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Abstract: In this paper, we determine sharp lower bounds m{%} and Eull Screen
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1. Introduction

Let A denote the class of functiorfsof the form
(1.1) ) =2+ a,
k=2

which are analytic in the open unit di$€ = {z : |z| < 1}. Further, byS we shall
denote the class of all functions ihwhich are univalent ir/. A function f (z) in
S is said to be starlike of order (0 < o < 1), denoted by5* («), if it satisfies
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and is said to be convex of order(0 < a < 1), denoted by («), if it satisfies
< »
Zf// (Z) }
Req 1+ >a (z€eU).
e et) « >
Let T (a) and C (o) be subclasses of* («) and K («), respectively, whose Page 3 of 17
functions are of the form Go Back
(1.2) f2)=2=) w* a>0 Full Screen
k=2 Close
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and to be inK («) is that

(1.4) Zk —a)la] <1—a.

k=2

For functions of the form1(.2), Silverman §] proved that the above sufficient
conditions are also necessary.
Let ¢(z) € S be a fixed function of the form

(1.5) o(z)=z+ chzk, (e > >0k >2).

Very recently, Frasing] defined the clas#, (¢, §) consisting of functiong (z),
of the form (L.1) which satisfy the inequality

(1.6) > ol <9,
k=2

whered > 0.

He shows that for suitable choices qf andd, Hy (cx,d) reduces to various
known subclasses ¢f studied by various authors (for a detailed study, 2afd
the references therein).

In the present paper, we determine sharp lower boundRée{M} and

(2)*4(2)
2)*(z)
Re{ Orie) } where

n
z)=z+ g a2
k=2
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is a sequence of partial sums of a function
fz)=z+ Zakzk
k=2
belonging to the clas#; (¢, §) and
U(z) =2+ Z)xkzk, (A >0)
k=2

is analytic in open unit dist/ and the operator “*” stands for the Hadamard product
or convolution of two power series, which is defined for two functigng € A,
wheref (z) andg (z) are of the form

f(z)=z+ Zakzk and g¢(z)=z+ Z b2"
k=2 k=2

as

(Fr9)(2) = F(2)rg(x) =2+ abi”

In this paper, we extend the results of Silverm&h Frasin (L], [2]) Rosy et al. f]

as well as Raina and Bansa] pnd we point out that some conditions on the results
of Frasin (R, Theorem 2.7], 1, Theorem 2]), Rosy et al. 4] Theorem 4.2, 4.3)),
Raina and Bansal §[ Theorem 6.2]) are incorrect and we correct them. It is seen
that this study not only gives a particular case of the resulis«[5]) but also gives
rise to several new results.
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2. Main Results

Theorem 2.1.1f f € Hy (cx,0) andyy (2) = 2+ > pey Me2®, A > 0, then

f(2)*1(2) Cnt1 — Ang10
(2.1) Re{ > ev
Jo(2) 50 (2) = (zel)
and Partial Sums
fn (Z) * w (Z) Cra1 K. K. Dixit and Saurabh Porwal
2.2 R > eU , vol. 10, iss. 4, art. 101,
(2.2) e{ F)*0(2) | = enrt + Anad (2 ) I. 10, iss. 4, art. 101, 2009
where )
A0 if k=2,3,...,n, Title Page
Ck_{fo:l if k=n+1n+2,... Contents
The resultg2.1) and(2.2) are sharp with the function given by b s
5 . 4 | 4
2.3 = n+
( ) ! (Z) o Cn+1 © 7 Page 6 of 17
where0 < § < {5 Go Back
n+1
Proof. Define the functionv (z) by Full Screen
(2 4) 1 +w (2) . Cn+41 |: f (Z) * ¢ (Z) (Cn+1 - 6)\n+1):| Close
L=w(z) (1) 0 Lfa(2) %9 (2) Cnt1 journal of inequalities
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It suffices to show thatv (z)| < 1. Now, from (2.4) we can write

Cnt1 -1
g1 )d I Avapz"

24230, ApapzFl + (;::11)6 > hens1 Ae@pzE

w(z) =

Hence we obtain

,\C:Ll 5 2 kent1 M ||

|_2_2Zk 2)‘k|ak| CHaZk n+1>\k|ak|

()\nJrl

jw (2)

Now |w (z)| < 1if

Cn
+1 Z /\k|ak|<2—22)\k|ak|

n+1 k n+1

or, equivalently,
(2.5) Z)\Hak\—l— ”*1 Z A Jag] < 1.

It suffices to show that the L.H.S. of ) is bounded above by, , % |a;|, which
is equivalent to

- — oA N (At 1Ck — Coa A
(2.6) Z (ck : k) lag| + Z < +1C; 13 +1 k) lax| > 0.
n+

k=2 k=n+1
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To see that the function given by.() gives a sharp result we observe that for

y = reiﬂ/n
f(z) x4 (2) 0 o
s =1+ — 2= 1= An
fo (2) % 0 (2) T Copt
_ Cng1 — OAng1
Cn+1
whenr — 1.

To prove the second part of this theorem, we write

1+ w(z) _ v+ A [fn (2)x¥(2) ( Crt1 )}
1 —w(z) Ant10 f(2) xv¥(2) Cnt1 + Ang10
L Dk Apapzb Tt — e S0 Mgz

1 —+ Zzozz /\kakzk_l ’

where

A [
<Cn+;j+173+1 > Zzo_n+l )\k |a’k‘

Cng1—Ant10 00 <1
2-12 Ek o Ak lag| — =554 Zk:n+1 Ak |ag]

n+16

w(z)] <

This last inequality is equivalent to
Z)\k|ak|+ Ent1 Z /\k|ak| < 1.
n+1 5 —ntl

Making use of {.6), we get ¢.6). Finally, equality holds inZ.2) for the function
f (2) given by @.3). O
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Taking ¢ (z) = = in Theorem2.1, we obtain the following result given by

Frasin in B].
Corollary 2.2. If f € H, (¢, 6), then

f (Z) } Cnt1 — Y
2.7 Re > zeU
&7 o eew
and

fn (Z) } Cn+1
2.8 R > cl),
(@8) e{f<z) T Cpy1 10 (= )
where

) if k=2,3,...,n,
Ck > .
Chp1 I E=n+1,n+2,...
The resultg2.7) and (2.8) are sharp with the function given I§$.3).

If we puty (2) = (1jz)2 in Theorem?2.1, we obtain:

Corollary 2.3. If f € H, (cx,6), then

f'(z) _corr—(n+1)4
2. >
@9 fe fa(2) — Cnt1 (z€0)
and
[ (2) Cn+1
2.1 n >
(220 PO F et €0
where
ko if £k=223,...,n,
(2.11) Crp > N
% if k=n+1,n+2,...

The resultg2.9) and (2.10) are sharp with the function given K§¥.3).

W

& ¢

*

P
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Remarkl. Frasin has shown in Theorem 2.7 @f fhat for f € H,, (¢, 0), inequali-
ties (2.9 and ¢.10 hold with the condition

ko if £=2,3,...,n

ko (1+22) if k=n+1n+2,...

However, it can be easily seen that the conditiri ) for £ = n + 1 gives

v > (n+1)0 (14 )

or, equivalentlyd < 0, which contradicts the initial assumption> 0. So Theorem
2.7 of [2] does not seem suitable with the conditiéhl(?), but our condition.17)
remedies this problem.

Taking® (2) = 2, ¢ = O] (KA1 "ywhered > 0, 8 > 0, —1 <

a<landé=1in TheoremZ 1, We ‘obtain the following result given by Rosy et al.

in [4].
Corollary 2.4. If f is of the form(1.1) and satisfies the condition,_, ¢y |ax| < 1,
wherec;, = (HAA—0EH] (kA1) "\ > 0 >0, -1 < a < 1, then

-«

f (z) } Cn+1 — 1
2.13 Re > zelU
( ) {fn (2) Cn+1 ( )
and

fn (Z) } Cn+1
2.14 R > U).
@19 AF5)zaty cev

The resultg2.13 and(2.14) are sharp with the function given by
(2.15) f(z)=z+ L PR
Cn+1
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Taking
b(e) = —* K1+ﬁﬂ%{a+5ﬂ(k+A—1>7

1—z7  *7 —a k

wherel > 0,6 >0, —1 < a < 1andé = 1in Theorem2.1, we obtain
Corollary 2.5. If f is of the form(1.1) and satisfies the condition

o0

chlak|§17
k=2
where
ck:[(1+ﬁ)k_<a+ﬂ)] <k+)‘_1)7 A>0,3>0 —1<a<]l),
1—« k
then
f,(Z) an—(n—i—l)
_ >
(2.16) Re{f/l(z) > -~ (zeU)
and
/(2)} Cn+1
2.17 R n > el),
(@40 AG) 2 emviy eV
where
k if £=2,3,...,n,
(2.18) =9,
_;Tf if k=n+1n+2,...

The resultg2.16) and (2.17) are sharp with the function given i§9.15).
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Remark2. Rosy et al. has obtained inequalities1(6) & (2.17) in Theorem 4.2 &
4.3 of [4] without any restriction orr,. However, when we critically observe the
proof of Theorem 4.2 we find that inequality (4.16) df Theorem 4.2]

n o] Cn k?
Z(ck—k)\ak|+ Z <Ck_n:—1 )|ak|>0

k=2 k=n+1

cannot hold if conditionZ.19 does not occur. So Theorems 4.2 & 4.3 4ffdre not
proper and proper results are mentioned in Corolfaty

Takingy (z) = VO = A\ — QU 0 = 1 —a, where0 < o < 1, Ay, > 0,
i > 0, and A, > g (k: > 2) in Theorem2.1, we obtain the following result given
by Frasin in [L].

Corollary 2.6. If f is of the form(1.1) and satisfies the condition

,_.

o0

Z k— o) lag] <1 —«q,

k=2
then

f (Z) } )\n-i-l — Qliny1 — l+a
2.19 R > eU
( ) ¢ { fn (Z) - /\n+1 — Qlnp4 <Z )
and
fn (Z> >\n+1 — Qlp41

2.20 R > el),
(2:20) e{f(z) T Antl — Qi + 1 -« (= )
where

if £=2,3,...,n
Ant1 — Qi1 If k=n+1n+2 ...
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The resultg2.19 and(2.20) are sharp with the function given by

1—
(2.21) f (z) =z+4 —az"H.
An1 — Qflpt1

Taking (z) = ﬁ, = M —aug, 0 =1 —awhered < a <1, \; >0,
e > 0, andA > ug (k> 2) in Theorem?2.1, we obtain:

Partial Sums
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(2 23) f/ (Z) > )\n+1 — Qlint1 (Z c U) Page 13 of 17
' ()] =~ A1 —appn +(n+1)(1—a) ’ Go Back
where Full Screen
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Remark3. Frasin has obtained inequalitiesZ2) & (2.23 in Theorem 2 of L] under
the condition

k(1—a) if £=2,3,...,n,
(2.25) A1 — apigy1 >

EAnyr1—apingr) —
k(l—a)+ 7ot if k=n+1n+2,...

However, when we critically observe the proof of Theorem 2igf\ve find that
the last inequality of this theorem

"\ =«
(2.26) Y (%“’“ - k> ||
k=2 @
- >\k: — Ol )‘n—i-l — Olint1
— (1 k >
*‘§:< —a <*Xn+nu—a) jax 2 0

cannot hold for the function given by (1) for supporting the sharpness of the
results £.22) & (2.23. So condition 2.25 of Theorem 2 id][is incorrect and the
corrected results are mentioned in Corollary.

Taking

z {0+ B) k= (a+B)}

QNZ):l—z’ = 11—«

andd = 1, where-1 < a < 1,8 >0, u, > 0 (Vk € N\ {1}) in Theorem2.1, we
obtain the following result given by Raina and Bansal3h [

Corollary 2.8. If f is of the form(1.2) and satisfies the condition -, ¢ |ax| < 1,

where
{A+8)k—(a+B)}
1—a ’

Cr —
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and (1), Is @ nondecreasing sequence such that

1— 1—
M2>—O‘(0<—0‘<1, —1§a<1,620),

T2+ 00—« 24+ 0 —«
then
il — 1
(227) Re{ f (Z) } > il (Z S U) Partial Sums
fn (Z) Cnt1 K. K. Dixit and Saurabh Porwal
and vol. 10, iss. 4, art. 101, 2009
fn (Z) Cn+1
. > .
(2.28) Re { f(z2)) = e +1 (z€U) Title Page
The resultg2.27) and (2.29 are sharp with the function given by Contents
1
(2.29) F(2) =2 — ——2m+, 4 »
Takingy (2) = 55, & = QPR (0t Dl and§ = 1, where—1 < a < 1, Page 15 of 17
B3>0, >0 (Vke N\{1}) in Theorem2.1, we obtain the following result given o Back
by Raina and Bansal ir8]. o Bac
Corollary 2.9. If f is of the form(1.2) and satisfies the condition Full Screen
00 Close
Z Ck |ak| S 17 : . o
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and (1), Is @ nondecreasing sequence such that

2(1— 1 —
Then
S )\ o Gt — (n+1)
2. >
(2.30) Re{fll @) = — (ze€U)
and
frlz (Z) Cn+1
. >
(2.31) Re { ) et T D (zeU),
where
k if £=2,3,...,n,
(2.32) k=9 4 _
et if k=n+1ln+2,...

The resultg2.30) and (2.31) are sharp with the function given I§%.29).

Remark4. Raina and BansaB[ have obtained inequalitieg 30 & (2.31) in Theo-
rem 6.2 of B] without any restriction on;, . However, we easily see that condition
(2.32) is must.

Remarld. Takingy (z) = %=, = (k—a), o =k(k—a),d =1-a,0<a <1

1—27

in Theorem2.1, we obtain Theorems 1-3 given by Silverman i [
Remark6. Taking ¢ (z) = ﬁ = (k—a), . = k(k—a),d =1—q,
0 < a < 1in Theorem2.1, we obtain Theorems 4-5 given by Silverman % [
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