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Abstract:

We show that forx € (0,2], if f € Awith f'(z) #0, z € E, satisfies the
condition
f"(2)

1-a)f(2) +a <1 + ) < F(2),

thenf is univalent inE, whereF' is the conformal mapping of the unit disk
E with F(0) = 1 and

F(E):C\{we(C:?Rw:a, |%w\z\/m}.

Our result extends the region of variability of the differential operator

(- +a (14 ),

implying univalence off € AINE, for0 < a < 2.
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1. Introduction and Preliminaries

Let H be the class of functions analytic it = {z : |z| < 1} and fora € C
(set of complex numbers) and € N (set of natural numbers), 18{[a, n] be the
subclass ot{ consisting of functions of the forni(z) = a+a,2" +a,; 12" +- - -.
Let A be the class of functiong, analytic inlE and normalized by the conditions
f(0) = f'(0) =1 =0.

Let f be analytic inE, g analytic and univalent if£ and f(0) = ¢(0). Then, by
the symbolf(z) < g(z) (f subordinate t@) in E, we shall meary(E) C g(E).

Lety : C x C — C be an analytic functiorp be an analytic function ift, with
(p(2),2p/(2)) € C x Cfor all z € E andh be univalent inE, then the functiomn is
said to satisfy first order differential subordination if

(1.1) b(p(2), 20 (2)) < h(2), $(p(0),0) = h(0).

A univalent functionyg is called a dominant of the differential subordinatidnlj if
p(0) = ¢(0) andp < ¢ for all p satisfying (L.1). A dominantj that satisfieg < ¢ for
all dominants;y of (1.1), is said to be the best dominant Gf{). The best dominant
IS unique up to a rotation df.
Denote byS*(a) andC(«), respectively, the classes of starlike functions of order
a and convex functions of order, which are analytically defined as follows:

-{reas(4

K(a) = {f cA:R (1 + ZJ{(S)

We write S* = S§*(0), the class of univalent starlike convex functions (w.r.t. the
origin) and/C(0) = K, the class of univalent convex functions.

>>a,zEE,0§a<1},

and

)>a,z€E,0§a<l}.
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Afunction f € Ais said to be close-to-convex if there is a real numhberr/2 <
a < /2, and a convex function (not necessarily normalized) such that

/
R (emM) > 0,
9'(2)

Itis well-known that every close-to-convex function is univalent. In 1934/35, Noshiro
[4] and Warchawski§] obtained a simple but interesting criterion for univalence of
analytic functions. They proved that if an analytic functipsatisfies the condition
R f'(z) > 0forall zinE, thenf is close-to-convex and hence univalentin

Let ¢ be analytic in a domain containinE), ¢(0) = 0 and® ¢'(0) > 0, then,
the functionf € A is said to bep-like in E if

2f'(2) )
") 7o seE

This concept was introduced by Brickma].[He proved that an analytic function
f € Ais univalent if and only iff is ¢-like for some¢. Later, Ruscheweyhb]
investigated the following general classggefike functions:

Let ¢ be analytic in a domain containingE), #(0) = 0, ¢/'(0) = 1 andg(w) # 0
forw € f(E)\ {0}. Then the functionf € A is called¢-like with respect to a
univalent functiony, ¢(0) = 1, if

2f'(2)
=<

¢(f(2))
Let H, () denote the class of functiorfse A which satisfy the condition

: zf”(Z))]
RI(1-—a)f'(z)+a (1 + > 3,
(1-a)f(2) e

wherea and 3 are pre-assigned real numbers. Al-Amiri and Reddeif 1975,
have shown that forr < 0 and fora = 1, the functions irfH,(0) are univalent in

z € E.

q(2), z € E.

z e R,
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E. In 2005, Singh, Singh and Guptd] [proved that for0 < o < 1, the functions
in H,(«) are also univalent. In 2007, Singh, Gupta and Sirjipfoved that the
functions inH, () satisfy the differential inequalit® f'(z) > 0, z € E. Hence
they are univalent for all real numbefisand 5 satisfyinga < < 1 and the result
is sharp in the sense that the constawtinnot be replaced by any real number less
thana.

The main objective of this paper is to extend the region of variability of the oper-

ator
: Zf”<2))
(1—a)f'(2)+« <1+ ) )
implying univalence off € AInE, for 0 < a < 2. We prove a subordination
theorem and as applications of the main result, we find the sufficient conditions for
f € Ato be univalent, starlike angHlike.
To prove our main results, we need the following lemma due to Miller and Mo-
canu.

Lemma 1.1 ([3, p.132, Theorem 3.4 h]).Letq be univalent inE and letd and¢ be
analytic in a domairD containingg(E), with ¢(w) # 0, whenw € ¢(E).
SetQ(z) = z¢'(2)¢[q(2)], h(z) = 0q(2)] + Q(z) and suppose that either

(i) hisconvex, or

(i) Q is starlike.
In addition, assume that

(i) R 55 >0,z €E.
If p is analytic inE, with p(0) = ¢(0), p(E) c D and
0lp(2)] + 2p'(2)8[p(2)] < 0la(2)] + 24 (2)dla(2)],
thenp < ¢ andgq is the best dominant.
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2. Main Result

Theorem 2.1.Let o # 0 be a complex number. Let ¢(z) # 0, be a univalent
function inE such that

2.1) w14 200G Z‘ﬂﬂ > max {o, R (O‘; lq(z)) } .

q’(z) q(z) Region of Variability of a Subclass
If p, p(z) # 0, z € E, satisfies the differential subordination Sukhwinder Smgh, Sushma Gupta
and Sukhjit Singh
2p'(2) 2q'(2) vol. 10, iss. 4, art. 113, 2009
22) (1-a)(pz) - 1)+ <1 —-a)(g(z) 1) +a 7
p(z) q(2)
thenp < ¢ andq is the best dominant. Title Page
Proof. Let us define the functionsand¢ as follows: Contents
0(w) = (1 - a)(w 1), “« o»
and o < >
p(w) = —. Page 7 of 15
w
Obviously, the functiong and¢ are analytic in domai® = C \ {0} and¢(w) # 0 Go Back
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Then in view of condition%.1), we have
(1) Q is starlike inE and

2) W&'S) >0, z € E.

Thus conditions (ii) and (iii) of Lemma.1, are satisfied.
In view of (2.2), we have

0lp(2)] + 2p'(2)9[p(2)] < Ola(2)] + 24 (2)pla(2)]-

Therefore, the proof, now, follows from Lemmal
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3. Applications to Univalent Functions

On writingp(z) = f'(z) in Theorem?2.1, we obtain the following result.

Theorem 3.1.Let o # 0 be a complex number. Let ¢(z) # 0, be a univalent
function inE and satisfy the condition?(1) of Theorem2.1. If f € A, f'(z) #
0, z € E, satisfies the differential subordination

1 )
(1= a)(f'(2) = 1)+ a3
thenf’(z) <

q(z) andq is the best dominant.

< (1—a)(qlz) — 1)+ 2 24)

On writingp(z) = ZJ{(() in Theorem?2.1, we obtain the following result.

Theorem 3.2.Leta # 0 be a complex number. Let ¢(z) # 0, be a univalent
function inE and satisfy the condition?(1) of Theorem?.1. If f € A, Z}C(S) #
0, z € E, satisfies the differential subordination

i) SN ()
-2 (1+f(z))<<1 () + a2,

then?= ('j) < ¢(z) andgq is the best dominant.

By takingp(z) = ;(J;'((j))) in Theorem?2.1, we obtain the following result.

Theorem 3.3.Leta # 0 be a complex number. Let ¢(z) # 0, be a univalent
function inE and satisfy the condition2(1) of Theorem2.1. If f € A, Zf Z)) #
0, z € E, satisfies the differential subordination

2R (a2 IR
L=aZFoy T (” o) o) )“1 Ja(z) +
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whereg is analytic in a domain containing(E), ¢(0) = 0, ¢'(0) = 1 and¢(w) # 0

forw e f(E)\ {0}, then=LCL < 4(z) andq is the best dominant.

o(f(2))
Remarkl. When we select the dominagtz) = 12, z € E, then
azq'(z) 20z
Q(’Z) - q(z) - 1 — 22’
and
2Q'(z) 1+ 2
Q(z)  1—2%
Therefore, we have
/
REE) o ek,
Q(z)
and hencé) is starlike. We also have
- 2q"(2) 24 (%) 1—aq(z) _ 1+ Ll-alts
q(2) q(z) a 1—22 a 1—=z

Thus, for any real numbér < o < 2, we obtain

2q"(2)  2¢'(2) 1-a

"M T4 T a

q(z)| >0, z € E.

Thereforeg(z) = }fj, z € E, satisfies the conditions of Theoreiril, Theorem

3.2and Theoren3.3.
Moreover,
2q'(2) z z

(1—-a)(q(z) —1)+a :2(1—04)1_2—1—2041_22
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For0 < a < 2, we see that' is the conformal mapping of the unit digkwith
F(0)=0and

F(E) :C\{wEC:%w:a—l, IS w| > \/a(Q—a)}.
In view of the above remark, on writing(z) = == in Theorem3.1, we have the
following result.
Corollary 3.4. If f € A, f'(z) # 0, z € E, satisfies the differential subordination
zf”(z)
f'(2)

where0 < a < 2 is a real number, thef® f’(z) > 0, z € E. Therefore,f is
close-to-convex and hengds univalent inE.

(1—a)f’(z)+a(1+ )—<1—|—2(1—a) G P

1—2 R

In view of Remarkl and Corollary3.4, we obtain the following result.

Corollary 3.5. Let0 < a < 2 be a real number. Suppose thate A, f'(z) #
0, z € E, satisfies the condition

ZJ{(S) ) < F(2).

Thenf is close-to-convex and hence univalenEinwhereF is the conformal map-
ping of the unit diskE with £'(0) = 1 and

(1—a)f'(z) +a (1 +

F(E):C\{wEC:%w:a, IS w| > a(?—a)}.

From Corollary3.4, we obtain the following result of Singh, Gupta and Singh

[7].
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Corollary 3.6. Let0 < a < 1 be areal number. Iff € A, f'(z) # 0, z € E,
satisfies the differential inequality

R|(1—a)f'(2) +a (1 + Z}f((j))ﬂ > a,

then®R f'(z) > 0, z € E. Therefore,f is close-to-convex and heng¢ds univalent
inE.

From Corollary3.4, we obtain the following result.

Corollary 3.7. Let1 < o < 2, be areal number. Iff € A, f'(z) # 0, z € E,
satisfies the differential inequality

R|(1—a)f(2)+a (1 + Z]{C(EZ)))} <a,

then®R f'(z) > 0, z € E. Therefore,f is close-to-convex and heng¢ds univalent
inE.

When we selecj(z) = £ in Theorem3.2, we obtain the following result.

Corollary 3.8. If f € A, 222 £ 0, » € E, satisfies the differential subordination

1)
2f'(2) 2f"(2)
f(2) f'(2)

where0 < a < 2is a real number, therf € S*.

(1-2a)

1
+a(1+ )%(1—0&) +z+2a

1—2 1—22

In view of Corollary3.8, we have the following result.
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W

Corollary 3.9. Let0 < o < 2 be a real number. Suppose thate A, = (§ +
0, z € E, satisfies the condition

P *
THON ( (2 >> A
1 -2« 1+ < Fi(2).
=2ty )
Thenf € S§*, whereF; is the conformal mapping of the unit dikwith F;(0) = Regom o Varabiy o & Suboiase
1 —aand of Univalent Functions
Sukhwinder Singh, Sushma Gupta
F(E)=C\ {w EC:Rw=0, |Sw| > Va2 - a)} : and SuknlitSingh
vol. 10, iss. 4, art. 113, 2009
In view of Corollary3.8, we have the following result.
Title Page
satisfies the differential inequality Contents
2f'(2) z2f"(2) <« >
%{(1—204) +a<1+ > 0,
f(2) f'(2) < >
thenf e 5~ Page 13 of 15
In view of Corollary3.8, we also have the following result. Go Back
Corollary 3.11. Let1 < a < 2, be a real number. Iff € A, = Z) # 0, z € E, Full Screen
satisfies the differential inequality g
ose

<0,

2f'(2) 2f"(2)
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Corollary 3.12. Let0 < o < 2 be a real number. Lef € A,

satisfy the differential subordination

2f'(2)

(1-a)

zf'(2)
¢(f(2))

1+2
1-27

Then <

o) (1 *

of"(2)

zlo(f(2))

f'(2)

where ¢ is analytic in a domain containing (E), ¢(0)

¢(f(2))

0,¢'(0) = 1and¢(w) # 0forw € f(E) \ {0}.

In view of Corollary3.12, we obtain the following result.

Corollary 3.13. Let0 < o < 2 be a real number. Lef € A,

satisfy the condition

(1-a)

2f'(2)
¢(f(2))

Then f is ¢-like in E, where¢ is analytic in a domain containing (), ¢(0)

+a(1+

Zf//(z)

zf'(2)
o(f(2))

1+ 2 z

) < (1—0()1 _Z—l—Zal —

zo(f(2))

f'(2)

¢(f(2))

zf
o(f(2)

) < Fi(2).

#0, z € E,

= F1(z).

e £0, z €E,

0,¢'(0) = 1andg(w) # 0forw € f(E) \ {0} and F; is the conformal mapping of
the unit diskE with £3(0) = 1 — o and

Fl(IE):(C\{weC:észo, |$w|zm}.
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