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Strong approximation, matrix means, classes of number sequences.

In the presented paper we will generalize the result of L. Leindgitd the
classM RBV S and extend it to the strong summability with a mediate function

satisfying the standard conditions.
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1. Introduction

Let f be a continuous angir-periodic function and let

(1.1) f(x)~— —|— Z ay, cos nx + by, sinnx)
n=1
be its Fourier series. Denote By, (x) = S, (f, z) then-th partial sum of {.1) and Degree of Strong Approximation
by w (f,d) the modulus of continuity of € Cs,. The usual supremum norm will eosage e
be denoted by-|| . vol. 10, iss. 4, art. 111, 2009

Let A := (anx) (k,n =0,1,...) be alower triangular infinite matrix of real num-
bers satisfying the following conditions:

Title Page
(12) Uk = 0 (O < k < n), Apg = O’ (k‘ > n) and Z g = 1, Contents
= < »
wherek,n =0,1,2, .... < 4
Let the A—transformation of S, (f;x)) be given by
Page 3 of 17
(1.3) tn (f) =1t (fi2) = D _anSk(fiz) (n=0,1,..) Go Back
k=0 Full Screen
and the strongl, —transformation of S, (f;z)) for » > 0 be given by Close
’ journal of inequalities
To(f,r) =T, (f,r;2) {Zank!Sk fix) = f @) } (n=0,1,...). in pure and applied
mathematics
Now we define two classes of sequences. issn: 1443-575k
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A sequence := (c,) of nonnegative numbers tending to zero is called the Rest
Bounded Variation Sequence, or brieflg RBV S, if it has the property

(14) Z |Cn - Cn+1| S K (C) Cm

form =0,1,2,..., whereK (c) is a constant depending only orfsee B]).
A null sequence := (¢,) of positive numbers is called of Mean Rest Bounded
Variation, or brieflyc € M RBV S, if it has the property

00 2m
1
15 E n— Cnt1| < K E -
( ) n:2m|c ’ +1| a (C) m+ 1 n:mc

form =0,1,2,... (see p]).
Therefore we assume that the sequef¥€€«,)),-, is bounded, that is, there
exists a constank’ such that

0< K (o) <K

holds for alln, where K («,,) denotes the sequence of constants appearing in the
inequalities (.4) or (1.5 for the sequence,, := (a.x);-,- Now we can give some
conditions to be used later on. We assume that foz all

o0
Z |ank — anry1| < Kapm (0 <m <n)

(1.6)
k=m
and
0 1 2m
1.7 nk — (n, < K—— n 0<2m <
(1.7) k;m!@k Okt m+1§1ak ( m < n)
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hold if o, := (am:)k , belongs toRBV S or M RBV S, respectively.

In [1] and [2] P. Chandra obtained some results on the degree of approximation

for the means1(.3) with a mediate functiori such that:

(1.8) / g Dt~ 0 @) (w—0,), HH) >0
and
(L.9) / H(u)du=O@H (1) (t—04).

In [3], L. Leindler generalized this result to the clads8V S. Namely, he proved
the following theorem:

Theorem 1.1.Let (1.2), (1.6), (1.8) and (1.9) hold. Then forf € C5,
[tn (f) = Il = O (anoH (ano)) -
It is clear that
(1.10) RBVS C MRBVS.
In [7], we proved thair BV'S # M RBV S. Namely, we showed that the sequence
1 ifn=1,
d, =

14+m+(-1)"m
L i < < i

wherepu,, = 2™ form = 1,2, 3, ...,
belong to the clas&BV'S.

belongs to the clas&é/ RBV S but it does not
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In the present paper we will generalize the mentioned result of L. Leingll¢o [
the classM RBV S and extend it to strong summability with a mediate functién
defined by the following conditions:

(1.112) /7T wdt =0 (H (r;u)) (u—0y), H(t)>0andr >0,

and

Degree of Strong Approximation

Bogdan Szal

t
(1.12) / H(r;u)du =0 (tH (r;t))  (t — O04). vol. 10, iss. 4, art. 111, 2009
0

By K1, K, ... we shall denote either an absolute constant or a constant depend-

. Lo . . Title Page
ing on the indicated parameters, not necessarily the same in each occurrence. 9
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2. Main Results

Our main results are the following.

Theorem 2.1.Let (1.2), (1.7) and (L.11) hold. Then forf € C5, andr > 0

@) 17 (50l = 0 ({amtt (< D)} ).

If, in addition (1.12) holds, then
(2.2) I (£, = O (anoH (rian)}* )
Using the inequality
[tn (f) = FII < 1T (F, DI

we can formulate the following corollary.

Corollary 2.2. Let (1.2), (1.7) and (L.11) hold. Then forf € C5,
™
It (£) = £Il = O (ano (1:7) ).
If, in addition (1.12) holds, then
[tn () = Sl = O (anoH (1; ang)) -

Remarkl. By the embedding relatiori.(7) we can observe that Theoreii follows
from Corollary2.2.

Degree of Strong Approximation
Bogdan Szal
vol. 10, iss. 4, art. 111, 2009

Title Page
Contents
44 44
< >
Page 7 of 17
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:B.Szal@wmie.uz.zgora.pl
http://jipam.vu.edu.au

For special cases, putting

tre=b if ar <1,

H(rit)=q¢ In% if ar=1,
K if ar>1,
wherer > 0 and0 < o < 1, we can derive from Theorefh1the next corollary.

Corollary 2.3. Under the conditionsi(.2) and (L.7) we have, forf € Cs, andr > 0,

O ({ano}?) if ar <1,
i (fl =3 O({n () am} ) i ar=1
O ({an()}%> if ar > 1.
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3. Lemmas

To prove our main result we need the following lemmas.
Lemma 3.1 ([6]). If (1.11) and (1.12) hold, then forr > 0

/s Mdt =0 (sH (r;5)) (s —04).

t
Lemma 3.2.1f (1.2) and (L.7) hold, then forf € Cy, andr > 0

k=0

(3.1) 1T (f,7)lle <O {ZankE}; (f)} ,

where E,, (f) denotes the best approximation of the functjomy trigonometric
polynomials of order at most.

Proof. It is clear that 8.1) holds forn = 0,1,...,5. Namely, by the well known
inequality 8]

n+1
m+1

(3.2) lonm — fIl <2 En (f) (0 <m<n),

where

G (fi) = = 3 Si(fia),

for m = 0, we obtain

{T, (f,rs2)} <127 " amEf (f)

k=0
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and (3.1) is obviously valid, fom < 5.
Letn > 6 and letm = m,, be such that

oMl L4 << 2m2 44,
Hence

[T ()Y <5 amlSe (fio) — f (@)

m—12k+144 n

Y anlSi(fim) = @+ ) aw|Se(f;2) = f ()]

k=1 j=2k12 k=2m45
Applying the Abel transformation ané () to the first sum we obtain

{T. (f.rs2)}

3 m—1 [2k+143 i
<& ZankEg (f) + Z (Clm' - an,z’+1) Z |Sl (f7 x) —f (x)|T
k=0 k=1 \i=2k42 1=2k42
2k+1 g
s Y 1S (fix) — F (@)
§=2k42
n—1 k
+ D (@ —anpn) > 1Si(fiw) = f (@)
k=2m+2 1=2m—1
Fam S 1Sk (fia) — f @)
k=2m+2
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3 m—1 [2F+113 2k+143
< 8TZCLnkE£ (f)+z Z |@ni — @it Z 1S (f;2) —
k=0 k=1 \i=2k+2 1=2k+42
2k+1+4
FQp 2k+144 1S; (f;2) — f(x)|
1=2k42
n—1 2m+2.43
+ D e —anpa| Y 1Si(f2) = f (@)
k=2m+2 1=2m 42
2m+244
k=2m42
Using the well-known Leindler’s inequality]
R :
Si(fr;x) — ® < Ki\E,_,

{mﬂk:n_m' (fi2) = ] (@) } < KBy (f)

for0 <m <n,m = 0O (n) ands > 0, we obtain
3
(T, (f,r2)} <8 anE} (f)
k=0
m—1 ok+143
+ Kg (2k + 3) ;k+2 (f) Z |am — an,i+1‘ + an’2k+1+4
k=1

i=2k42

n—1

3 (2m + 1) E§m+2 < Z |ank: - a'n,k+1| + app

k=2m4-2

f@)f
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Using (L.7) we get

3
(T (fri)Y <87 auB (f)
k=0

-1

m 2k+2
" 1
+ K2 (2k + 3) 2k 42 (f) Km Z An; + an’2k+1+4
k=1 i—ok—111

2mM4-2
m T 1
32" +1) Egnyy (f) (Km Z &m+ann>}-

i=2m"141
In view of (1.7), we also obtain fot < k <m — 1,

(o) [o¢]
Qp ok+144 = E (ani - am’+1) < g |am' - am'+1|
i=2k+144 i=2k+144
o0 1 2k 12
< E i — Gpiy1] < Km E A
i=2k42 i=2k—141
and
[o.¢] o
Ann = E (ani - ani—i—l) S E |ani - ani+1|
i=n i=n
) 1 2m 42
< E |@ni — pita] < Km E Q.
1=2m+42 i=2m—141
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Hence

{7, (fir;2)} <8 Z ank B (f)

k=0 \
m—1 2k 42 2m 42
+ K3 Z E§k+2 (f) Z Uni + Eiym (f) Z Ani
k=1 §=2k-141 G=2m—141
3 2M 42
<8 amE; (f) +2Ks > amE} (f)
k=0 k=3
KLY o).
This ends our proof. O

| » |
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4. Proof of Theorem?2.1

Using Lemma3.2 we have

1
(4.2) T, (frs2)| < K, {ZankEz; (f)}
k=0
n T % Degree of Strong Approximation
< Ky ankwr <f7 ) . Bogdan Szal
{kzz(] k + 1 vol. 10, iss. 4, art. 111, 2009
If (1.7) holds, then, foranyn = 1,2,....n
m— Title Page
Apm — Qp S Apm — Apo| = |Ano — Qpm| = ap, ap
0 | 0| | 0 | kz:: R k+1 Contents
m—1
4 >
|ank - ank’—i—ll < Z |ank - ank’—i—ll < KanOa
k=0 k=0 < 4
whence Page 14 of 17
(4.2) A, < (K + 1) ano. Go Back
Therefore, by {.2), Full Screen
(4.3) (K+1)(n+ 1) an > Y aw =1. Close
k=0
. . journal of inequalities
First we prove £.1). Using ¢.2), we get in pure and applied
n T i T mathematics
n " M < (K 1 n " ; issn: -
;061 KW (f k—i—l)_( + )aokzzow (f k—i—l) 1443-575k
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n+1 T
< K:sano/ W' <fa ?> dt
1

T ’U,z
n+l

and by ¢.1), (1.11) we obtain thatZ.1) holds.
Now, we prove £.2). From (.3) we obtain

n T
A" (f; —)
2 .
| ety

' ™ . T ™
< kz_o AW (f;k—+1> + [ Y auw (f;k+1)-
- -

"]

Again using (..2), (4.2) and the monotonicity of the modulus of continuity, we get

" T
Anpw” (f; —)
2 P
e -
< (K +1)ano Z wr(;k——i—l)

k=0

+ Kyw' (f;m (K +1)ap) Z Gk

k:[(KJr%)ano} -1
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(K+i>an0 ™
§K5an0/ w" (f,?> dt + K" (f;7m (K 4+ 1) an,)
1

(4.4) < Kg (ano /Tf Mdu +w" (f;ano)) )

u2
Moreover
(4.5) W (i) <47 (1:522)
ano r .
<2. 47"/ Mdt
a0 t
ano r
0 t

Thus collecting our partial resultg (1), (4.4), (4.5 and using {.11) and Lemma. 1
we can see tha?(2) holds. This completes our proof. O
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