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ABSTRACT. In this paper, we determine sharp lower bounds M{%} and

Re {%} We extend the results of_([1] £I[5]) and correct the conditions for the re-
sults of Frasin[[2, Theorem 2.7[.I[1, Theorem 2], Rosy etlal. [4, Theorems 4.2 and 4.3], as well
as Raina and Bansall[3, Theorem 6.2].
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1. INTRODUCTION

Let A denote the class of functiorfsof the form
(1.1) f2) =2+ at,
k=2
which are analytic in the open unit dist = {z : |z| < 1}. Further, byS we shall denote the

class of all functions imd which are univalent ii/. A function f (z) in S is said to be starlike
of ordera (0 < a < 1), denoted by5* («), if it satisfies

Re{zf,(z)} >a (zel),

f(z)
and is said to be convex of order(0 < a < 1), denoted by («), if it satisfies
2f" (z)}
Red 1+ >a (z€elU).
e et
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Let 7* (o) andC' (o) be subclasses d¢f* (o) and K («), respectively, whose functions are
of the form

o0

1.2) f(z)=2z— Z arpz®,  ap > 0.

k=2
A sufficient condition for a function of the form (1.1) to be i («) is that

[e.9]

(1.3) (k—a)|ag| <1—a
k=2
and to be inK («a) is that
(1.4) > k(k—a)la <1-a.
k=2

For functions of the forn{ (1]2), Silvermaln/[6] proved that the above sufficient conditions are
also necessary.
Let ¢(z) € S be a fixed function of the form

(1.5) o(2) =z + chzk, (e > >0,k >2).
k=2

Very recently, Frasiri [2] defined the claBs (¢, ) consisting of functiong (z), of the form
(L.1) which satisfy the inequality

o0

(1.6) ch | <0,

k=2

whered > 0.
He shows that for suitable choicesfandd, H,, (cx, §) reduces to various known subclasses
of S studied by various authors (for a detailed study, see [2] and the references therein).

In the present paper, we determine sharp lower bound%d%r%} andRe {% }
where

fulz) =2+ Z az”
k=2
is a sequence of partial sums of a function
f(z)=2z+ Zakzk
k=2
belonging to the clas# (c;, §) and
Y(z) =24+ Mz, (A =0)
k=2

is analytic in open unit dist/ and the operator “*” stands for the Hadamard product or convo-
lution of two power series, which is defined for two functiohg € A, wheref (z) andg (z)
are of the form

f(z)=z+ Zakzk and g(z)=2z+ Z b2~
k=2 k=2
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as .
(fx9)(2)=f(2)xg(2) =2+ Z apby”.

In this paper, we extend the results of Silverman [5], Fra' in (I1], [2]) Rosy €tlal. [4] as well as
Raina and Bansél[3] and we point out that some conditions on the results of Frasin ([2, Theorem
2.7], |21, Theorem 2]), Rosy et al[([4, Theorem 4.2, 4.3]), Raina and Bans$al ([3, Theorem 6.2])
are incorrect and we correct them. It is seen that this study not only gives a particular case of
the results ([1] —[5]) but also gives rise to several new results.

2. MAIN RESULTS
Theorem 2.1.1f f € Hy (cx,0) andyp (z) = 2+ > _pey Ae2™, A, > 0, then
)

f(Z) (Z Cp+1 — n-i—lfS .
@1 Rl F o) 2 zel)
and

fa (2) x4 (2) Cnt1
(2.2) Re{ / (Z) * 1 (Z> } = Crg1 + Ans10 (Z © U) ’
where

Mot if k=p41,n42,...

)\’VLJrl

The result42.1) and (2.4) are sharp with the function given by
(2.3) F() =zt e,

Cn+41

)\ké if k::2,3,...,n
Ck =

where( < § < C”“.

n+1
Proof. Define the functionw (z) by
1 + w (Z) _ Cn+1 f (Z) k ’QD (Z) Cn+1 — 5)\714-1
(2.4) = _
1-—w(z)  Anp)d [fa(2)x9(2) Cntl
1 + Zk 2 Aparz® !+ (Cn+1 5 Zk n+1 Arapz !
1 + Zk_2 )\kakzk 1 '
It suffices to show thatv (2)| < 1. Now, from [2.4) we can write
k-1

Cn+1 &°]
(Ant1)d Zk:”‘H Akl

2 + 2 ZZ:Q )\kakzk‘l + ()\C:_:rll)é ZZO:TH_I )\kakz’“—l .

w(2) =

Hence we obtain

jw ()

Now |w (2)| < 11if

c::f 5 P 1 Ak ||

< 2 _QZk 2 Ak |ax| — anéZk n+1 Ak lag|

n+1)

Cn
+1 Z )\k\ak|<2—22)\klak\

k n+1
or, equivalently,

n Crst ]
(2.5) Ae |an| + Ae |an| < 1.
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It suffices to show that the L.H.S. ¢ (2.5) is bounded abov® 1)y , % |a.|, which is equivalent
to

a ck — 0N - Ang1Ck = Cng1 Mk
(2.6) S (452 had+ 3 ( ag] > 0.
k=2 J k=n+1 Ant10

To see that the function given by (.3) gives a sharp result we observe thatfoe™/"

f(2) 4 (2) 0 0

= 1+_)\n+12n—> 1-—

fn (2) %9 (2) Cn+1 Cn41

_ Cng1 — OAnt1

An+1

Cn+1

whenr — 1°.
To prove the second part of this theorem, we write

1+w(z2) _ Crn1 + Apg10 [fn (2) ¥ (2) . ( Cn+1 )]
1 —w(z) An+10 f(z)x¢(2) Cng1 + Ang10
1+ Db Akagzh Tt = ST a2

1'+'§:ZZQ,Akaka71 ’

where
n Ant10
(c—gj;lgd ) E::in+1Ak|ak
|w (2)| S n Cn+1—An+10 00 S L.
2-2 Zk:Q Ak |ak| B WY Zk:n-f-l Ak |ak|

This last inequality is equivalent to

E A E A < 1.
k=2 ol (Ant1) 9 k=n+1 Hlowd =

Making use of[(1.6), we gef (4.6). Finally, equality holds[in {2.2) for the funcfidn) given
by (2.3). O

Takingv (z) = % in Theore, we obtain the following result given by Frasir in [2].

1—2z

Corollary 2.2. If f € Hy (cx,6), then

o f(2) } Cpt1 — O .
(2.7) R {fn B > -~ (zeU)
and

o In (z)} Cny1 B
(2.9) R,{f@) >l e,
where

0 if £=223,...,n,
Ck 2 .
1 I E=n+1,n+2,...

The resultg2.7) and (2.8) are sharp with the function given Ifg.3).
If we pute (2) = (1_’2)2 in Theore, we obtain:
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Corollary 2.3. If f € Hy (¢, 0), then

2.9) Re 1 (2) > Chi1 — (n+1)0

; zeU
1) S
and
I (Z) Cn+1

2.10 Re 22 > ceU
(2.10) T Tt (nt1)o (2€0),
where

kS if k=2,3,....n,

i k=n+ln+2,...

The resultg2.9) and (2.10)are sharp with the function given If#.3).

Remark 1. Frasin has shown in Theorem 2.7 of [2] that fore H, (cx, ¢), inequalities[(Z2.9)
and [2.1D) hold with the condition

{k6 if k=2,3,...,n
k

ko (1+25) if k=n+1n+2,...

(2.12)

However, it can be easily seen that the conditjon (2.12)fern + 1 gives

cn+12(n+1)(5(1+<nci—+11)5)

or, equivalentlyy < 0, which contradicts the initial assumption> 0. So Theorem 2.7 of [2]
does not seem suitable with the conditipn (2.12), but our condjtion|(2.11) remedies this problem.

Taking e (2) = %, ¢ = WD (FA=1) ywhered > 0,3 > 0, -1 < a < 1 and
d=1in Theorenjzll we obtain the following result given by Rosy et al.lin [4].

Corollary 2.4. If f is of the form(L.])) and satisfies the conditiop_,~, ¢ |ax| < 1, where
¢, = (TR0 B)] (k+A=1) "N > 0,3 >0, —1 < o < 1, then

l—«a
f(2) Cny1 — 1
(2.13) Re { T (z)} > o (ze€U)
and
fn (2) Cn-i—l
(2.14) Re{f@)}zcﬁl+1 (zeU).
The resultg2.13)and (2.14)are sharp with the function given by
(2.15) f(z)=z+ ! 2"t
Cn+1
Taking
oz A+ B E—(a+B)] [k+A-1
w@»—u_%f, "= 1—a < k )’

whereA > 0,3 >0, —1 <« < 1andd = 1in Theorenj 2.1, we obtain
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Corollary 2.5. If f is of the form(1.1)and satisfies the condition

9
ch ’CLk| S 1,
k=2

where
. [(1+5)1k:_—a(oz+5)] (Hz—l) . (020,820, 1<a<1),
then
f'(2) Cnp1 — (n+ 1)
(2.16) Re { 7 (Z)} > -~ (z€U)
and
fa (2) Cn+1
(2.17) Re { ) } > T D) (z€U),
where
k if £=23,...,n,
(2.18) Cp > { . _
f;j: if k=n+1n+2,...

The result42.18)and (2.17)are sharp with the function given If2.15)

Remark 2. Rosy et al. has obtained inequalities (2.16) & (2.17) in Theorem 4.2 & 413 of [4]
without any restriction om,. However, when we critically observe the proof of Theorem 4.2
we find that inequality (4.16) of [4, Theorem 4.2]

n 00 cn k
D ek — k) lax] + ) (Ck - n:l) lay| >0

k=2 k=n+1
cannot hold if condition (2.18) does not occur. So Theorems 4.2 & 43 of [4] are not proper and
proper results are mentioned in Corollary]2.5.
Takingvy (z) = %5, e = A\ — app, 0 = 1 — o, where0 < o < 1, Ay > 0, g > 0, and
A > i (k> 2) in Theorenj 2.]1, we obtain the following result given by Frasinin [1].

Corollary 2.6. If f is of the form(I.1) and satisfies the condition

(e e}

Z (A — apg) lax] <1 —«,

k=2
then
f (Z) /\n+1 — Qlpy1 — 1+«
(2.19) Re { > zelU
fn (Z) )\n—I—l — Qlip41 ( )
and
fn (Z) } )\n—I—l — Qlip41
2.20 Re > zeU),
( ) {f<z) T A1 — Q1 1 —a ( )
where
11—« if £=2,3,...,n,
Ak — oy > _
A1 — Qi I E=n+1,n+2,...
The resultg2.19)and (2.20)are sharp with the function given by
1 —
(2.21) f(z)=z+ e e

Ang1 — Qlpgt
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Takingvy (z) = ﬁ =M —au, 0 =1—awhere) < a <1, \ >0, ux > 0,and
Ar > p (k> 2)in Theorenj 2.]1, we obtain:
Corollary 2.7. If f is of the form(I.1) and satisfies the condition

o0

Z (A — apg) lar] <1 —«,

k=2
then
' — - 1) (1 —
fu(2) A1 — Qfbpi
and
f/ (Z) } )\n.l,_]_ — Olp+1
2.23 Red In S —
( ) {f’(z) T g1 — Qg1 + (n+1) (1 — a) ( )
where
k(1—a) if k=2,3,...,n,
(2.24) e — o >
Hhatitotl) i k=n+41,n+2,...

The result42.22)and (2.23)are sharp with the function given I§2.21)

Remark 3. Frasin has obtained inequalitids (2.22) [& (2.23) in Theorem 2 of [1] under the
condition
k(1—a) if £=23,...,n,
k(l—oz)—kk(’\"“n;w if k=n+1,n+2,...

However, when we critically observe the proof of Theorem 2 of [1], we find that the last
inequality of this theorem

(2.26) i (A’Z%O;f"“ - k) ||

k=2
- Ak — Qg Ang1 — Qflpg1
o PR (1 >
> < 1 a ( Tt k) lal=0
cannot hold for the function given by (2]21) for supporting the sharpness of the résulis (2.22)

& (.23). So condition 2.25 of Theorem 2 inl[1] is incorrect and the corrected results are
mentioned in Corollary 2]7.

(2.25) Akl — Qg1 > {

Taking
148k — (o +
andd = 1, where—1 < a < 1, 8 > 0, u, > 0 (Vk € N\ {1}) in Theorenj 2.1, we obtain the

following result given by Raina and Bansal in [3].
Corollary 2.8. If f is of the form(1.2) and satisfies the conditiop,-, ¢\ |ax| < 1, where
{(L+B) k- (a+B)} pu

l1—«

and (1), Is @ nondecreasing sequence such that

11—« 11—«
>— < — <1, —-1<a<l,(2>0
/1/2_2+6—Oé< 2+ﬂ—06 ) S 7ﬁ_>7

J. Inequal. Pure and Appl. Math10(4) (2009), Art. 101, 9 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

8 K. K. DIXIT AND SAURABH PORWAL

then
f(z) } Cpy1 — 1
2.27 Re > zeU
( ) {fn (2) Cn+1 ( )
and
fn (Z) } Cn+1
2.28 Re > zeU).
( ) {f(z) T | ( )
The result42.27)and (2.28)are sharp with the function given by
(2.29) f(z)=2z-— ! 2"
Cn+1
Takinge (z) = 2, ¢ = (I ands = 1, where—1 < o < 1,3 >0, i > 0

(Vk € N\ {1}) in Theoren{ 21, we obtain the following result given by Raina and Bansal in
[3].

Corollary 2.9. If f is of the form(1.2) and satisfies the condition

[e.9]

ch k| <1,

k=2

where

{1+ 06)k—(a+B)}
1 -« ’

and (1), Is @ nondecreasing sequence such that

Cp —

2(1—a) -«
1< >0 ).
M‘2+ﬁ—a (0<2+5_a<1, 1_a<1,5_0)
Then
(2.30) Re{f,(z>}zc”+1_(”+1) (z € )
n(Z) Cn+1
and
'(Z)} Cni1
2.31 Re! I» > eU),
(2:31) {f’(Z) Zomtmry €Y
where
k if £k=23,...,n,
(2.32) >,
et i k=n+ln+2,...

The resultg2.30)and (2.31)are sharp with the function given [f#.29)

Remark 4. Raina and Bansal [3] have obtained inequalifies (2.30) & {2.31) in Theorem 6.2 of
[3] without any restriction or;, . However, we easily see that conditipn (2.32) is must.

Remark 5. Takingvy (2) = =, ¢ = (k—a),cs = k(k—a),0 =1 —-—a,0 < a < 1in

1—27

Theorenj 2.1, we obtain Theorems 1-3 given by Silverman!in [5].
Remark 6. Takingvy (2) = —=, = (k—a), s =k(k—a),0 =1—-a,0<a < 1in

(1-2)

Theorenj 2.1, we obtain Theorems 4-5 given by Silverman!in [5].
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