ORDER CONVERGENCE OF VECTOR MEASURES ON TOPOLOGICAL SPACES

SURJIT SINGH KHURANA, Iowa City

(Received May 24, 2006)

Abstract. Let X be a completely regular Hausdorff space, E a boundedly complete vector lattice, $C_b(X)$ the space of all, bounded, real-valued continuous functions on X, \mathcal{F} the algebra generated by the zero-sets of X, and $\mu \colon C_b(X) \to E$ a positive linear map. First we give a new proof that μ extends to a unique, finitely additive measure $\mu \colon \mathcal{F} \to E^+$ such that ν is inner regular by zero-sets and outer regular by cozero sets. Then some order-convergence theorems about nets of E^+ -valued finitely additive measures on \mathcal{F} are proved, which extend some known results. Also, under certain conditions, the well-known Alexandrov's theorem about the convergent sequences of σ -additive measures is extended to the case of order convergence.

Keywords: order convergence, tight and τ -smooth lattice-valued vector measures, measure representation of positive linear operators, Alexandrov's theorem

MSC 2000: 28A33, 28B15, 28C05, 28C15, 46G10, 46B42

1. Introduction and notation

All vector spaces are taken over reals. E, in this paper, is always assumed to be a boundedly complete vector lattice (and so, necessarily Archimedean) ([??], [??], [??]). If E is a locally convex space and E' its topological dual, then $\langle \cdot, \cdot \rangle : E \times E' \to \mathbb{R}$ will stand for the bilinear mapping $\langle x, f \rangle = f(x)$. For a completely regular Hausdorff space X, $\mathcal{B}(X)$ and $\mathcal{B}_1(X)$ are the classes of Borel and Baire subsets of X, C(X) and $C_b(X)$ are the spaces of all real-valued, and real-valued and bounded, continuous functions on X and \widetilde{X} is the Stone-Čech compactification of X respectively. For an $f \in C_b(X)$, \widetilde{f} is its unique continuous extension to \widetilde{X} . The sets $\{f^{-1}(0): f \in C_b(X)\}$ are called the zero-sets of X and their complements the cozero sets of X.

For a compact Hausdorff space X and a boundedly complete vector lattice G, let μ : $\mathcal{B}(X) \to G^+$ be a countably additive (countable additivity in the order convergence

of G) Borel measure; then μ is said to be quasi-regular if for any open $V \subset X$, $\mu(V) = \sup\{\mu(C) \colon C \text{ compact}, C \subset V\}$. Integration with respect to these measures is taken in the sense of ([??], [??]). There is a 1-1 correspondence between these quasi-regular, positive, G-valued Borel measures on X and positive linear mappings $\mu \colon C(X) \to G$ ([??], [??], [??]); $M_{(o)}^+(X, G)$ will denote the set of all these measures.

Now suppose that X is a completely regular Hausdorff space. A positive countably additive Borel measure $\mu \colon \mathcal{B}(X) \to G^+$ is said to be tight if for any open $V \subset X$, $\mu(V) = \sup\{\mu(C) \colon C \text{ compact}, \ C \subset V\}$ ([??], p. 207). This measure gives a positive linear mapping $\tilde{\mu} \colon C(\widetilde{X}) \to G$, $\tilde{\mu}(f) = \mu(f_{|X})$ and the corresponding quasi-regular, positive, G-valued Borel measure on \widetilde{X} is given by $\tilde{\mu}(B) = \mu(X \cap B)$ for every Borel $B \subset \widetilde{X}$. $M_{(o,t)}^+(X,G)$ will denote the set of all tight measures.

If $\mu \colon \mathcal{B}(X) \to G^+$ is a countably additive Borel measure, then μ is said to be τ -smooth if for any increasing net $\{U_\alpha\}$ of open subsets of X, $\mu(\bigcup U_\alpha) = \sup \mu(U_\alpha)$ (some properties of these measures are given in [??], p. 207). Any such measure gives a positive linear mapping $\tilde{\mu} \colon C(\tilde{X}) \to G$, $\tilde{\mu}(f) = \mu(f_{|X})$ and the corresponding quasi-regular, positive, G-valued Borel measure on \tilde{X} is given by $\tilde{\mu}(B) = \mu(X \cap B)$ for every Borel set $B \subset \tilde{X}$. $M_{(o,\tau)}^+(X,G)$ will denote the set of all τ -smooth measures. If $\mu \colon \mathcal{B}_1(X) \to G^+$ is a countably additive Baire measure then, as in the case of τ -smooth measure, we get $\tilde{\mu} \colon C(\tilde{X}) \to G$, $\tilde{\mu}(f) = \mu(f_{|X})$; $M_{(o,\sigma)}^+(X,G)$ will denote the set of all these Baire measures.

In ([??], [??]) some interesting results are derived about the weak order convergence of nets of positive lattice-valued measures. In this paper we extend some of those results to a more general setting. Before doing that we need Alexandrov's Theorem.

2. Alexandrov's theorem

Suppose X is a completely regular Hausdorff space and \mathcal{F} is the algebra generated by the zero-sets of X. Assume that $\mu \colon C_b(X) \to \mathbb{R}$ is a positive linear mapping. By well-known Alexandrov's Theorem, there exists a unique finitely additive measure ν , $\nu \colon \mathcal{F} \to \mathbb{R}^+$, such that

(i) ν is inner regular by zero-sets and outer regular by cozero sets; (ii) $\int f \, d\nu = \mu(f)$ for all $f \in C_b(X)$ ([??], Theorem 5, p. 165; [??]) (Note that $C_b(X)$ is contained in the uniform closure of \mathcal{F} -simple functions on X in the space of all bounded functions on X and so each $f \in C_b(X)$ is ν -integrable; ν is also generally denoted by μ .) This theorem has been extended to the vector case (e.g. [??], p. 353). The proof is quite sophisticated. We give a quite different proof based on the regularity properties of the corresponding quasi-regular Borel measure on \widetilde{X} ; this also provides a relation

between this finitely additive measure and the corresponding quasi-regular Borel measure on \widetilde{X} . We start with a lemma.

Lemma 1. If Z_1 and Z_2 are zero-sets in X then $\overline{(Z_1 \cap Z_2)} = \overline{Z_1} \cap \overline{Z_2}$ (for a subset $A \subset X$, \overline{A} denotes the closure of A in \widetilde{X}).

Proof. Suppose this is not true. Take a point $a \in \overline{Z_1} \cap \overline{Z_2} \setminus \overline{(Z_1 \cap Z_2)}$ (note that $Z_1 \cap Z_2$ can be empty). Take an $f \in C_b(X)$, $0 \le f \le 1$, such that $\tilde{f}(a) = 1$ and f = 0 on $(Z_1 \cap Z_2)$. For i = 1, 2, take $h_i \in C_b(X)$ such that $0 \le h_i \le 1$ and $Z_i = h_i^{-1}(0)$. Define $f_i(x) = f(x)h_i(x)/(h_1(x) + h_2(x))$ for $x \notin (Z_1 \cap Z_2)$ and 0 otherwise. These functions are continuous and $f = f_1 + f_2$. Thus $\tilde{f} = \tilde{f}_1 + \tilde{f}_2$. Since $f_i = 0$ on Z_i , $\tilde{f}_i = 0$ on $\overline{Z_i}$ and so $\tilde{f}_1 + \tilde{f}_2 = 0$ on $\overline{Z_1} \cap \overline{Z_2}$. This means $\tilde{f}(a) = 0$, a contradiction.

Now we come to the main theorem.

Theorem 2 ([??], p. 353). Suppose X is a completely regular Hausdorff space, E is a boundedly order-complete vector lattice and $\mu \colon C_b(X) \to E$ is a positive linear mapping. Then there exist a unique finitely additive measure $\nu \colon \mathcal{F} \to E^+$ such that, in terms of order convergence,

- (i) ν is inner regular by zero-sets and outer regular by cozero sets;
- (ii) $\int f d\nu = \mu(f)$ for all $f \in C_b(X)$;
- (iii) For any zero-set $Z \subset X$ we have $\nu(Z) = \tilde{\mu}(\overline{Z})$, \overline{Z} being the closure of Z in \widetilde{X} .

Proof. There is no loss of generality if we assume that E=C(S), S being a Stonian space. The given mapping gives a positive linear mapping $\tilde{\mu}\colon C(\widetilde{X})\to E$; by ([??], [??]) we get an E-valued, positive quasi-regular Borel measure $\tilde{\mu}\colon \mathcal{B}(\widetilde{X})\to E^+$. If A is a subset of X or \widetilde{X} , A will denote the closure of A in X. We prove this theorem in several steps.

I. Let $\overline{\mathcal{Z}}=\{\bar{A}\colon A \text{ a zero-set in } X\}$. Then for every $Q\in\overline{\mathcal{Z}},\inf\{\tilde{\mu}((\widetilde{X}\setminus Q)\setminus W)\colon W\in\overline{\mathcal{Z}}\}=0.$

Proof. Using the quasi-regularity of $\tilde{\mu}$, take an increasing net $\{C_{\alpha}\}$ of compact subsets of $(\widetilde{X} \setminus Q)$ such that $\inf(\tilde{\mu}((\widetilde{X} \setminus Q) \setminus C_{\alpha})) = 0$. Fix α and take a $g \in C(\widetilde{X})$, $0 \leq g \leq 1$, such that g = 1 on C_{α} and g = 0 outside $\widetilde{X} \setminus Q$. Let $V = \{x \in \widetilde{X} : g(x) > \frac{1}{2}\}$, $Z = \{x \in \widetilde{X} : g(x) \geq \frac{1}{3}\}$. We have $Z \supset \overline{(Z \cap X)} \supset \overline{(V \cap X)} \supset V \supset C_{\alpha}$ (note that X is dense in \widetilde{X}). Now $Z \cap X$ is a zero-set in X and taking $W = \overline{(Z \cap X)}$, we have $C_{\alpha} \subset W \subset (\widetilde{X} \setminus Q)$. Since \overline{Z} is closed under finite unions, the result follows.

II. Let \mathcal{A} be the algebra in \widetilde{X} generated by $\overline{\mathcal{Z}}$ and denote by \mathcal{A}_0 the elements of \mathcal{A} which have the property that these elements and their complements are inner regular by the elements of $\overline{\mathcal{Z}}$. Then $\mathcal{A}_0 = \mathcal{A}$.

Proof. We use I and Lemma 1 to prove it. By I, $A_0 \supset \overline{Z}$. By definition, A_0 is closed under complements. Using Lemma 1, it is a routine verification that if A and B are in A_0 then $A \cup B$ and $A \cap B$ are also in A_0 . This proves the result.

III. Let \mathcal{F} be the algebra in X generated by zero-sets in X. Then it is a simple verification that $\mathcal{A} \cap X \supset \mathcal{F}$. Also, if $A \in \mathcal{A}$ and $A \cap X = \emptyset$, then $\tilde{\mu}(A) = 0$. To prove this, take any $\overline{Z} \in \overline{\mathcal{Z}}$, Z being a zero-set in X, such that $\overline{Z} \subset A$. This means Z is empty and so $\tilde{\mu}(A) = 0$. Now we can define a $\nu \colon \mathcal{F} \to E$, $\nu(B) = \tilde{\mu}(A)$, A being any element in \mathcal{A} with $B = A \cap X$; it is a trivial verification that ν is well-defined, finitely additive and it is inner regular by zero-sets in X and outer regular by positive-sets in X. We also have $\nu(Z) = \tilde{\mu}(\overline{Z})$ for any zero-set $Z \subset X$.

IV. For any $f \in C_b(X)$, $\mu(f) = \int f d\nu$.

Proof. Let \mathcal{M} be the vector space of all \mathcal{F} -simple functions on X. With the norm topology $\|\cdot\|$ on C(S), the mapping $\tilde{\mu} \colon \mathcal{M} \to C(S)$, $f \to \int f \, \mathrm{d}\mu$ is positive and continuous and $C_b(X)$ lies in the norm completion of \mathcal{M} ; this implies that every $f \in C_b(X)$ is ν -integrable. Put $\mu(1) = e \in C(S)$.

Take an $f \in C_b(X)$, $0 \le f \le 1$, and fix a large positive integer k. For $i, 1 \le i \le k$, let $Z_i = f^{-1}[i/k, 1]$ and $W_i = \tilde{f}^{-1}[i/k, 1]$. On X we get $k^{-1} \sum_{i=1}^k \chi_{Z_i} \le f \le k^{-1} + k^{-1} \sum_{i=1}^k \chi_{Z_i}$. From this we get $0 \le \nu(f) - k^{-1} \sum_{i=1}^k \nu(Z_i) \le k^{-1}e$. On \widetilde{X} we get $\widetilde{f} \ge k^{-1} \sum_{i=1}^k \chi_{W_i} \ge k^{-1} \sum_{i=1}^k \chi_{\overline{Z_i}}$. Define $h \colon \widetilde{X} \to \mathbb{R}^+$, $h(\widetilde{x}) = k^{-1} + k^{-1} \sum_{i=1}^k \chi_{\overline{Z_i}}$. Then h is usc (upper semi-continuous). Take an $\widetilde{x} \in \widetilde{X}$ and a net $\{x_\alpha\} \subset X$ such that $x_\alpha \to \widetilde{x}$. Now $\widetilde{f}(\widetilde{x}) = \lim f(x_\alpha) \le \overline{\lim} h(x_\alpha) \le h(\widetilde{x})$ (note that h is usc). Thus $k^{-1} \sum_{i=1}^k \chi_{\overline{Z_i}} \le \widetilde{f} \le k^{-1} + k^{-1} \sum_{i=1}^k \chi_{\overline{Z_i}}$. Integrating relative to $\widetilde{\mu}$, we have $0 \le \mu(f) - k^{-1} \sum_{i=1}^k \nu(Z_i) \le k^{-1}e$ (note $\widetilde{\mu}(\overline{Z_i}) = \nu(Z_i)$). Combining these results, we have $|\mu(f) - \nu(f)| \le k^{-1}e$. Taking the limit over k, we get the result.

V. Uniqueness.

Proof. For i=1,2, let $\nu_i\colon \mathcal{F}\to E^+$ be two finitely additive regular (inner regular by zero-sets and outer regular by positive-sets in X) measures such that $\int f\,\mathrm{d}\nu_1=\int f\,\mathrm{d}\nu_2$ for all $f\in C_b(X)$. Fix a zero-set $Z\subset X$ and take a decreasing net $\{U_\alpha\}$ of cozero sets in X such that $\nu_i(U_\alpha\setminus Z)\downarrow 0$ for i=1,2. For each α , take an $f_\alpha\in C_b(X)$ with $0\leqslant f_\alpha\leqslant 1$, $f_\alpha=1$ on Z, and $f_\alpha=0$ outside U_α . For $i=1,2,\,\nu_i(U_\alpha)\geqslant\nu_i(f_\alpha)\geqslant\nu_i(Z)$. From this we get, since $\nu_1(f_\alpha)=\nu_2(f_\alpha),\,\nu_1(U_\alpha)-\nu_2(Z)\geqslant 0\geqslant\nu_1(Z)-\nu_2(U_\alpha)$. Taking limits we get $\nu_1(Z)=\nu_2(Z)$. By regularity, we have $\nu_1=\nu_2$. This proves the result.

We denote by $M_{(o)}^+(X, E)$ the set of all finitely additive $\mu \colon \mathcal{F} \to E^+$ which are inner regular by zero-sets; they are just the positive linear operators $\mu \colon C_b(X) \to E^+$.

3. Order convergence of measures

In this section we consider the order convergence of these measures. A net $\{\mu_{\alpha}\}\subset M_{(o)}^+(X,E)$ is said to order-converge weakly to a $\mu\in M_{(o)}^+(X,E)$ if $\mu_{\alpha}(f)\to \mu(f)$ in order-convergence for each $f\in C_b(X)$; this is equivalent to $\tilde{\mu}_{\alpha}(f)\to \tilde{\mu}(f)$ in order-convergence for each $f\in C(\widetilde{X})$.

Theorem 3. Suppose X is a Hausdorff completely regular space, E is a boundedly order-complete vector-lattice, $\{\mu_{\alpha}\}$ is a uniformly order-bounded net in $M_{(o)}^+(X,E)$ and $\mu \in M_{(o)}^+(X,E)$. Then, with order convergence, the following statements are equivalent:

- (i) $\mu_{\alpha} \to \mu$, pointwise on $C_b(X)$;
- (ii) $\overline{\lim}_{\alpha} \mu_{\alpha}(Z) \leqslant \mu(Z)$ for every zero-set Z and $\mu_{\alpha}(X) \to \mu(X)$;
- (iii) $\underline{\lim}_{\alpha} \mu_{\alpha}(U) \geqslant \mu(U)$ for every positive-set U and $\mu_{\alpha}(X) \rightarrow \mu(X)$; If μ is τ -smooth, then each of the above statements is also equivalent to
- (iv) $\mu_{\alpha} \to \mu$ pointwise on $C_{ub}(X)$, where $C_{ub}(X)$ is the set of all uniformly continuous functions on X relative to a uniformity \mathcal{U} on X which gives the original topology on X (if the uniformity \mathcal{U} comes from a single metric, then it is enough to assume that μ is σ -smooth).

Proof. The positive linear mappings $\mu \colon C_b(X) \to E$ and $\mu_\alpha \colon C_b(X) \to E$ give the positive linear mappings $\tilde{\mu} \colon C(\widetilde{X}) \to E$ and $\tilde{\mu}_\alpha \colon C(\widetilde{X}) \to E$. Since the net $\{\mu_\alpha\}$ is a uniformly order-bounded, we can assume that $\mu_\alpha(1) \leqslant p$ for all α , for some $p \in E$ (p > 0).

- (ii) and (iii) are easily seen to be equivalent.
- (i) implies (ii). Fix a zero-set $Z \subset X$ and let \overline{Z} be its closure in \widetilde{X} . Take a decreasing net $\{\tilde{f}_{\gamma}\} \subset C(\widetilde{X})$, $0 \leqslant \tilde{f}_{\gamma} \leqslant 1$ for every γ such that $\tilde{f}_{\gamma} \downarrow \chi_{\overline{Z}}$. This means that, for some $\eta_{\gamma} \downarrow 0$ in E we have $\mu(Z) = \tilde{\mu}(\overline{Z}) = \tilde{\mu}(\tilde{f}_{\gamma}) \eta_{\gamma} \geqslant \tilde{\mu}(\tilde{f}_{\gamma}) 2\eta_{\gamma} = \lim_{n \to \infty} \tilde{\mu}_{\alpha}(\tilde{f}_{\gamma}) 2\eta_{\gamma} \geqslant \overline{\lim}_{\alpha}(Z) 2\eta_{\gamma}$. Taking the limit over γ , we get the result.
- (ii) implies (i). Take an $f \in C_b(X)$, $0 \le f \le 1$, and fix a large positive integer k. For $i, 1 \le i \le k$, put $Z_i = f^{-1}[i/k, 1]$. We get $\sum_{i=1}^k \chi_{Z_i} \le f \le \sum_{i=1}^k \chi_{Z_i} + k^{-1}$. From this we get $\mu_{\alpha}(f) \le \sum_{i=1}^k \mu_{\alpha}(Z_i) + k^{-1}p$. This means $\overline{\lim}_{\alpha}(\mu_{\alpha}(f)) \le \overline{\lim}_{\alpha}\left(\sum_{i=1}^k \mu_{\alpha}(Z_i)\right) + k^{-1}p$. Using (ii), this gives $\overline{\lim}_{\alpha}(\mu_{\alpha}(f)) \le \left(\sum_{i=1}^k \mu(Z_i)\right) + k^{-1}p$. From this it follows

that $\overline{\lim}_{\alpha}(\mu_{\alpha}(f)) \leq \mu(f) + k^{-1}p$. Taking the limit as $k \to \infty$, we get $\overline{\lim}_{\alpha}(\mu_{\alpha}(f)) \leq \mu(f)$. The same result holds for 1 - f also (note that $\mu_{\alpha}(X) \to \mu(X)$). Combining these two results, we get the desired implication.

- (i) implies (iv) trivially.
- (iv) implies (ii). Fix a zero-set $Z \subset X$ and take a decreasing net $\{f_{\gamma}\} \subset C_{ub}(X)$ such that $f_{\gamma} \downarrow \chi_Z$ (if the uniformity comes from a single metric then the net $\{f_{\gamma}\}$ can be taken to be a sequence). Since μ is τ -smooth, $\mu(Z) = \lim_{\gamma} \mu(f_{\gamma})$ (in case the uniformity is metrizable, it is enough to assume μ to be σ -smooth). The rest of the proof is identical with that given above in ((i) implies (ii)).

Remark 4. This generalizes ([??], Theorem 7, p. 4).

Suppose X is a uniform space. An $H \subset C_{ub}(X)$ is called ueb if it is uniformly bounded and uniformly equicontinuous. Now we have the following theorem:

Theorem 5. Suppose X is a topological space having a uniformity \mathcal{U} which gives the same topology on X, E is a boundedly order-complete vector-lattice and $\{\mu_{\alpha}\}$ is a uniformly order-bounded net in $M_o^+(X, E)$. Suppose there is a $\mu \in M_{(o,t)}^+(X, E)$ such that $\mu_{\alpha} \to \mu$ pointwise on $C_{ub}(X)$ and H is a ueb set in $C_{ub}(X)$. Then $\mu_{\alpha} \to \mu$ uniformly on H.

Proof. Because $\{\mu_{\alpha}\}$ is uniformly order-bounded, we can take E=C(S) for some Stonian compact Hausdorff space S and we can also assume that $\mu_{\alpha}(1) \leq e$ for every α , e being the unit function in C(S). Also assume H to be absolutely convex and pointwise compact and $||f|| \leq 1$ for all $f \in H$. Take a compact $K \subset X$. By the Arzelà-Ascoli theorem, $H_{|K}$ is norm compact in C(K). Further d(x,y) = $\sup |f(x) - f(y)|$ is a uniformly continuous pseudometric on X. Fix c > 0. Define $h: X \to \mathbb{R}, \ h(x) = d(x,K); \text{ then } h \in C_{ub}(X). \text{ This means } V = \{x: \ h(x) < c\} \text{ is }$ a positive set, it is open in $X, V \supset K$, and for an $x \in V$ there is a $y \in K$ such that d(x,y) < c. By the Arzelà-Ascoli theorem, there is a finite subset $\{f_i: 1 \leq$ $i \leq n$ $\subset H$ such that $H = \bigcup_{i=1}^{n} H_i$ where $H_i = \{ f \in H : ||f - f_i||_{|K|} < c \}$. Now take an $x \in V$ and $f \in H_i$. There is a $y \in K$ such that d(x,y) < c. We get $|f(x) - f_i(x)| \le |f(x) - f(y)| + |f(y) - f_i(y)| + |f_i(y) - f_i(x)| \le 3c$. So $|f - f_i| \le 3c$ on V. From the given hypothesis, $\mu_{\alpha} \to \mu$ uniformly on finite subsets of $C_{ub}(X)$. Thus there exists a net $\{\eta_{\alpha}\}\subset E$ such that $\eta_{\alpha}\downarrow 0$ and $|\mu_{\alpha}(f_i)-\mu(f_i)|\leqslant \eta_{\alpha}$ for $1 \le i \le n$. Fix i and take an $f \in H_i$. We have $|\int f d\mu_{\alpha} - \int f d\mu| \le |\int (f - f_i) d\mu_{\alpha} - \int f d\mu|$ $\textstyle \int (f-f_i) \,\mathrm{d}\mu |+|\int f_i \,\mathrm{d}\mu_\alpha - \int f_i \,\mathrm{d}\mu| \leqslant |\int_V (f-f_i) \,\mathrm{d}\mu_\alpha| + |\int_{X \backslash V} (f-f_i) \,\mathrm{d}\mu_\alpha| + \int_K (f-f_i) \,\mathrm{d}\mu_\alpha|$ $|f_i| d\mu + \int_{X \setminus K} (f - f_i) d\mu + \eta_{\alpha} \le 3ce + 2\mu_{\alpha}(X \setminus V) + 3ce + 2\mu(X \setminus K) + \eta_{\alpha}$. Since this is true for each $i, 1 \leq i \leq n$, the above result holds for every $f \in H$. So we get

 $\sup_{f \in H} |\int f \, \mathrm{d}\mu_{\alpha} - \int f \, \mathrm{d}\mu| \leqslant 6ce + 2\mu_{\alpha}(X \setminus V) + 2\mu(X \setminus K) + \eta_{\alpha}. \text{ Taking limit superior,}$ we get $\overline{\lim}_{\alpha} (\sup_{f \in H} |\int f \, \mathrm{d}\mu_{\alpha} - \int f \, \mathrm{d}\mu|) \leqslant 2\mu(X \setminus V) + 2\mu(X \setminus K) + 6ce. \text{ Letting } c \downarrow 0,$ we get $\overline{\lim}_{\alpha} (\sup_{f \in H} |\int f \, \mathrm{d}\mu_{\alpha} - \int f \, \mathrm{d}\mu|) \leqslant 4\mu(X \setminus K). \text{ Since } \mu \in M_{(o,t)}^+(X,E), \text{ the result follows.}$

Corollary 6. Suppose X is a Hausdorff completely regular space, E is a boundedly order-complete vector-lattice and $\{\mu_{\alpha}\}$ is a uniformly order-bounded net in $M_o^+(X,E)$. Suppose there is a $\mu \in M_{(o,t)}^+(X,E)$ such that $\mu_{\alpha} \to \mu$ pointwise on $C_b(X)$ and H is a uniformly bounded and pointwise equicontinuous subset of $C_b(X)$. Then $\mu_{\alpha} \to \mu$ uniformly on H.

Proof. Consider X to be a uniform space with uniformity determined by all continuous pseudo-metrics on X. In this uniformity, H is a ueb set and so the result follows from Theorem 5.

4. Alexandrov's theorem for a σ -additive case

In this case we take E to be a boundedly complete vector lattice and, E^* and E^*_n to be its order dual and order continuous dual. E^*_n is a band in E^* and we assume that E^*_n separates the points of E. Take a sequence $\{\mu_n\} \subset M^+_{(o,\sigma)}(X,E)$ and assume that, in order convergence, $\mu(g) = \lim \mu_n(g)$ exists for every $g \in C_b(X)$. If $E = \mathbb{R}$, the well-known Alexandrov's theorem says that $\mu \in M^+_{\sigma}(X)$ ([??], p. 195); in ([??], Theorem 2, p. 73), this result is extended to the case when E is a topological vector space. In the next theorem we extend the result to the case when E is a boundedly complete vector lattice.

Theorem 7. Suppose X is a Hausdorff completely regular space, E is a boundedly order-complete vector lattice and E_n^* its order dual. Assume that E is weakly σ -distributive ([??]) and E_n^* separates the points of E. Let $\{\mu_n\} \subset M_{(\sigma,\sigma)}^+(X,E)$ be a sequence such that, in order convergence, $\mu(g) = \lim \mu_n(g)$ exists for every $g \in C_b(X)$. Then the positive $\mu \colon C_b(X) \to E$ is generated by the E^+ -valued Baire measure on X.

Proof. E_n^* is a band in E^* and so the order intervals of E_n^* are $\sigma(E_n^*, E)$ compact and convex. Now the topology on E of uniform convergence on the order
intervals of E_n^* is a locally convex topology for which lattice operations are continuous
and so, in this topology, the positive cone E_+ of E is closed and convex. Since this
topology is compatible with the duality $\langle E, E_n^* \rangle$, E_+ is also closed in $\sigma(E, E_n^*)$. Now

we consider E to be a locally convex space with the topology $\sigma(E, E_n^*)$. By given hypothesis, $\mu_n \colon C_b(X) \to E$ are countably additive measures (note that E_n^* is the order continuous dual of E) and $\mu(g) = \lim \mu_n(g)$ exists for every $g \in C_b(X)$. By ([??], Theorem 2, p. 73), if $g_m \downarrow 0$ in $C_b(X)$, then $\mu_n(g_m) \to 0$ uniformly in n. So we get $\mu(g_m) \to 0$ in E. We claim that in order convergence in $E, \mu(g_m) \to 0$. This will be proved if we prove that $\inf_m \mu(g_m) = 0$ (note that $\mu(g_m) \downarrow$). Let $\inf_m \mu(g_m) = a > 0$. Take a positive element $f \in E_n^*$ such that f(a) > 0 (note that E_n^* separates the points of E). This implies that $\lim \langle f, \mu(g_m) \rangle = f(a) > 0$. This contradicts $\mu(g_m) \to 0$ in $(E, \sigma(E, E_n^*))$ and so the claim is proved. We get a positive linear mapping $\tilde{\mu} \colon C(\widetilde{X}) \to E$, $\tilde{\mu}(f) = \mu(f|_X)$. For any zero-set $Z \subset \widetilde{X} \setminus X$, take a sequence $\{g_m\}\subset C(\widetilde{X})$ and $g_m\downarrow\chi_Z$. This means $(g_m)_{|X}\downarrow 0$. By ([??]), $\widetilde{\mu}$ can be considered a Baire measure on \widetilde{X} and so $\widetilde{\mu}(Z) = \lim \widetilde{\mu}(g_m) = \mu((g_m)_{|X}) = 0$. Since E is weakly σ -distributive, $\tilde{\mu}$ is a regular Baire measure and so for any Baire set $B \subset \widetilde{X} \setminus X$, $\widetilde{\mu}(B) = 0$. It is a simple verification that the class of Baire subsets of X is equal to the class of Baire subsets of \widetilde{X} intersected with X. Now for any Baire subset B_0 of X, take a Baire subset B of \widetilde{X} such that $B_0 = B \cap X$; define $\mu(B_0) = \tilde{\mu}(B)$. It is a simple verification the μ is well-defined and $\mu \in M_{(\rho,\sigma)}^+(X,E)$ ([??]). This proves the theorem.

We are very thankful to the referee for pointing out typographical errors and also

ma	aking some very useful suggestions which have improved the paper.	
	References	
[1] [2]	Diestel, J., Uhl, J. J.: Vector Measures. Amer. Math. Soc. Surveys 15, Amer. Math.	zbl zbl
[3]	${\it Kawabe, Jun:} \ {\it The Portmanteau theorem for Dedekind complete Riesz space-valued measures.} \ {\it Nonlinear Analysis and Convex Analysis.} \ {\it Yokohama Publ.}, {\it Yokohama, 2004, 2004, 2004}, {\it Yokohama, 2004}, {\it $	zbl
[4]	Kawabe, Jun: Uniformity for weak order convergence of Riesz space-valued measures. Bull. Austral. Math. Soc. 71 (2005), 265–274.	zbl
[5]	$\it Khurana, Surjit Singh:$ Lattice-valued Borel measures. Rocky Mt. J. Math. 6 (1976), 377–382.	zbl
[6]		zbl
[7]		zbl
[8]	, , ,	zbl
[9]	Lipecki, Z.: Riesz representation theorems for positive operators. Math. Nachr. 131 (1987), 351–356.	zbl
		zbl zbl

[12]	Wheeler, R. F.: Survey of Baire measures and strict topologies. Expo. Math. 2 (1983),	
	97–190.	zbl
[13]	Varadarajan, V. S.: Measures on topological spaces. Amer. Math. Soc. Transl. 48 (1965),	
	161–220.	zbl
[14]	Wright, J. D. M.: Stone-algebra-valued measures and integrals. Proc. Lond. Math. Soc.	
	<i>19</i> (1969), 107–122.	zbl
[15]	Wright, J. D. M.: Vector lattice measures on locally compact spaces. Math. Z. 120	
	(1971), 193–203.	zbl
[16]	Wright, J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier	
	(Grenoble) 21 (1971), 65–85.	zbl
[17]	Wright, J. D. M.: Measures with values in partially ordered vector spaces. Proc. Lond.	
	Math. Soc. 25 (1972), 675–688.	zbl

[18] Wright, J. D. M.: An algebraic characterization of vector lattices with Borel regularity property. J. Lond. Math. Soc. 7 (1973), 277–285.

Author's address: Surjit Singh Khurana, Department of Mathematics, University of Iowa, Iowa City, Iowa 52242, U.S.A., e-mail: khurana@math.uiowa.edu.