 0

⇐⇒ (4Rrs)
3
2

[2s(s2 − 6Rr − 3r2)]
1
2

≥ 12Rr2

⇐⇒ (abc)
3
2

[a3 + b3 + c3]
1
2

≥ 12Rr2.

Inequality (4.8) follows by Lemma2.4.
Theorem4.3 is thus proved.

4.4. Generalization of Inequality (4.3)

Theorem 4.4. If k ≥ 9
8
, then

(4.10) (R1R2)
k + (R2R3)

k + (R3R1)
k ≥ 3(4r2)k.
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Proof. From the monotonicity of the power mean, we only need to prove that in-
equality (4.10) holds fork = 9

8
. By using inequality (3.1), we only need to prove the

following inequality

(4.11)
(abc)

9
8

(a9 + b9 + c9)
1
8

≥ 3(4r2)
9
8 .

FromGerretsen’s inequality[1, pp. 50, Theorem 5.8]

s2 ≥ 16Rr − 5r2

andEuler’s inequality[1, pp. 48, Theorem 5.1]

R ≥ 2r,

it is obvious that

P = (R− 2r)[4096R10 + 12544R9r + 34992R8r2 + 89667R7r3 + 218700R6r4

+ 516132R5r5 + 1189728R4r6 + 2493180R3r7 + 6018624(R− 2r)Rr8

+ 6753456r10 + 201204(R2 − 4r2)Rr7] + 2799360r11 > 0,

and

Q = (s2 − 16Rr + 5r2){R9(s2 − 16Rr + 5r2)

+ 3R4r(R− 2r)(16R5 + 27R4r + 54R3r2

+ 108R2r3 + 216Rr4 + 432r5) + 324r7[8(R2 − 12r2)2 + 30r2(R− 2r)2

+ 39Rr3 + 267r4]}+ 17496r7(R2 − 3Rr + 6r2)(R2 − 12Rr + 24r2)2

+ 3r2(R− 2r){(R− 2r)[256R9 + 864R8r + 2457R2r2(R5 − 32r5)

+ 6372R2r3(R4 − 16r4) + 15660R2r4(R3 − 8r3) + 31320R2r5(R2 − 4r2)

+ 220104R2r6(R− 2r) + 2618784(R− 2r)r8 + 51840R2r7 + 501120Rr8]

+ 687312r10} > 0.
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Therefore, with the fundamental inequality [7, pp.1–3]

−s4 + (4R2 + 20Rr − 2r2)s2 − r(4R + r)3 ≥ 0,

we have

W = (R9 − 13122r9)s8 + 236196r10(2r + R)s6 − 236196r11(7r2 + 12R2 + 21Rr)s4

+ 78732r12(105Rr2 + 160R3 + 240R2r + 14r3)s2

− 118098r13(2R + r)(4R + r)3

= 13122r9[s4 + 9r3(2R + r)][−s4 + (4R2 + 20Rr − 2r2)s2 − r(4R + r)3]

+ r3s2(R− 2r)P + s2(s2 − 16Rr + 5r2)Q

≥ 0.

Hence, from Lemma2.4, we get that

(4.12) 3

(
Rs

3r

)9

− (a9 + b9 + c9) =
s

6561r9
W ≥ 0,

or

(4.13) 3

(
Rs

3r

)9

≥ a9 + b9 + c9.

Inequality (4.13) is simply (4.11). Thus, we complete the proof of Theorem4.4.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Geometric Inequality by J. Sándor
Yu-Dong Wu, Zhi-Hua Zhang

and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

JJ II

J I

Page 14 of 15

Go Back

Full Screen

Close

5. Two Open Problems

Finally, we pose two open problems as follows.

Open Problem 1. For a triangleABC and an arbitrary pointP , prove or disprove

(5.1) R3
1 + R3

2 + R3
3 + 6R1R2R3 ≥ 72r3.

Open Problem 2.For a triangleABC and an arbitrary pointP , determine the best
constantk such that the following inequality holds:

(5.2) (R1R2)
3
2 + (R2R3)

3
2 + (R3R1)

3
2 ≥ 12[R + k(R− 2r)]r2.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Geometric Inequality by J. Sándor
Yu-Dong Wu, Zhi-Hua Zhang

and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

JJ II

J I

Page 15 of 15

Go Back

Full Screen

Close

References
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