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Abstract. Let X be a completely regular Hausdorff space, E a boundedly complete
vector lattice, C(X) the space of all, bounded, real-valued continuous functions on X, F
the algebra generated by the zero-sets of X, and p: Cp(X) — E a positive linear map.
First we give a new proof that ; extends to a unique, finitely additive measure p: F — ET
such that v is inner regular by zero-sets and outer regular by cozero sets. Then some
order-convergence theorems about nets of E1-valued finitely additive measures on F are
proved, which extend some known results. Also, under certain conditions, the well-known
Alexandrov’s theorem about the convergent sequences of o-additive measures is extended
to the case of order convergence.
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1. INTRODUCTION AND NOTATION

All vector spaces are taken over reals. F, in this paper, is always assumed to be a
boundedly complete vector lattice (and so, necessarily Archimedean) ([?7], [?7], [?7]).
If F is a locally convex space and E’ its topological dual, then (-,-}: E x B/ — R
will stand for the bilinear mapping (z, f) = f(z). For a completely regular Hausdorff
space X, B(X) and By (X) are the classes of Borel and Baire subsets of X, C'(X) and
Cy(X) are the spaces of all real-valued, and real-valued and bounded, continuous
functions on X and X is the Stone-Cech compactification of X respectively. For an
f € Cy(X), fis its unique continuous extension to X. The sets {f~1(0): f € Cy(X)}
are called the zero-sets of X and their complements the cozero sets of X.

For a compact Hausdorff space X and a boundedly complete vector lattice G, let u:
B(X) — G be a countably additive (countable additivity in the order convergence
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of G) Borel measure; then u is said to be quasi-regular if for any open V C X,
w(V) = sup{u(C): C compact, C C V}. Integration with respect to these measures
is taken in the sense of ([??], [??]). There is a 1-1 correspondence between these
quasi-regular, positive, G-valued Borel measures on X and positive linear mappings
w: C(X) — G ([?7, 77, [27]); M(Jg)(X, G) will denote the set of all these measures.

Now suppose that X is a completely regular Hausdorff space. A positive countably
additive Borel measure p: B(X) — G is said to be tight if for any open V C X,
w(V) =sup{u(C): C compact, C C V} ([??], p.207). This measure gives a positive
linear mapping fi: C()? ) — G, i(f) = u(fix) and the corresponding quasi-regular,
positive, G-valued Borel measure on X is given by i(B) = u(X N B) for every Borel
BcCX. M(Jg’t)(X, G) will denote the set of all tight measures.

If u: B(X) — G* is a countably additive Borel measure, then p is said to be
7-smooth if for any increasing net {Us,} of open subsets of X, u(|JUs) = sup u(Ua)
(some properties of these measures are given in [?7], p.207). Any such measure gives
a positive linear mapping fi: C()Ai:) — G, i(f) = u(fix) and the corresponding
quasi-regular, positive, G-valued Borel measure on X is given by i(B) = u(X N B)
for every Borel set B C X. M(J;T)

If u: B1(X) — G7 is a countably additive Baire measure then, as in the case of 7-
smooth measure, we get i: C(X) — G, a(f) = p(fix); M} (X, G) will denote the

? 7 (0,0)

(X, G) will denote the set of all T-smooth measures.

set of all these Baire measures.

In ([?7], [?7]) some interesting results are derived about the weak order conver-
gence of nets of positive lattice-valued measures. In this paper we extend some of
those results to a more general setting. Before doing that we need Alexandrov’s
Theorem.

2. ALEXANDROV’S THEOREM

Suppose X is a completely regular Hausdorff space and F is the algebra generated
by the zero-sets of X. Assume that p: Cp(X) — R is a positive linear mapping. By
well-known Alexandrov’s Theorem, there exists a unique finitely additive measure v,
v: F — Rt such that

(i) v is inner regular by zero-sets and outer regular by cozero sets; (ii) [ f dv = u(f)
for all f € Cy(X) ([??], Theorem 5, p.165; [?7]) (Note that Cy(X) is contained in
the uniform closure of F-simple functions on X in the space of all bounded functions
on X and so each f € C,(X) is v-integrable; v is also generally denoted by p.) This
theorem has been extended to the vector case (e.g. [??], p.353). The proof is quite
sophisticated. We give a quite different proof based on the regularity properties of
the corresponding quasi-regular Borel measure on X ; this also provides a relation
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between this finitely additive measure and the corresponding quasi-regular Borel
measure on X. We start with a lemma.

Lemma 1. If Z; and Z, are zero-sets in X then (Zy N Zy) = Zy N Zy (for a subset
A C X, A denotes the closure of A in X ).

Proof. Suppose this is not true. Take a point a € Z1 N Z2 \ (Z1 N Z2) (note
that Z; N Zs can be empty). Take an f € Cy(X), 0 < f < 1, such that f(a) = 1
and f =0 on (Z; N Z3). For i = 1,2, take h; € Cp(X) such that 0 < h; < 1 and
Zi = h;'(0). Define f;(x) = f(z)hi(z)/(h1(x) + ha(x)) for x ¢ (Z1 N Z3) and 0
otherwise. These functions are continuous and f = f1 + fo. Thus f = fi + f2. Since
fi=0o0n Z;, fi =0on Z; and so fi + fo = 0 on Z; N Z;. This means f(a) = 0, a
contradiction. O

Now we come to the main theorem.

Theorem 2 ([??], p.353). Suppose X is a completely regular Hausdorff space, E
is a boundedly order-complete vector lattice and u: Cy(X) — FE is a positive linear
mapping. Then there exist a unique finitely additive measure v: F — EV such that,
in terms of order convergence,

(i) v is inner regular by zero-sets and outer regular by cozero sets;
(i) [ fdv=p(f) for all f € Cy(X);
(iii) For any zero-set Z C X we have v(Z) = j(Z), Z being the closure of Z in X.

Proof. There is no loss of generality if we assume that £ = C(S), S being a
Stonian space. The given mapping gives a positive linear mapping fi: C ()Z' ) — E; by
(127], [27]) we get an E-valued, positive quasi-regular Borel measure ji: B(X) — ET.
If A is a subset of X or X , A will denote the closure of A in X. We prove this theorem
in several steps.

I. Let Z = {A: A a zero-set in X}. Then for every Q € Z, inf{a((X \ Q) \ W):
WeZ}=0.

Proof. Using the quasi-regularity of fi, take an increasing net {C,} of compact
subsets of (X \ Q) such that inf(ji((X \ Q) \ Ca)) = 0. Fix o and take a g € C(X),
0<g<1,suchthat g=1o0nC, andgzOoutsideX'\Q. LetV:{xé)?: g(z) >
1L Z={reX: glx) >} Wehave 22 (ZNX) D (VNX) DV D Ca (note
that X is dense in X). Now Z N X is a zero-set in X and taking W = (Z N X), we
have C, C W C (X \ Q). Since Z is closed under finite unions, the result follows.

IT. Let A be the algebra in X generated by Z and denote by Ay the elements
of A which have the property that these elements and their complements are inner
regular by the elements of Z. Then Ay = A.
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Proof. We useI and Lemma 1 to prove it. By I, Ay D Z. By definition, Ay is
closed under complements. Using Lemma 1, it is a routine verification that if A and
B are in Ay then AU B and AN B are also in Ag. This proves the result.

ITI. Let F be the algebra in X generated by zero-sets in X. Then it is a simple
verification that ANX D F. Also, if A € Aand ANX =0, then i(A) = 0. To prove
this, take any Z € Z, Z being a zero-set in X, such that Z C A. This means Z is
empty and so ji(A) = 0. Now we can define av: F — E, v(B) = ji(A), A being any
element in A with B = AN X; it is a trivial verification that v is well-defined, finitely
additive and it is inner regular by zero-sets in X and outer regular by positive-sets
in X. We also have v(Z) = ji(Z) for any zero-set Z C X.

IV. For any f € Cyp(X), u(f) = [ fdv.

Proof. Let M be the vector space of all F-simple functions on X. With the
norm topology || - || on C(S), the mapping ji: M — C(S), f — [ fdp is positive
and continuous and C,(X) lies in the norm completion of M; this implies that every
f € Cp(X) is v-integrable. Put u(1) = e € C(9).

Take an f € Cp(X), 0 < f < 1, and fix a large positive integer k. For ¢, 1 < i < k,

. k
let Z; = f~'i/k,1] and W; = f~[i/k,1]. On X we get k! Z Xz, < f <k'+

=1

k k ~
k=13 xz,. From this we get 0 < v(f) — k1> v(Z;) < k7 e. On X we get

i=1 i=1

~ k k ~ k

=2k xw, = k'Y xz. Define h: X — RY, h(z) = k7' + k71 Y x5

i=1 i=1 i=1

Then h is usc (upper semi-continuous). Take an # € X and a net {z,} C X

such that z, — Z. Now f(Z) = lim f(zo) < limh(zs) < h(Z) (note that h is
k _ k

usc). Thus k=1 Xz < f < k~'+ k! > x5 Integrating relative to ji, we have
i=1 =1

1=
k —
0<u(f)— k=13 v(Z;) < k~te (note ji(Z;) = v(Z;)). Combining these results, we
i=1
have |u(f) — v(f)| < k~te. Taking the limit over k, we get the result.

V. Uniqueness.

Proof. TFori = 1,2, let v;: F — ET be two finitely additive regular (in-
ner regular by zero-sets and outer regular by positive-sets in X) measures such
that [ fdvy = [ fdws for all f € Cp(X). Fix a zero-set Z C X and take a de-
creasing net {Uy} of cozero sets in X such that v;(Uy \ Z) | 0 for ¢ = 1,2. For
each «a, take an f, € Cp(X) with 0 < fo < 1, fo = 1 on Z, and f, = 0 outside
Uy. For i =1,2, v;(Uy) 2 vi(fo) 2 vi(Z). From this we get, since v1(fo) = v2(fa),
1(Uy) —12(Z) 2 0 2 1n(Z) — 15(Uy). Taking limits we get 11(Z) = v2(Z). By
regularity, we have v; = 1. This proves the result. (I
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We denote by M('Z)(X, E) the set of all finitely additive pu: F — ET which are

inner regular by zero-sets; they are just the positive linear operators p: Cp(X) —
ET.

3. ORDER CONVERGENCE OF MEASURES

In this section we consider the order convergence of these measures. A net {yq} C
M('g)(X, E) is said to order-converge weakly to a p € M:;)(X7 E) if po(f) — u(f)
in order-convergence for each f € Cp(X); this is equivalent to fio(f) — ia(f) in
order-convergence for each f € C(X).

Theorem 3. Suppose X is a Hausdorff completely regular space, E is a boundedly
order-complete vector-lattice, { o} is a uniformly order-bounded net in M (Jg )(X ,E)
and € M, (Jg ) (X, E) . Then, with order convergence, the following statements are
equivalent:

(1) pa — p, pointwise on Cp(X);
(i) limg pa(2) < u(2) for every zero-set Z and pio(X) — u(X);
(iii) lim pa(U) = u(U) for every positive-set U and fio(X) — pu(X);

If pu is T-smooth, then each of the above statements is also equivalent to

(iv) pa — p pointwise on Cyp(X), where Cyp(X) is the set of all uniformly contin-
uous functions on X relative to a uniformity U on X which gives the original
topology on X (if the uniformity U comes from a single metric, then it is enough
to assume that p is o-smooth).

Proof. The positive linear mappings p: Cp(X) — E and po: Cp(X) — E
give the positive linear mappings ji: C(X') — F and fig: C()Ai:) — F. Since the net
{lta } is a uniformly order-bounded, we can assume that u, (1) < p for all ¢, for some
p€E (p>0).

(ii) and (iii) are easily seen to be equivalent.

(i) implies (ii). Fix a zero-set Z C X and let Z be its closure in X. Take a
decreasing net {f,} C C(X),0< f,, <1 for every v such that f, | x5. This means
that, for some 7, | 0 in E we have u(Z) = u(Z) = a(fy) —ny = a(fy) — 21, =
lién fia (fv) — 21, > lim,(Z) — 2n,. Taking the limit over v, we get the result.

(ii) implies (i). Take an f € Cp(X), 0 < f < 1, and fix a large positive integer k.

k k
Fori, 1 <i<k,put Z; = f']i/k,1]. Weget > xz < f < > xz, +k~!. From this
i=1 i=1

k _ Lk
we get o (f) < Y pa(Zi) + k~1p. This means lim, (o (f)) < lim, ( > ,ua(Zi)> +
i=1 =1

. k
k~1p. Using (ii), this gives lim, (1a (f)) < ( > u(Zi)) + k~1p. From this it follows
i=1
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that limg, (11a (f)) < p(f) + k~'p. Taking the limit as k — oo, we get lim a(uq (f)) <
p#(f). The same result holds for 1 — f also (note that po(X) — p(X)). Combining
these two results, we get the desired implication.

(i) implies (iv) trivially.

(iv) implies (ii). Fix a zero-set Z C X and take a decreasing net {f,} C Cyp(X)
such that f, | xz (if the uniformity comes from a single metric then the net {f,}
can be taken to be a sequence). Since p is 7-smooth, pu(Z) = 1i£n w(fy) (in case the

uniformity is metrizable, it is enough to assume p to be o-smooth). The rest of the
proof is identical with that given above in ((i) implies (ii)). O

Remark 4. This generalizes ([??], Theorem 7, p.4).

Suppose X is a uniform space. An H C Cyp(X) is called ueb if it is uniformly
bounded and uniformly equicontinuous. Now we have the following theorem:

Theorem 5. Suppose X is a topological space having a uniformity U which gives
the same topology on X, E is a boundedly order-complete vector-lattice and {ji}
is a uniformly order-bounded net in M (X, E). Suppose there is a u € M(';t)(X7 E)
such that p, — p pointwise on Cyp,(X) and H is a ueb set in Cyp(X). Then po — p
uniformly on H.

Proof. Because {{o} is uniformly order-bounded, we can take E = C(S) for
some Stonian compact Hausdorff space S and we can also assume that p,(1) < e
for every «, e being the unit function in C(S). Also assume H to be absolutely
convex and pointwise compact and ||f|| < 1 for all f € H. Take a compact K C X.
By the Arzela-Ascoli theorem, H|k is norm compact in C(K). Further d(z,y) =
?up |f(z) — f(y)| is a uniformly continuous pseudometric on X. Fix ¢ > 0. Define

€H

h: X — R, h(z) = d(z, K); then h € Cyp(X). This means V = {z: h(z) < c} is

a positive set, it is open in X, V D K, and for an x € V there is a y € K such

that d(z,y) < c¢. By the Arzela-Ascoli theorem, there is a finite subset {f;: 1 <
n

i < n} C H such that H = |J H; where H; = {f € H: ||f — fil|x < c¢}. Now

i=1

take an x € V and f € H;. There is a y € K such that d(z,y) < ¢. We get
@) — L@ < 1F@) = FO + @) — Fiw)] + i) — fi(2)] < 3. So |f - fil < 3¢
on V. From the given hypothesis, i, — g uniformly on finite subsets of Cyp(X).
Thus there exists a net {n,} C E such that n, | 0 and |pa(fi) — 1(fi)| < 1o for
1 <i < n. Fixiand take an f € H;. We have | [ fdpe— [ fdu| <|[(f—fi) dpa —
JU=f)dul+| [ fidpa— [ fidul <[ [, (f = £i) dpal + 1 [y v (f = fi) dpal + [ (f =
fi)dpl + fx\K(f = fi)dul +na < 3ce+2pa(X \ V) + 3ce + 2u(X \ K) + 7a. Since
this is true for each i, 1 < i < n, the above result holds for every f € H. So we get
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sug | [ fdpa — [ fdp| < 6ce+2ua(X\V)+2u(X \ K) +1,. Taking limit superior,
\J;VEe get ma(sugwfdua — [ fdul) <2u(X\V)+2u(X \ K) + 6ce. Letting ¢ | 0,

: (0.0)(X, E), the result
follows. "

we get lime, (sup | [ fdua — [ fdu|) < 4p(X\ K). Since p € M
feH

Corollary 6. Suppose X is a Hausdorff completely regular space, E is a bound-
edly order-complete vector-lattice and {pu,} is a uniformly order-bounded net in
M} (X,FE). Suppose there is a u € M(';t) (X, E) such that p, — p pointwise on
Cy(X) and H is a uniformly bounded and pointwise equicontinuous subset of C,(X).
Then o — p uniformly on H.

Proof. Consider X to be a uniform space with uniformity determined by all
continuous pseudo-metrics on X. In this uniformity, H is a ueb set and so the result
follows from Theorem 5. 0

4. ALEXANDROV’S THEOREM FOR A 0-ADDITIVE CASE

In this case we take E to be a boundedly complete vector lattice and, E* and E}
to be its order dual and order continuous dual. E} is a band in E* and we assume
that E separates the points of E. Take a sequence {pn} C M(J;U)(X, E) and assume
that, in order convergence, p(g) = lim u,(g) exists for every g € Cp(X). If E = R,
the well-known Alexandrov’s theorem says that p € M (X) ([?7], p.195); in ([?7],
Theorem 2, p. 73), this result is extended to the case when E is a topological vector
space. In the next theorem we extend the result to the case when F is a boundedly

complete vector lattice.

Theorem 7. Suppose X is a Hausdorff completely regular space, E is a boundedly
order-complete vector lattice and E;; its order dual. Assume that E is weakly o-
distributive ([??7]) and E; separates the points of E. Let {u,} C M(';U)(X7 E)
be a sequence such that, in order convergence, u(g) = limpu,(g) exists for every
g € Cy(X). Then the positive u: Cyp(X) — E is generated by the ET-valued Baire

measure on X.

Proof. E is a band in E* and so the order intervals of E’ are o(E}, E)-
compact and convex. Now the topology on E of uniform convergence on the order
intervals of £ is a locally convex topology for which lattice operations are continuous
and so, in this topology, the positive cone E of E is closed and convex. Since this
topology is compatible with the duality (F, E}), E. is also closed in o(E, E}). Now
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we consider E to be a locally convex space with the topology o(FE, E}). By given
hypothesis, p,: Cp(X) — E are countably additive measures (note that E is the
order continuous dual of E) and p(g) = lim uy,(g) exists for every g € Cp(X). By
([7?], Theorem 2, p.73), if g,, | 0 in Cp(X), then p,(gm) — 0 uniformly in n. So
we get u(gm) — 0in E. We claim that in order convergence in F, u(gm) — 0.
This will be proved if we prove that inf,, p(gm) = 0 (note that p(g.) |). Let
inf,, p1(gm) = a > 0. Take a positive element f € E* such that f(a) > 0 (note that
E} separates the points of E). This implies that lim (f, u(gm)) = f(a) > 0. This
contradicts p(gnm) — 0in (E,o(E, E) and so the claim is proved. We get a positive
linear mapping fi: C(X) — F, i(f) = u(fix). For any zero-set Z C X\ X, take
a sequence {g,} C C(X) and g, | xz. This means (gm);x 1 0. By ([?7]), fi can
be considered a Baire measure on X and so fi(Z) = lim fi(gm) = p((gm)x) = 0.
Since E is weakly o-distributive, [i is a regular Baire measure and so for any Baire
set BC X \ X, i(B) = 0. It is a simple verification that the class of Baire subsets
of X is equal to the class of Baire subsets of X intersected with X. Now for any
Baire subset By of X, take a Baire subset B of X such that By = BN X; define
w(Bo) = ji(B). It is a simple verification the y is well-defined and p € M (X, E)

(0,0)
([?77]). This proves the theorem. O

We are very thankful to the referee for pointing out typographical errors and also
making some very useful suggestions which have improved the paper.
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