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Area Preserving Homeomorphisms

of Open Surfaces of Genus Zero

John Franks

Abstract. We show that an area preserving homeomorphism of the open annu-
lus which has at least one periodic point must in fact have infinitely many interior
periodic points.
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In this paper we investigate area preserving homeomorphisms of the open annu-
lus and their periodic points. The main result is that an area preserving homeo-
morphism of the annulus which has at least one periodic point must in fact have
infinitely many interior periodic points. This result was claimed in [F4] but the
proof contained a gap.

1. Chain Recurrence

We briefly recall the definition of chain recurrence due to Charles Conley in [C].
In the following f : X → X will denote a homeomorphism of a metric space X.

(1.1) Definition. An ε-chain for f , from x to y is a sequence x = x1, x2, . . . , xn =
y, in X such that

d(f(xi), xi+1) < ε for 1 ≤ i ≤ n− 1.

A point x ∈ X is called chain recurrent if for every ε > 0 there is an ε-chain from
x to itself. The set R(f) of chain recurrent points is called the chain recurrent set
of f .

It is easily seen that if the metric space X is compact then the chain recurrent
set R(f) is compact and invariant under f . Moreover it is independent of the choice
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2 John Franks

of metric on X, depending only on f and the topology of X. If X is not compact
then R(f) is closed and invariant but it depends on the metric defined on X rather
than just the topology.

The following simple result is well known and is valid whether or not X is
compact.

(1.2) Proposition. If R(f) = X (in particular if f preserves a finite measure
whose support is all of X) and if X is connected then for any ε > 0 and any
x, y ∈ X there is an ε-chain from x to y. If K is a compact subset of X then given
ε > 0 there is an N with the property that for any x, y ∈ K there is an ε-chain of
length less than N from x to y.

Proof. Note that if f preserves a finite measure whose support is all of X then by
Poincaré recurrence almost every point of X is recurrent from which it follows that
R(f) = X.

We define a relation ∼ on R(f) by x ∼ y if and only if for every ε > 0 there is
an ε-chain from x to y and another from y to x. It is clear that ∼ is an equivalence
relation. From the definition it is easy to see that each equivalence class for the
equivalence relation ∼ is open. Since equivalence classes are pairwise disjoint it
follows that the complement of an equivalence class is open. Since X is connected
there can be only one equivalence class.

If K ⊂ X is compact and x, y ∈ K and there is an ε-chain of length N0 from
x to y then there is an open neighborhood V of (x, y) ∈ X ×X such that for any
(x0, y0) ∈ V there is a ε-chain of length N0 from x0 to y0. Since K ×K is compact
it can be covered by finitely many such neighborhoods. The maximum of the values
of N0 for these neighborhoods is the desired N . �

By an open surface of finite type we mean a smooth two dimensional mani-
fold obtained by taking a smooth compact surface without boundary and deleting
finitely many points from its interior. Equivalently it is a surface obtained by tak-
ing a smooth compact surface with boundary and removing all of the boundary
components. A proof of the following result can be found as Lemma (1.4) of [F5].

(1.3) Lemma. Suppose M is an open surface of finite type and f : M → M is
a homeomorphism homotopic to the identity whose canonical lift to its universal

covering space is F : M̃ → M̃ . If f is fixed point free, then there is a complete

Riemannian metric on M which when lifted to M̃ has a distance function d( , )

satisfying d(F (x), x) > 1 for all x ∈ M̃.

One of the the results which we will use in proving the existence of periodic points

is a generalization of the Poincaré-Birkhoff Theorem. Suppose Ã = R×(0, 1) and A

is the quotient of Ã under the group generated by (x, t)→ (x+ 1, t). If F : Ã→ Ã
is a lift of f : A → A we will say that there is a positively returning disk for F if

there is an open disk U ⊂ Ã such that F (U) ∩ U = ∅ and Fn(U) ∩ (U + k) 6= ∅
for some integers n, k > 0, (here U + k denotes the set {(x + k, t) | (x, t) ∈ U}).
Thus, U is disjoint from its image, but under iteration by F returns to a positive
translate of itself. A negatively returning disk is defined similarly, but with k < 0.
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Recall that a point x is non-wandering if for every neighborhood U of x there
is an n > 0 such that fn(U) ∩ U 6= ∅. In particular if f preserves a finite measure
which is positive on open sets then every point is non-wandering. A proof of the
following result can be found in [F1].

(1.4) Theorem. Let f : A → A be an orientation preserving homeomorphism of
the open annulus A = S1 × (0, 1), which is homotopic to the identity and satisfies
the following conditions:

1. Every point of A is non-wandering under f .

2. There is a lift of f to its universal covering space, F : Ã → Ã, which
possesses both a positively returning disk and a negatively returning disk.

Then f has a fixed point.

We shall also need the following lemma which is Lemma (3.3) of [F4].

(1.5) Lemma. Suppose f : M →M is a homeomorphism of a complete Riemann-
ian manifold M and f possesses a periodic ε-chain with respect to the metric d(, )
induced by the Riemannian metric. Then there is an isotopy ht : M →M, t ∈ [0, 1]
such that

i) ht has compact support, and h0 = id.
ii) d(ht(x), x) < ε for all t ∈ [0, 1] and all x ∈M.
iii) Arbitrarily near the periodic ε-chain for f is a periodic orbit for g = h1 ◦ f.

2. Homological Rotation Vectors

In this section we briefly recall the definition of homological rotation vectors
for surface homeomorphisms isotopic to the identity map from [F4] and [F5]. Let
M be an open surface of finite type and let f : M → M be a homeomorphism
isotopic to the identity. We fix a metric on M of constant negative curvature. Even
more, we assume that one can form M by taking a convex ideal geodesic polygon in
hyperbolic space (vertices of which are points at infinity) and making identifications
on the edges.

Pick a base point b0 in the interior of the polygon whose sides are identified to
form M. We want to define a function γ which assigns to each x ∈ M a geodesic
segment γx in M from b0 to x, in such a way that the correspondence x → γx is
measurable. We do this by letting γx be the unique geodesic segment from b0 to x
if x is in the interior of the polygon whose sides are identified to form M . For x on
an identified edge we consider each pair of edges which are identified and pick one.
Then choose γx to be the unique geodesic segment from b0 to x which when lifted
back to the polygon ends on the chosen edge.

Let ft(x) be a homotopy from f0 = id : M → M to f1 = f. Because the Euler
characteristic of M is negative, ft is unique up to homotopy. This means that if
gt is another homotopy with g0 = id and g1 = f , then there is a homotopy from
ft to gt, i.e., a map H : M × [0, 1] × [0, 1] → M such that H(x, t, 0) = ft(x) and
H(x, t, 1) = gt(x).

For any point x ∈ M we want to construct a path in M from x to fn(x) and
then form a loop with the segments γx and γfn(x). To do this we observe that

if π : M̃ → M is the universal covering space of M there is a canonical lift of
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f to a homeomorphism F : M̃ → M̃ ; namely, F is that lift obtained by lifting

the homotopy ft from the identity to f to form a homotopy on M̃ starting at the

identity on M̃ . The other end of this homotopy is then defined to be F . The
uniqueness of ft up to homotopy implies that F does not depend on the choice of
homotopy from the identity to f . Alternatively, F is the unique lift whose extension

to the ideal points at infinity of M̃ has all those points as fixed points.

Consider the path α(n, x) from x to fn(x) in M which is given by

α(n, x)(t) = fnt (x).

Again the homotopy class of this path relative to its endpoints is independent of
the choice of the homotopy ft because of the uniqueness (up to homotopy) of this
homotopy.

For each x ∈ M let hn(x, f) be the closed loop based at b0 formed by the
concatenation of γx, the path α(n, x) in M from x to fn(x) and γfn(x) traversed
backwards. If the homeomorphism f is clear from the context we will abbreviate
hn(x, f) to hn(x).

Let ∗ denote concatenation of based loops and observe that hn(x)∗hm(fn(x)) is
homotopic to hn+m(x). Let [hn(x)] denote the homology class in H1(M,R) of the
loop hn(x). Note that [hn+m(x)] = [hn(x)] + [hm(fn(x))]. We can now formulate
the definition of homology rotation vector.

(2.1) Definition. Let M be an open surface of finite type with negative Euler
characteristic. Suppose f : M → M is a homeomorphism which is isotopic to the
identity map. The homological rotation vector of x ∈M , is an element of H1(M,R)
denoted R(x, f), and is defined by

R(x, f) = lim
n→∞

[hn(x)]

n

if this limit exists.

If the limit in Definition (2.1) above does not exist then R(x, f) is undefined and
we say x has no homological rotation vector.

Let µ be an f invariant measure on M which is homeomorphic to Lebesgue
measure. By this we mean there is a homeomorphism h : M → M such that
for any Borel set A in M we have µ(A) = m(h(A)) where m( ) denotes Lebesgue
measure associated with a hyperbolic metric on M .

The homology classes [h1(x)] ∈ H1(M,R) depend measurably on x. In fact there
is a closed set of measure zero in M (consisting of the “edges” of the polygon and
their inverse images under f) on the complement of which the function [h1(x)] is
locally constant.

We observe that since M is not compact, the function [h1(x)] might not be
bounded. In fact it is easy to construct a diffeomorphism of the disk punctured at
its center which has the property that as one approaches the central puncture the
diffeomorphism rotates around that puncture an arbitrarily large amount. One can
construct such a diffeomorphism for which [h1(x)] is not integrable.



Area Preserving Homeomorphisms 5

Much of this article deals with the case when [h1(x)] is not integrable. In the case
that it is integrable we can apply the Birkhoff ergodic theorem. Since [hn+m(x)] =
[hn(x)] + [hm(fn(x))],

n−1∑
i=0

[h1(f i(x))] = [hn(x)].

Hence by the Birkhoff ergodic theorem, for µ−almost all x the limit

lim
n→∞

1

n

n−1∑
i=0

[h1(f i(x))] = lim
n→∞

[hn(x)]

n
= R(x, f)

exists. Thus in this case the homological rotation vector exists for µ−almost all x.
The Birkhoff ergodic theorem also asserts that R(x, f) is a µ−measurable func-

tion of x and that ∫
R(x, f)dµ =

∫
[h1(x, f)]dµ.

(2.3) Definition. Let M be an open surface of finite type with negative Euler
characteristic. Suppose f : M → M is a homeomorphism of the surface M which
is isotopic to the identity map and preserves a finite measure µ homeomorphic to
Lebesgue measure. The mean rotation vector of f , if it exists, is an element of
H1(M,R) denoted Rµ(f), and is defined by

Rµ(f) =

∫
R(x, f)dµ,

when this integral exists. If the integral does not exist then the mean rotation
vector is undefined.

(2.4) Proposition. Suppose f and g are homeomorphisms of M which are isotopic
to the identity and preserve a finite measure µ homeomorphic to Lebesgue measure.
Then

Rµ(f ◦ g) = Rµ(f) +Rµ(g),

if all these integrals exist.

Proof. The loop h1(x, f ◦g) is homotopic to the concatenation of the loops h1(x, f)
and h1(f(x), g) so [h1(x, f ◦ g)] = [h1(x, f)] + [h1(f(x), g)]. Thus∫

[h1(x, f ◦ g)]dµ =

∫
[h1(x, f)]dµ+

∫
[h1(f(x), g)]dµ.

Since f preserves µ, we have that
∫

[h1(f(x), g)]dµ =
∫

[h1(x, g)]dµ. Hence

Rµ(f ◦ g) = Rµ(f) +Rµ(g).

�

The following result is due to Bestvina and Handel. A proof can be found in
(2.7) of [F4]. It is based on an important fixed point theorem of Handel [H1].

(2.5) Proposition [BH]. Suppose f is a homeomorphism of M , an oriented sur-
face of finite type with genus 0 and Euler characteristic ≤ 0. If f is isotopic to the
identity and f has no interior fixed points then every periodic point x in the interior
of M has a non-zero homological rotation vector R(x, f) ∈ H1(M,R). The same

conclusion is valid if the canonical lift F : M̃ → M̃ has no interior fixed points.
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3. The Mean Rotation Vector Relative to a Subset

In this section we consider the mean rotation vector of f restricted to a subset
of an open surface. In particular we consider the implications of its non-existence.
Suppose M is an open surface of finite type and f : M →M is a homeomorphism
leaving invariant a measure µ which is homeomorphic to Lebesgue measure.

If K ⊂ M is a set of positive measure then the first return map g : K → K is
defined by g(x) = fn(x) where n is the smallest positive integer such that fn(x) ∈
K. By the Poincaré recurrence theorem it is well defined for x in a subset of K of
full measure. We will use g to define the mean homological rotation vector of f
relative to K. Note that we do not assume that K is invariant. For a subset of
full measure of K we can define the loop hK(x) = hn(x) where n is the smallest
positive integer such that fn(x) ∈ K. As before let [hK(x)] denote the homology
class of hK(x).

(3.1) Definition. Let M be an open surface of finite type with non-positive Euler
characteristic. Suppose f : M →M is a homeomorphism of the surface M which is
isotopic to the identity map and preserves a measure µ. The mean rotation vector
of f , relative to a Borel subset K ⊂ M , if it exists, is an element of H1(M,R)
denoted Rµ(f,K), and is defined by

Rµ(f,K) =

∫
K

[hK(x)]dµ,

when this integral exists. If the integral does not exist then the mean rotation
vector relative to K is undefined.

In the case that M is an annulus it is necessary for a lift F of f to be chosen
in order for this mean rotation vector to be well defined. In this case will will
write Rµ(F,K) =

∫
K

[hK(x, F )]dµ, with the F added to [hK(x, F )] to indicate the
dependence on this lift.

It is clear from the comments before (2.3) that if K = M this reduces to the usual
definition since hK(x) = h1(x) in this case. However, the following proposition
better illustrates the connection between this definition and (2.3).

(3.2) Proposition. Suppose f,K, and µ are as in (3.1) and Rµ(f) exists. If
B = ∪∞n=0f

n(K), then

Rµ(f,K) =

∫
B

R(x, f)dµ.

Proof. Let Un ⊂ K be the set of x ∈ K such that n is the smallest positive integer
with fn(x) ∈ K. Define a partition of B by

Vn = ∪n−1
j=0 f

j(Un).

The set B is invariant under f modulo a set of measure zero, by the Poincaré
recurrence theorem, and B = ∪∞n=0Vn, up to sets of measure zero. We can apply
the Birkhoff ergodic theorem to f restricted to B and obtain∫

B

R(x, f)dµ = Rµ(f |B) =

∫
B

[h1(x, f)]dµ.
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Since the sets Vn are pairwise disjoint and their union is B (up to measure zero),
we have ∫

B

[h1(x, f)]dµ =
∞∑
n=0

∫
Vn

[h1(x, f)]dµ.

Since
n−1∑
j=0

[h1(f j(x))] = [hn(x)],

we conclude ∫
Vn

[h1(x, f)]dµ =
n−1∑
j=0

∫
fj(Un)

[h1(x, f)]dµ

=

n−1∑
j=0

∫
Un

[h1(f j(x), f)]dµ

=

∫
Un

[hn(x, f)]dµ.

It follows that ∫
B

R(x, f)dµ =
∞∑
n=0

∫
Un

[hn(x, f)]dµ

=

∫
K

[hK(x)]dµ

= Rµ(f,K).

�

The next result shows the existence of many fixed points if there is a compact
subset K for which Rµ(f,K) does not exist.

(3.3) Proposition. Let M be an open surface of finite type with negative Euler
characteristic and genus zero. Suppose f : M → M is a homeomorphism of the
surface M which is isotopic to the identity map and preserves a finite measure µ
homeomorphic to Lebesgue measure. If there is a compact subset K ⊂ M with
µ(K) > 0 such that Rµ(f,K) fails to exist then f has infinitely many fixed points.
In fact f has fixed points in infinitely many Nielsen classes.

Proof. We first observe that if Rµ(f,K0) fails to exist then
∫
K

[hK(x)]dµ must fail
to exist. M is a sphere with at least three punctures. Choose a basis for H1(M)
represented by loops around all but one of the punctures. Since the vector function
[hK(x)] is not integrable it must be the case that one of its component functions
with respect to the chosen basis is not integrable. Form an annulus A by filling in
all the punctures of M except two – the one without a loop around it representing a
basis element, and the one whose loop corresponds to a non-integrable component
function of [hK(x)].
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There is a natural extension of f to f : A → A which fixes the points added
at punctures and it is clear that if we consider µ to be a measure on A then this
extended f preserves µ. Let p be one of the fixed points added at a puncture and

let F : Ã → Ã be the lift of f to its universal covering space which fixes π−1(p)
pointwise.

Note that for the annulus A we can define the loop h1(x, F ) to be the image under
the inclusion i : M → A of the loop h1(x) in M . We indicate the dependence on
F because when the mean rotation number exists for an annulus homeomorphism,
it depends on a choice of lift to the universal covering space. In our setting this
mean rotation number Rµ(F ) is equal to

∫
[h1(x, F )]dµ if this integral exists, and

we identify H1(A,R) with R.

Hence we have the measurable function [h1(x, F )] ∈ H1(A) and, as before, we can
define [hn(x, F )] and [hK(x, F )]. We then have [hK(x, F )] = i∗([hK(x)]) ∈ H1(A),
where i : M → A is the inclusion, so that

∫
K

[hK(x, F )]dµ fails to exist, because

i∗ is essentially projection onto the component of H1(M) for which
∫
K

[hK(x)]dµ
fails to exist. Since K ⊂ M ⊂ A has finite µ measure this implies that [hK(x, F )]
is essentially unbounded.

We can consider the other lifts of f : A → A to the universal covering space.

These are defined by Fm = Tm ◦ F where T : Ã → Ã is a generator of the group
of covering transformations. Recall that the loop hn(x, F ) in A is formed by the
paths γx and γfn(x) together with an arc from x to fn(x) which is the image under

π : Ã → A of an arc from a point x0 ∈ π−1(x) to Fn(x0). We can define a similar
loop using the lift Fm instead of F . More precisely let hn(x, Fm) denote the closed
loop in A obtained by concatenating the arc from the basepoint to x followed by

an arc from x to fn(x) which lifts to an arc in Ã from y to Fnm(y) followed by the
arc γfn(x) traced backwards from fn(x) to the basepoint.

For a full measure subset of the set K we can define hK(x, Fm) to be hn(x, Fm),
where n is the least positive integer such that fn(x) ∈ K. The function [hK(x, Fm)]
is then measurable and we will need the fact that it is integrable over K if and only
if hK(x, F ) is. To establish this fact we consider the sets Un ⊂ K consisting of all
x in K with the property that n is the smallest positive integer with fn(x) ∈ K.
Since they form a partition of K up to measure zero, to check integrability over K
it suffices to consider it over each Un and show that the sum over n of the integrals
converges absolutely.

We note that

∫
Un

[hK(x, Fm)]dµ =

∫
Un

[hn(x, Fm)]dµ

=

n−1∑
j=0

∫
fj(Un)

[h1(x, Fm)]dµ,

since

n−1∑
j=0

[h1(f j(x), Fm)] = [hn(x, Fm)].
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Hence ∫
Un

[hK(x, Fm)]dµ =
n−1∑
j=0

∫
fj(Un)

[h1(x, Fm)]dµ

=

n−1∑
j=0

∫
Un

[h1(f j(x), Fm)]dµ

=

n−1∑
j=0

∫
Un

([h1(f j(x), F )] +m)dµ

= nmµ(Un) +
n−1∑
j=0

∫
Un

[h1(f j(x), F )]dµ

= nmµ(Un) +

∫
Un

[hn(x, F )]dµ

= nmµ(Un) +

∫
Un

[hK(x, F )]dµ.

Since the sets f j(Un), for 0 ≤ j ≤ n − 1 are pairwise disjoint we conclude that
the sum

∑
n nµ(Un) converges (in fact to the measure of ∪i≥0f

i(K)). Hence it
follows that

∫
K

[hK(x, F )]dµ exists if and only if
∫
K

[hK(x, Fm)]dµ exists. In the
instance at hand our hypothesis is that the first of these integrals fails to exist
from which we conclude that

∫
K

[hK(x, Fm)]dµ fails to exist for all m. In particular
the functions [hK(x, Fm)] are unbounded. For definiteness we suppose they are
unbounded above. The other case can be treated similarly.

We will use this fact to conclude that for infinitely many m the lift Fm : Ã→ Ã
possesses a fixed point. The image of these points in A are all fixed and are all in
different Nielsen classes for f : A→ A.

Suppose to the contrary that Fm has a fixed point for only finitely many m. This
implies that some lift f1 : A1 → A1 of the homeomorphism f to a finite cover is

fixed point free. This is because the finite cover A1 is the quotient of Ã by some
covering translation T k and if f1 is the lift to A1 corresponding to Fp then a fixed

point for f1 would correspond to a point z ∈ Ã such that F (z) = T ik−p(z) for some
i and hence would be a fixed point of F−ik+p. Clearly no such z exists if p is chosen
so that Fp has no fixed points and k is chosen so large that Fjk+p has no fixed
points for any j.

Choose a negative value m0 less than any m for which Fm has a fixed point
and so that m0 is a multiple of k. Let G = Fm0

. By Lemma (1.3) (applied to
f1 : A1 → A1 which is fixed point free) there is a complete Riemannian metric on

A1 which lifts to a metric on Ã with the property that d(x,G(x)) > 1 for all x ∈ Ã.
Let ε > 0 be less than 1/2. Since K is compact by Proposition (1.2), there is an
N > 0 with the property that for each x ∈ A there is a ε-chain of length less than
N from the basepoint b0 to x and a ε-chain of length less than N from x to b0. Let
p be a fixed point of f : A → A, for example one of those which were inserted at
a puncture. Then perhaps enlarging N we can assume there is a ε-chain of length
less than N from the basepoint b0 to p and a ε-chain of length less than N from p
to b0.
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Choose b ∈ π−1(b0). If ε is sufficiently small each ε-chain in A will lift to a unique

ε-chain in Ã for G. For any compact set J in A there is a uniform upper bound, say
D, for the distance between the start and end of such a lift of an ε-chain for f of
length at most N which begins in J . We will consider the case that J = K∪{p, b0}.

We wish to construct two ε-chains for G: one from b to T r(b) for r > 0 and one
from b to T s(b) for s < 0. Let D0 be an upper bound for the length of the arcs γx
for x ∈ J. There is a constant C > 0 such that every loop in A of length D + D0

represents a homology class with size less than C (if we identify H1(A,R) with R).

To construct the first of the two desired ε-chains choose a point x ∈ K for which
[hK(x,G)] > 3C, Lift an ε-chain from b0 to x to one from b to a point y ∈ π−1(x).
Now hK(x,G) = π(Gn(y)) for some n and we extend the ε-chain by letting it be
the G orbit of y from y to Gn(y). Finally we extend the ε-chain further by lifting
an ε-chain from π(Gn(y)) to b0 to one starting at Gn(y) and ending at a point in
π−1(b0), i.e., T r(b) for some r. Since [hK(x,G)] > 3C and the two segments of
ε-chain on the two ends of the G orbit can each alter this homology class by at
most C we can conclude that r > C > 0.

The second desired ε-chain is easier to construct. Recall that G = Fm0
and

m0 < 0 is less than any m for which Fm has a fixed point. Since p is a fixed point
for f it follows that if q ∈ π−1(p) then G(q) = T a(q) for some a. If m0 is sufficiently
negative, a < 0. Hence Gn(q) = T an(q) for all n. For n sufficiently large that the
integer an is less than −3C we can use the G orbit of a point in π−1(p) for an
iterates together with ε-chains for G lifted from ε-chains from b0 to p and from p
to b0, to create a ε-chain from b to T s(b) where s < 0.

Concatenating |s| translates of copies of the first we can construct an ε-chain from
b to T r|s|(b). Similarly using r translates of copies of the second we can construct

an ε-chain from T r|s|(b) to b. This is then a periodic ε chain for G : Ã → Ã. It
then follows from Lemma (1.5) that we can alter f1 by an isotopy which can be

lifted to Ã giving a new map G′ : Ã→ Ã which has a periodic point. Since G′ has

a periodic point and Ã is homeomorphic to R2 it follows that G′ has a fixed point
by the Brouwer plane translation theorem ([F5] for example). But this gives rise
to a contradiction since (also by Lemma (1.5)) d(G(x), G′(x)) < 1/2 for all x so a
fixed point z for G′ would satisfy

d(G(z), z) ≤ d(G(z), G′(z)) + d(G′(z), z) < 1/2.

And this clearly contradicts the property that d(G(x), x) > 1 for all x established
above.

Thus we have contradicted the assumption that Fm : Ã → Ã has a fixed point
for only finitely many m. Hence there is an infinite collection of fixed points for

these lifts. These fixed points project under π : Ã→ A to fixed points for f . These
fixed points are all in different Nielsen classes for f : A → A as different lifts of f
fix their inverse image under π. Hence they are distinct points. Infinitely many of
them must be in M ⊂ A as A \M is finite. These will be fixed points in distinct
Nielsen classes for f : M →M.

�
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(3.4) Theorem. Let M be an open surface of finite type with negative Euler char-
acteristic and genus zero. Suppose f : M →M is a homeomorphism of the surface
M which is isotopic to the identity map and preserves a finite measure µ homeo-
morphic to Lebesgue measure. If there is a compact subset K ⊂ M with µ(K) > 0
such that Rµ(f,K) is non-zero then f has infinitely many periodic points.

Proof. The surface M is topologically a sphere with at least three punctures. We
want to construct a homeomorphism of an annulus A by compactifying all but two
of the punctures, i.e., to remove all but two of the punctures by adding a point
at each puncture to be removed. The homeomorphism f can be extended to a
homeomorphism g of A by making each of the added points be a fixed point. If P is
the set of these added fixed points then g : A→ A is isotopic to the identity relative
to the set P . Clearly g preserves a measure µ on A homeomorphic to Lebesgue
measure. It suffices to find infinitely many periodic points for the homeomorphism
g : A→ A.

If K is a compact set with Rµ(f,K) non-zero then there is a choice of the set
of punctures to fill in with the property that i∗(Rµ(f,K)) 6= 0 ∈ H1(A,R) where
i : M → A is the inclusion. Moreover i∗(Rµ(f,K)) = Rµ(g,K). We need to make
a comment about the definition of Rµ(g,K), since g is defined on the annulus A
and there is not a canonical isotopy from g to the identity (which was used in the
definition of rotation vector). Clearly the one to use is the extension to A of the
isotopy on M from f to the identity, or, in fact, any isotopy relative to P of g to
the identity.

Assume now that Rµ(g,K) is positive (we identify H1(A,R) with R). Then since
Rµ(g,K) =

∫
K

[hK(x)]dµ > 0 it follows from the ergodic decomposition theorem
that there is a Borel measure ν on A which is ergodic with respect to g and with∫
K

[hK(x)]dν > 0.
Let T : K → K be the first return map under g. Then by the Birkhoff ergodic

theorem

ρν = lim
m→∞

1

m

m−1∑
i=0

[hK(T i(x))] (1)

exists and is independent of x for ν almost all x ∈ K. Also this theorem asserts
that

0 < ρν =

∫
K

[hK(x)]dν = [hK(x)],

for ν almost all x ∈ K.
Now for each x ∈ K for which the limit above exists and equals ρν we can

consider the integer valued function n(m) defined by gn(m)(x) = Tm(x). It depends
on x. Note that if EK is the characteristic function of K then

n(m)∑
i=0

EK(gi(x)) =
m∑
j=0

EK(T j(x)) = m.

Hence

1

n(m)

n(m)∑
i=0

EK(gi(x)) =
m

n(m)
.
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Another application of the Birkhoff ergodic theorem tells us that

lim
n→∞

1

n

n∑
i=0

EK(gi(x)) = ν(K)

for ν almost all x and consequently

lim
m→∞

m

n(m)
= ν(K) (2)

for ν almost all x. We now define [hK(y)] to be 0 for y /∈ K (it is already defined
for y ∈ K) and observe that for a fixed x for which equations (1) and (2) above are
valid, we have

lim
n→∞

1

n

n−1∑
i=0

[hK(gi(x))] = lim
m→∞

1

n(m)

m−1∑
i=0

[hK(T i(x))]

= lim
m→∞

m

n(m)

1

m

m−1∑
i=0

[hK(T i(x))]

= ν(K)ρν > 0

for ν almost all x ∈ A.
Note that whenever y, gj(y) ∈ K and gi(y) /∈ K for 0 < i < j we have

[hK(y)] =

j−1∑
i=0

[h1(gi(x))].

From this it follows that whenever x, gn(x) ∈ K we have

n−1∑
i=0

[hK(gi(x))] =
n−1∑
i=0

[h1(gi(x))].

Thus if we define

Φ(x, n, g) =

n−1∑
i=0

[h1(gi(x), g)]

and consider any subsequence nj satisfying gnj (x) ∈ K we observe that for ν almost
all x ∈ A

lim
j→∞

1

nj
Φ(x, nj , g) = ν(K)ρν .

Of course the subsequences {nj} would be different for different values of x, but
such subsequences exist for ν almost all values of x.

There is a geometric interpretation of the quantity Φ(x, n, g). Let G : Ã→ Ã be
the lift of G to its universal covering space obtained by lifting our chosen isotopy
from g to the identity, i.e., G is the lift which fixes the lifts of the puncture points
we added to M to get A. Then Φ(x, n, g) is equal to (Gn(x0) − x0)1 where the
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subscript 1 indicates the first component in Ã = R × (0, 1) and x0 is a lift of the
point x.

Suppose now that p is a positive integer such that pν(K)ρν > 1 and {nj} is a
sequence satisfying gpnj (x) ∈ K. Then

lim
j→∞

1

nj
Φ(x, nj , g

p) = lim
j→∞

p
1

pnj
Φ(x, pnj , g) = pν(K)ρν > 1.

Hence

lim
j→∞

1

nj
(Gpnj (x0)− x0)1 = pν(K)ρν > 1.

If we define H : Ã → Ã to be the lift of gp given by H(t, s) = Gp(t, s) − (1, 0) for

(t, s) ∈ R× (0, 1) = Ã then

lim
j→∞

1

nj
(Hnj (x0)− x0)1 = pν(K)ρν − 1 > 0. (3)

If z0 = (t0, s0) is one of the fixed points of G in Ã then H(t0, s0) = (t0 − 1, s0).
Thus any sufficiently small disk around z0 will be a negatively returning disk for
H. Also if x was chosen to be a recurrent point for gp and the sequence nj chosen
so that lim gpnj (x) = x then it follows from equation (3) that any sufficiently small
disk containing x0 will be a positively returning disk for H.

It then follows from Theorem (1.4) that H has a fixed point and hence that g
has a periodic point. Clearly the rotation number with respect to g of this periodic
point is 1/p. Since p was any sufficiently large positive integer we conclude that g
has infinitely many distinct periodic points.

�

The mean rotation relative to a compact set K satisfies a result analogous to
Proposition (2.4), if we assume that one of the homeomorphisms is supported on
K.

(3.5) Proposition. Suppose f and φ are homeomorphisms of M which are isotopic
to the identity and preserve a finite measure µ homeomorphic to Lebesgue measure.
Suppose that K is a compact subset of M with µ(K) > 0 and φ(x) = x for all
x ∈M \K. Then

Rµ(φ ◦ f,K) = Rµ(φ,K) +Rµ(f,K),

if the two integrals in the right hand side of this equation exist.

Proof. Let g : K → K be the first return map with respect to f . It is defined for
a subset of K of full measure. Then the first return map for φ ◦ f is φ ◦ g since φ
is the identity outside K and φ(K) = K.

Note that if x ∈ K and n is the smallest positive integer such that fn(x) ∈ K,
(i.e., if fn(x) = g(x)) then

(φ ◦ f)n(x) = φ ◦ fn(x) = φ ◦ g(x).
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The loop hK(x, φ ◦ f) is equal to hn(x, φ ◦ f). It is homotopic to the concatenation
of the loops hn(x, f) and h1(fn(x), φ), which is the same as the concatenation of
the loops hK(x, f) and h1(g(x), φ).

Thus [hK(x, φ ◦ f)] = [hK(x, f)] + [h1(g(x), φ)], and∫
K

[hK(x, φ ◦ f)]dµ =

∫
K

[hK(x, f)]dµ+

∫
K

[h1(g(x), φ)]dµ.

Since g preserves µ, we can conclude that
∫
K

[h1(g(x), φ)]dµ =
∫
K

[h1(x, φ)]dµ. Also
[h1(x, φ)] = [hK(x, φ)], since the first return map for K under φ is φ itself. Hence∫

K

[hK(x, φ ◦ f)]dµ =

∫
K

[hK(x, f)]dµ+

∫
K

[hK(x, φ)]dµ,

or

Rµ(φ ◦ f,K) = Rµ(φ,K) +Rµ(f,K).

�

4. The Open Annulus

In this section we prove our main result, Theorem (4.4) below, that an area
preserving homeomorphism of the open annulus which is isotopic to the identity
and has at least one fixed point must have infinitely many.

We will consider the vector space H1(M,R) and arbitrarily choose a norm ‖ ‖

on it. If M̃ is the universal covering space of M we denote by F : M̃ → M̃ the

canonical lift of f which fixes the “ends at infinity” of M̃. We will identify Π1(M)
with the group of covering transformations for the universal cover. For any element
α ∈ Π1(M) we will denote the homology class it determines by [α].

(4.1) Lemma. Let M be a surface obtained by deleting k points from a sphere
where k > 2. Let µ be a finite measure homeomorphic to Lebesgue measure on M .
Suppose f : M → M is a homeomorphism which is isotopic to the identity and
preserves the measure µ. Suppose γ is an oriented embedded simple closed curve in

M. Let π : M̃ →M be the universal covering of M and let x0 ∈ M̃. Given ε, δ > 0
then either

i) f has a periodic point, or
ii) there exists a positive integer P , an element α ∈ Π1(M), and an ε-chain

for F : M̃ → M̃ from x0 to α(x0) satisfying∥∥∥∥[γ]−
[α]

P

∥∥∥∥ < δ.

The ε-chain can be with respect to any metric on M̃ obtained by lifting a
complete Riemannian metric on M.
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Proof. Let K be an annulus which is a tubular neighborhood of the embedded
curve γ. Construct a µ preserving flow φt on M supported in the interior of K and
with each non-trivial orbit a circle “parallel” to γ and oriented the same as γ. The
existence of such a flow is a consequence of the fact that up to homeomorphism µ
on K is equivalent to Lebesgue measure on a standard annulus of the same area.
It is then clear from the definition that Rµ(φt) = Rµ(φt,K) ∈ H1(M,R) is equal
to tk[γ] for some positive constant k.

We note that by Proposition (3.3), if Rµ(f,K) does not exist, then f has infin-
itely many fixed points so option i) of our conclusion holds. Hence we may assume
that Rµ(f,K) exists. Then by Theorem (3.4), if Rµ(f,K) 6= 0 it follows that f
has infinitely many periodic points so again option i) holds. Hence without loss of
generality we may assume that Rµ(f,K) = 0.

Choose s > 0 sufficiently small that d(φs(x), x) < ε/3 for all x ∈ M. Note
Rµ(φs) = Rµ(φs,K) = sk[γ].

By Proposition (3.5), if g = φs ◦ f , then Rµ(g,K) = sk[γ] +Rµ(f,K) = sk[γ].
Also d(g(x), f(x)) = d(φs(f(x)), f(x)) < ε/3. In other words any orbit segment for
g is a ε-chain for f.

The remainder of the argument is almost the same as the proof of (3.2) of [F4].
We give it for completeness and because the minor but frequent changes in the
proof would be difficult to enumerate. If we let T denote the first return map for
K under g and define

RK(x, g) = lim
N→∞

1

N

N−1∑
i=0

[hK(T i(x))]

then the Birkhoff ergodic theorem asserts that RK(x, g) exists for µ almost all
x ∈ K and ∫

K

RK(x, g)

skµ(K)
dµ = [γ].

This integral (like any integral) can be approximated by a weighted average of
values of the integrand. That is, there exist m points x1, x2, . . . , xm ∈ M and
positive constants bi such that∥∥∥∥∥[γ]−

m∑
i=1

biRK(xi, g)

∥∥∥∥∥ < δ

2
. (1)

We can, of course, assume that each bi is rational. Moreover, we can assume
that each xi is recurrent under T (and hence g) since by the Poincaré recurrence
theorem this is true for a set of full measure in K.

It follows then that for any yi ∈ π−1(xi) there is an arbitrarily long ε-chain for F
from yi to some translate αi(yi), αi ∈ Π1(M). This ε-chain is obtained by lifting g

to G : M̃ → M̃ and defining the ε-chain to be yi, G(yi), G
2(yi), . . . , G

k−1(yi), αi(yi),
where k is chosen so that d(gk(xi), xi) < ε/6 and the last point on the chain, αi(yi),
is within ε/6 of Gk(yi) and so that gk(xi) ∈ K so gk(xi) = T j(xi) for some j. We
denote this ε-chain by Di.

If j (and hence k, the length of Di) is sufficiently large then∥∥∥∥ [αi]

j
−RK(xi, g)

∥∥∥∥ < δ

2mbi
.
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If we concatenate Di with an appropriate translate of itself n times we obtain an
ε-chain for F , denoted Di(n), from yi to αni (yi), with length nk and such that∥∥∥∥ [αni ]

jn
−RK(xi, g)

∥∥∥∥ < δ

2mbi

or, ∥∥∥∥ qi[α
n
i ]

len(Di(n))
−RK(xi, g)

∥∥∥∥ < δ

2mbi
, (2)

where qi = k/j.
If x0 is any point in K then by (1.2) there is an ε-chain for f from x0 to xi and

one from xi to x0. Choosing lifts of these to ε-chains for F in M̃ we can obtain
an ε-chain from some point zi ∈ π−1(x0) to yi and from αni (yi) to some covering
translate of zi. Since the choice of the starting point yi ∈ π−1(xi) of Di and Di(n)
was arbitrary, we can assume they were chosen so that zi = y0 for some y0 ∈ π−1(x0)
independent of i. If we concatenate the ε-chain from y0 to yi with Di(n) and then
with the ε-chain which is a lift of the one for f from xi to x0 we obtain an ε-chain
for F which we denote Ci(n), from y0 to a translate of y0 (say by the element
βi(n) ∈ Π1(M)), with several desirable properties. First len(Ci(n))− len(Di(n)) is
bounded above by a constant independent of n and i, since this difference is just
the sum of the lengths of the ε-chain for f from x0 to xi and the one from xi to
x0. Thus from the definition of βi(n) it follows that ‖[βi(n)] − [αni ]‖ has an upper
bound independent of n and i. From these two facts it follows that

lim
n→∞

[βi(n)]

len(Ci(n))
= lim
n→∞

[αni ]

len(Di(n))
.

It then follows from (2) that if we choose n0 sufficiently large, then∥∥∥∥ [qiβi(n0)]

len(Ci(n0))
−RK(xi, g)

∥∥∥∥ < δ

2mbi
, (3)

for all 1 ≤ i ≤ m.
Let P be a large integer chosen so that Bi = Pbiqi/len(Ci(n0)) is an integer for

1 ≤ i ≤ m. Then multiplying the inequality (3) by Pbi gives

‖Bi[βi(n0)]− PbiRK(xi, g)‖ <
Pδ

2m
,

for all 1 ≤ i ≤ m.
Hence ∥∥∥∥∥

m∑
i=1

Bi[βi(n0)]− P
m∑
i=1

biRK(xi, g)

∥∥∥∥∥ < Pδ

2
. (4)

If we concatenate each of the ε-chains Ci(n0) with themselves Bi times and con-
catenate the resulting ε-chains in order as indexed by i, we obtain an ε-chain for F
from y0 to α(y0) where

α = Πm
i=1βi(n0)Bi ,
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so [α] =
∑m
i=1Bi[βi(n0)]. Dividing equation (4) by P we get∥∥∥∥∥ [α]

P
−

m∑
i=1

biRK(xi, g)

∥∥∥∥∥ < δ

2
,

which together with equation (1) implies∥∥∥∥[γ]−
[α]

P

∥∥∥∥ < δ.

�

(4.2) Lemma. Let M be a surface obtained by deleting k points from a sphere
where k > 2. Let µ be a finite measure homeomorphic to Lebesgue measure on
M . Suppose f : M → M is a homeomorphism which is isotopic to the identity

and preserves the measure µ. Let M̃ be the universal covering space of M and let

x0 ∈ M̃. Given ε, δ > 0, then either

i) f has a periodic point, or

ii) there exists an element α ∈ Π1(M), and an ε-chain for F : M̃ → M̃ from
x0 to α(x0) satisfying [α] = 0 ∈ H1(M). The ε-chain can be with respect to

any metric on M̃ obtained by lifting a complete Riemannian metric on M.

Proof. Choose a set of oriented embedded simple closed curves {γi} such that 0
is in the interior of the convex hull of {[γi]} in H1(M,R). By Lemma (4.1), applied
to each γi, either f has a periodic point or there exist Pi and αi with an ε-chain for
F from x0 to αi(x0) such that 0 is in the interior of the convex hull of {[αi]/Pi} in
H1(M,R). From this it follows that 0 is in the interior of the convex hull of {[αi]}
or equivalently there are positive integers ni such that∑

i

ni[αi] = 0.

We now concatenate n1 translates of the ε-chain corresponding to α1 to give
an ε-chain from x0 to αn1

1 (x0). We follow this with n2 translates of the ε-chain
corresponding to α2 (starting at αn1

1 (x0) and ending at αn2
2 αn1

1 (x0)) etc. When
this is all done we have a ε-chain from x0 to α(x0) where

α = Πiα
ni
i

and hence
[α] =

∑
i

ni[αi] = 0.

�

We can now state and prove our main result.
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(4.4) Theorem. Let µ be a finite measure homeomorphic to Lebesgue measure on
the open annulus A = S1 × (0, 1). Suppose f : A → A is a homeomorphism which
preserves the measure µ. If f has one periodic point then in fact it has infinitely
many periodic points.

Proof. Since some power of f will be isotopic to the identity and proving this result
for f is the same as proving it for some positive iterate, we can assume without loss
of generality that f is isotopic to the identity map on A.

We will argue by contradiction, assuming f has finitely many periodic points
and then proving the existence of at least one more. If f has finitely many periodic
points then there is a positive integer n such that fn has finitely many fixed points
(at least one) and no other periodic points.

Since proving our theorem is equivalent to proving it for fn we can, without loss
of generality, assume that f has a finite, non-empty fixed point set and no other
periodic points.

Let M denote A with all these fixed points deleted. M is topologically a sphere
with finitely many (at least three) punctures. Both the measure µ and the home-
omorphism f restrict to M and will be denoted in the same way they were for A.
Clearly any periodic points of f : M →M are periodic points for f : A→ A.

It follows from Proposition (3.1) of [F4] that there is an m so that fm : M →M
is isotopic to the identity. So, again replacing f with fm, we may assume without
loss of generality that f is isotopic to the identity on M.

Using Lemma (1.3), choose a Riemannian metric so that d(F (x), x) > 1 for all

x and choose ε < 1, where F : M̃ → M̃ is the canonical lift of f to its universal
cover.

By Lemma (4.2) either f has a periodic point (a contradiction) or for this Rie-
mannian metric on M and this ε there exists an element α ∈ Π1(M), and an ε-chain

for F : M̃ → M̃ from x0 to α(x0) satisfying [α] = 0 ∈ H1(M). We will show that
this also leads to a contradiction.

Clearly the projection of the ε-chain for F into M via the covering map gives
an ε-chain for f : M → M. Applying Lemma (1.5) to this, we obtain a new

map g = h1 ◦ f̃ with the property that the canonical lift G : M̃ → M̃ satisfies

Gn(y0) = α(y0) for some n > 0 and y0 ∈ M̃ near to x0.
This implies that y, the projection of y0 in M , is a periodic point of of g of period

n. The homeomorphism G has no fixed points since by the triangle inequality

d(G(z), z) ≥ d(F (z), z)− d(G(z), F (z)) ≥ 1− ε > 0

for all z ∈ M̃. Also since [α] = 0 ∈ H1(M) it follows that the homological rotation
vector R(y, 0) = 0 ∈ H1(M,R). But this contradicts Proposition (2.5). �

Theorem (4.4) was claimed in [F4] for both the open and closed annulus. But the
proof given there contained a gap in the case of the open annulus. It was valid for the
closed annulus. The error in that proof was the assumption that the mean rotation
vector for an annulus homeomorphism always exists (this assumption is true for the
closed annulus). The author also wishes to take this opportunity to point out that
the same error occurs in Corollary (2.3) of [F2] which claims that given any area
preserving homeomorphism of the open annulus isotopic to the identity there is a
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dense set of rigid rotations such that the given composition of one of these rotations
followed by the given homeomorphism will have a periodic point. The proof given
is valid only if the mean rotation vector of the given homeomorphism exists and
the validity of the general case is unknown to the author.
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