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Abstract. Various researchers have studied examples of infinite-dimensional
dynamical systems. In most of the cases, the phase space consisted of a Hilbert
or Banach space or a Frechet space of functions. In this article we propose to
study a dynamical system, namely the geodesic flow, over more structurally
complex manifolds, the tangent bundles of a family of Hilbert Grassmannians.
Using the high degree of symmetry of the spaces and the methods of Thimm
[9] and Ii and Watanabe [3] we prove that the geodesic flow is integrable. In
the process we determine a spectral invariant á la Moser [5] which completely
describes the behavior of the geodesics of the Hilbert Grassmannians. As a
result we demonstrate the difference in complexity between the various ranked
Hilbert Grassmannians.
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1. Introduction

When attempting to understand the behavior of dynamical systems one can
look for invariants of the dynamical system in order to understand for example the
topology of the solution set. As a basic example consider the behavior of a point
particle P in a Newtonian central gravitational field in a plane. The differential
equation describing its behavior would be

d2−→x
dt2

= − k−→x
||−→x ||3(1)

where k is a constant and −→x denotes the vector from the origin of the gravita-
tional well to the point particle P . This system can be realized as a Hamiltonian
system with Hamiltonian the total “energy” of the system, namely, H(−→x , −̇→x ) =
||−̇→x ||2 − k/||−→x ||. The “total energy” is trivially an invariant function of the
system. Another invariant function is the “angular momentum” of the system,
A(−→x , −̇→x ) = x1ẋ2−x2ẋ1. The intersection of the level sets of H = c < 0 and A �= 0
are compact. Arnold’s Theorem (see [1]) states that if (−→x , −̇→x ) belongs to such a
compact intersection of level sets then the solution of (1) with initial conditions
(−→x , −̇→x ) corresponds to a linear trajectory mapped onto a 2-torus.

For a dynamical system which can be realized as a Hamiltonian system over
a symplectic manifold M with sufficient invariant independent functions, Arnold’s
Theorem is a very powerful tool for describing the behavior of the dynamical system.
However, Arnold’s Theorem does not apply to Hamiltonian systems with infinite
degrees of freedom. A more delicate analysis is required for studying such systems.

Some well-known and deeply studied dynamical systems such as the Korteweg-de
Vries equation, the Sine-Gordon equation, Schrödinger’s equation can be realized
as arising from a Hamiltonian for an appropriate Hilbert/Banach/Frechet space of
functions over R. In each case, the base manifold is a vector space of functions. For
our case our base manifolds will more complex manifolds which will in some sense be
the simplest non-trivial manifolds which have an extensive list of properties such as
complex structures, Riemannian metrics, well-defined curvature forms, exponential
maps, etc.

Few examples of non–trivial integrable Hamiltonian systems existed until Thimm
[9] determined an algorithm for demonstrating for a large class of symmetric spaces
that their geodesic flow is integrable. Thimm’s method is to consider a manifold
M for which there exists a so–called momentum map μ : TM → G, where G is a
Lie algebra for a Lie group G. Thimm explicitly demonstrates once a Lie algebra
is equipped with an inner product, the space of functions C∞(G) admits Poisson
structure. Moreover, Thimm demonstrated that his momentum map is a Poisson
map for which the flow generated by the pullback of any function commutes with the
geodesic flow. Thus, Thimm had reduced the problem of finding sufficient invariant
functions of the geodesic flow to finding functions of G which Poisson commute, a
much easier problem to consider.

We demonstrate in Section 4 that Thimm’s method can be extended to our case,
but at the price of weakening our definition of complete integrability. As in Arnold’s
Theorem, Thimm’s method does not in general work on Hilbert symmetric spaces
without some careful consideration of the essential difference between finite dimen-
sional manifolds and Hilbert manifolds. The main problem is in demonstrating
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how a set of linearly independent vectors span a Hilbert space. The proof is trivial
when the Hilbert space is of dimension n < ∞ and the set consists of n vectors by
the pigeonhole principle. The pigeonhole principle will not work, however, when
dealing with sets of the same infinite cardinality.

Another useful set of invariants (when they exist) for studying dynamical systems
is Moser’s iso-spectral deformations. Basically, for certain Hamiltonian systems, one
can construct an associated matrix-valued function whose eigenvalues are invariants
of the Hamilton flow. In our particular case, because our spaces are symmetric
spaces, we can represent an arbitrary geodesic in the form

γ(t) := exp(tξ)

where ξ is a skew-Hermetian Hilbert-Schmidt matrix and exp is the classical matrix
exponential function. In Section 5, we exhibit the spectrum of ξ as an invariant of
the geodesic flow.

In the process of demonstrating the integrability of the geodesic flow and the
existence of a spectral invariant, we will also prove in Section 6 that every function
which Poisson-commutes with the Energy Hamiltonian can be factored through the
moment map. In this fashion we determine that the only method of demonstrating
complete integrability of the geodesic flow for our manifolds is Thimm’s method.

Lastly, as a method of exhibiting the fundamental difference between the finite
rank and the infinite rank Hilbert Grassmannians, we determine in Section 7 the
conjugate points along geodesics of the two types of Hilbert Grassmannians. We
determine that the topology of the infinite rank Grassmannians, while locally dif-
feomorphic to that of the the finite rank Grassmannians, is fundamentally more
complex in a global sense than the topology of the finite rank Grassmannians.

For background information on Hilbert/Banach manifolds we recommend [7].
For Thimm’s and Ii and Watanabe’s algorithms we recommend [9] and [3].

We will define our family of Hilbert Grassmannians as coset spaces for a Hilbert
Lie group and a Banach/Hilbert Lie group.

Definition 1.1. For (H, 〈 , 〉) a separable infinite-dimensional complex Hilbert space,
we denote the group of unitary operators of the form I + X , X Hilbert-Schmidt,
as UHS(H).

Let H = H+ ⊕ H− denote a polar decomposition of H, where both H− and
H+ are closed, infinite-dimensional subspaces of H . With respect to the polar
decomposition any linear operator A : H → H can be decomposed into 4 maps,

A−− : H− → H− A−+ : H− → H+ A+− : H+ → H− A++ : H+ → H+.

Our second group, denoted in [8] as Ures, consists of the set of unitary operators
{g| g++, g−− Fredholm and g−+, g+− Hilbert-Schmidt}.

We mention in passing that UHS(H) is a Hilbert manifold modelled on its Lie al-
gebra, the set UHS(H) of skew-Hermetian Hilbert-Schmidt operators, while Ures is
a Lie group modelled on its Lie algebra, a direct sum of a closed subalgebra L of the
Banach space of skew-Hermetian bounded linear operators {A : H → H, A∗ = −A}
and a closed subspace M of UHS(H). L and M satisfy the commutator relations

[L,M] ⊆ M [M,M] ⊆ L.
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Definition 1.2. The family of Grassmannians will consist of the set of r-planes in
H denoted as Gr(r, H), and the Grassmannian Gr(H) will be the image of UHS(H)
as UHS(H) · H+ in the set of planes in H isomorphic to the base plane o = H+.

2. Symplectic Geometry

In this section we will define and state the necessary properties for symplectic
structures and integrability conditions for Hilbert manifolds.

Definition 2.1. A symplectic Hilbert space (H, ω) is a real separable Hilbert space
(H, 〈 , 〉) together with a continuous, bilinear, non-degenerate, skew-symmetric form
ω. By non-degenerate we mean that if 0 �= x ∈ H, then ∃y ∈ H such that ω(x, y) �=
0.

Remark 2.1. This definition is a natural generalization of finite dimensional sym-
plectic spaces which takes into account the topology of the Hilbert space. Moreover,
every infinite-dimensional separable Hilbert space can be given a (non-canonical)
symplectic structure by choosing a conset basis denoted by {ei, fi} and setting
ω(ei, fj) = δij , ω(ei, ej) = 0, ω(fi, fj) = 0.

Observe also that with this definition that the symplectic structure ω can be
represented as 〈A , 〉 where A is a continuous skew-symmetric operator with dense
range.

Definition 2.2. A set
⋃∞

i=1{ei, fi} is called a symplectic basis for H if
1. The set is a Schauder basis for H and
2. ω(ei, fj) = δij , ω(ei, ej) = ω(fi, fj) = 0

Remark 2.2. For a symplectic Hilbert space we can always construct a symplectic
basis from a conset basis by means of a modified Gram-Schmidt algorithm.

Now that we have defined a symplectic Hilbert space and its attendant properties
we can define a symplectic Hilbert manifold.

Definition 2.3. A symplectic Hilbert manifold is a pair (M, ω) where M is a
Hilbert manifold and ω is a smooth, closed, non-degenerate, bilinear skew sym-
metric 2-form.

Since so many of the theorems of finite-dimensional manifolds such as the exis-
tence of a Riemannian metric are not automatically guaranteed to exist for Hilbert
manifolds, one can ask if there are any examples of symplectic Hilbert manifolds
other than (H, ω).

The answer surprisingly is yes, there are plenty of examples. Choose any Hilbert
manifold N modelled on a Hilbert space H . Let T ∗N denote the cotangent bundle of
N , which is a well-defined Hilbert manifold in its own right. For p ∈ N let U denote
a coordinate neighborhood with coordinates (xi). Let (yi) denote a coordinate
system for H . Since T ∗U ∼= U ×H then (xi, yi) is a coordinate system for T ∗U . We
can now define the so-called canonical 1-form θ ∈ T ∗T ∗N locally by θ :=

∑
yidxi.

Because N is modelled on a Hilbert space we have that θ is a well-defined smooth
1-form. By taking the exterior derivative we have that ω := dθ is a closed 2-form
locally represented by ω =

∑
dyi ∧ dxi which is clearly non-degenerate.
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Remark 2.3. The 1-form θ and the 2-form ω := dθ could be defined as well for
the cotangent bundle of a Banach manifold modelled on a separable Banach space
X which admits a Schauder basis {ei}. The only difference would be that the
coordinates (xi) would be with respect to the the Schauder basis and the coordinates
(yi) would be with respect to the dual of the Schauder basis, {e′i}.
Remark 2.4. If the skew-symmetric, continuous operator A which represents the
symplectic structure ω for a symplectic Hilbert space (H, ω) is invertible then we
can define an isomorphism between H and its dual H ′ via

iω : H → H ′, iω(X) := ω(X, ), X ∈ H.

For a symplectic Hilbert manifold (M, ω) if the tensor A which represents the
symplectic structure ω is invertible then TM and T ∗M are isomorphic similarly by
the isomorphism

iω : TM → T ∗M, iω(X) := ω(X, ), X ∈ TM.

In the case when M = T ∗N for a Hilbert manifold N , from the above construc-
tion of ω, we see that TM ∼= T ∗M .

For a symplectic manifold (M, ω) if TM ∼= T ∗M through iω then we can define
a Hamiltonian field as follows:

Definition 2.4. Let f ∈ C∞(M). We call ξf := i−1
ω (df) a Hamiltonian field, with

Hamiltonian f .

Remark 2.5. Just as we can define an isomorphism between the tangent and
cotangent bundles of a symplectic Hilbert manifold M of the form M = T ∗N
we can define an isomorphism between TN and T ∗N if N admits a Riemannian
metric g compatible with its topology.

For our purposes, our symplectic Hilbert manifolds will be the tangent bundles
of our Grassmannians which will be given a symplectic structure through the iso-
morphism of the tangent and cotangent bundles of our Grassmannians via their
Riemannian metrics.

For the properties of the flows generated by Hamiltonian fields as well as the
Poisson structure generated by a symplectic structure we refer the reader to [4].

Definition 2.5. Let M, N be manifolds with Poisson-structures { , }M and { , }N .
A map μ : M → N is a said to be a Poisson-map if

{μ∗f, μ∗g}M = μ∗{f, g}N ∀f, g ∈ C∞(N)

Remark 2.6. It well-known that every real Lie algebra G with inner product 〈 , 〉
admits a Poisson structure by the construction:

{f, g}(x) := 〈x, [grad f |x, gradg|x]〉, f, g ∈ C∞(G).

Definition 2.6. Let (M, ω) be a symplectic Hilbert manifold and let

{ , } : C∞(M) × C∞(M) → C∞(M)

denote the Poisson structure generated by the symplectic structure ω. If M admits
a Riemannian metric g compatible with its Hilbert structure, then we will define
the Hamiltonian H0 to be completely integrable if there exists a set of functions
{Hi}∞1 so that:
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1. {Hi, Hj} = 0 ∀i, j and
2. {ξHi}∞i=1 ∪ {gradHi}∞i=1 forms a spanning set of TM on a dense subset E of

M.

Definition 2.7. Let (N, g) be a Riemannian Hilbert manifold. For the symplec-
tic Hilbert manifold TN we can define the so-called kinetic energy Hamiltonian
H ∈ C∞(TN) by

H(x, v) := gx(v, v), v ∈ TxN

It is well-known (see for example [4]) that the flow generated by the Hamiltonian
field for the kinetic energy Hamiltonian is the image of the sets of geodesics of N in
TN of the form (γ(t), γ′(t)). For this reason the flow generated by this Hamiltonian
field is called the geodesic flow.

3. Symmetric Spaces and Moment Maps

Since the action of UHS(H) on Gr(r, H) is transitive we can give Gr(r, H) the
structure of a symmetric Hilbert manifold. We can give our Hilbert Grassmannians
the structure of symmetric spaces as follows: Let Hr denote a fixed plane of dimen-
sion r and H⊥

r its orthogonal complement in H . Since UHS(H) acts transitively
on Gr(r, H) and the isotropy group for Hr is isomorphic to U(r)×UHS(H⊥

r ) then
Gr(r, H) ∼= UHS(H)/U(r) × UHS(H⊥

r ). For notational convenience we will denote
U(r) × UHS(H⊥

r ) simply as Lr.
We can define a bi-invariant Hilbert metric 〈x, y〉 := −tr(xy) x, y ∈ UHS(H)

for UHS(H) for which we can decompose UHS(H) into the orthogonal sum

UHS(H) = Mr ⊕ Lr

where Lr is the Lie algebra of Lr and Mr is its orthogonal complement. Note that
Mr and 〈 , 〉Mr are Ad(Lr)-invariant.

With respect to a conset basis {ei}∞i=1 for H with {ei}r
i=1 ∈ Hr and {ei}∞i=r+1 ∈

H⊥
r an element v ∈ Mr is represented by a skew-Hermetian Hilbert-Schmidt oper-

ator of the form: (
0 X

−X∗ 0

)
.

An element v ∈ Lr is represented by a skew-Hermetian Hilbert-Schmidt operator
of the form: (

X 0
0 Y

)
.

For an arbitrary point x = [gLr], TxGr(r, H) can be identified with the horizontal
component

T hor
gl UHS(H) = Mr of TglUHS(H)

for arbitrary l ∈ L. For u ∈ TxGr(r, H) any 2 elements u1 ∈ T hor
gl1

UHS(H), u2 ∈
T hor

gl2
UHS(H) which correspond to u are related by u2 = Ad(l−1

2 l1)u1.
For (p, z) ∈ TpGr(r, H) let p = [gLr] denote the coset corresponding to p. Let

(gl, u) ∈ TUHS(H) denote a representation of (p, z). Then

μr(p, z) = Ad(gl)u.
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If (gl1, u1) and (gl2, u2) both correspond to (p, z) then a quick computation

Ad(gl2)u2 = Ad(gl2)Ad(l−1
2 l1)u1 = Ad(gl1)u1

shows that μr is a well-defined map.
We can similarly give the Hilbert Grassmannian Gr(H) a symmetric space struc-

ture. We can consider the isotropy group of H+, namely U(H+) × U(H−) ⊂ Ures.
We denote the Lie subalgebra of U(H+) × U(H−) as L. Even though Ures is not
a Hilbert-Schmidt Lie algebra we can define a Hilbert inner product for any two
elements of Ures which are Hilbert-Schmidt as in UHS(H). We define M to be the
“orthogonal” complement of L in the sense that with respect to the polar decom-
position H = H+⊕H− any element of v ∈ M is a skew-Hermetian Hilbert-Schmidt
operator of the form: (

0 X
−X∗ 0

)
and any element of v ∈ L is a skew-Hermetian bounded operator of the form:(

X 0
0 Y

)
.

Similarly, we define a moment map μ : TGr(H) → UHS(H)
Because it will help elucidate why we had to weaken our definition of integrability

for our Hilbert Grassmannians we compute for f ∈ C∞(UHS(H)), gradμ∗f, ξμ∗f ∈
Mr ×Mr.

With respect to a representation (g, u) ∈ T horUHS(H) for (p, v) ∈ TGr(r, H):

gradμ∗f |(p,v) = ([u, Ad(g−1)grad f |μ(p,v)]Mr , (Ad(g−1)grad f |μ(p,v))Mr )

ξμ∗f |(p,v) = ((Ad(g−1)grad f |μ(p,v))Mr ,−[u, Ad(g−1)grad f |μ(p,v)]Mr)

4. Integrability of the Geodesic Flow

It’s well-known that there exists no measure similar to Lebesgue measure for
infinite-dimensional vector spaces. However, by appealing to our intuitions it is
true that the union of a countable collection of submanifolds of codimension at
least one is at best dense in a Hilbert manifold M and that the complement is
at least dense in M . This will be the key idea in our proof of integrability. The
collection of points where the Hamiltonian fields will fail to be linearly independent
is essentially the countable union of the tangent bundles of sub-Grassmannians.

By choosing a conset basis {ei} for H we can construct as in Thimm’s algorithm
an ascending chain of Lie algebras

U(1) ↪→ U(2) ↪→ . . . ↪→ UHS(H)

with corresponding orthogonal projection operators Ps : UHS(H) → U(s), and
Poisson-commuting functions {f ′

st : UHS(H) → R},

f ′
st(x) = ittr(Ps(x)t), with

{
1 ≤ t ≤ min{s, 2r}, s < ∞
t = 2, 4, . . . , 2r when s = ∞

For our theorem we need an explicit computation of grad f ′
st:

grad f ′
st = titPs(x)t−1
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Let fst denote the pullback under the map μr of f ′
st. We define for n > r

An : TGr(r, H) → hom(R2rn, TTGr(r, H)) to be the matrix-valued function whose
columns are the Hamiltonian fields and gradient fields for the subset

{fst | s ≤ n − 1} ∪ {fnt | t = 2, 4, . . . , 2r}.
Let Vn denote the range of An. Let A∞ denote the formal limit limn→∞ An and V
the range of A. Then we have the following theorem:

Theorem 4.1. There exists a dense subset S of TGr(r, H) for which

span{ξfst |(x,v), grad fst|(x,v)} = T(x,v)TGr(r, H)

for (x, v) ∈ S.

Proof. In proving the kinetic energy Hamiltonian H0 for TGr(r, H) is integrable,
the second step is to show that

span{ξfst(x, v)}∞i=0 ∪ {gradfst(x, v)}∞i=0 = T(x,v)TGr(r, H)

or equivalently that V is dense for a dense subset of TGr(r, H).
Unfortunately a direct proof for the second step as in Thimm’s proof by using

the analyticity of A∞ and demonstrating for one point that A∞ is invertible will
not work for our case. The difficulty lies in the fact that for every point z ∈ U(n) we
have gradf ′

st(z) ∈ U(n). For any point (x, v) ∈ TGr(r, H) such that μ(p, v) ∈ U(n)
for some n we have necessarily that

span{ξfst(x, v)}∞i=0 ∪ {gradfst(x, v)}∞i=0

is finite-dimensional. Among the points where A∞ fails to have dense range are
points in the tangent bundles of sub-Grassmannians Gr(r, q). Unfortunately, the
set
⋃∞

q=1 TGr(r, q) is dense in TGr(r, H).
Paradoxically, we can use the fact that the set

⋃∞
q=1 TGr(r, q) is dense in TGr(r, H)

to generate the dense set of points where A∞ has dense range as follows: From the
inclusion U(1) ↪→ U(2) ↪→ . . . ↪→ UHS(H) we can define the inclusions

Gr(r, 1) ↪→ Gr(r, 2) ↪→ . . . ↪→ Gr(r, H) and Mr1 ↪→ Mr2 ↪→ . . . ↪→ Mr

Let {bi}∞i=1 denote a conset basis for Mr such that {bi}2rn
i=1 is a basis for Mrn. Let

p ∈ TGr(r, H) and ε > 0 be arbitrary. Since
⋃∞

q=1 TGr(r, q) is dense in TGr(r, H)
we know there exists a point p0 ∈ TGr(r, n1) within an ε-ball of p for some n1 ≥ r.

From Thimm’s result we know there exists a point p1 ∈ TGr(r, n1) arbitrarily
close to p0, say d(p1, p0) < (ε − d(p, p0))/4 such that An1(p1) is invertible.

Unlike A∞, An1 is a smooth-valued function. Hence there exists a δ1-ball U1

around p1 within TGr(r, H) such that for q ∈ U1, An1 is invertible and the range
of An1 is close to Mrn1 ×Mrn1 in the sense that

ε1 := sup{||(bi, 0) − projVn1
(bi, 0)||, ||(0, bj) − projVn1

(0, bj)|| | i, j ≤ 2rn1}
is less than ε/n1.

We proceed by induction to generate a sequence of δ-balls U1 ⊃ U2 ⊃ . . . and a
Cauchy sequence (pi) → p∞ with the properties:

• δn+1 < δn/4
• pi ∈ Ui

• d(pi+1, pi) < δn/2
• d(p∞, p) < ε
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• For q ∈ Un, An(q) is invertible, and
• For q ∈ Un,

εn := sup{||(bj, 0) − projVn(bj , 0)||, ||(0, bk) − projVn(0, bk)|| | j, k ≤ 2rn}
is less than ε/n.

With these properties we have p∞ ∈ ∩∞
i=1Ui �= ∅, d(p∞, p) < ε, and An(p∞) is

invertible for all n ≥ n1.
We claim that V is dense in Tp∞TGr(r, H) for p∞. Suppose not. Then there

exists an x ∈ Tp∞TGr(r, H) orthogonal to V with ||x|| = 1. Now x =
∑

αi(bi, 0)+∑
βj(0, bj) for some �2 sequences (αi), (βj). Let xn := projMrn×Mrnx. We know

that ||xn|| ↗ 1 and ||x − xn|| ↘ 0. So there exists an n such that

||x − xn|| < min{1/2, ||xn|| ||x − xn||}.

We choose an i sufficiently large such that εi < ||x− xn||/
√

4rn and ni > n. Let
u′ := projVni

u Let x̂ :=
∑j=2rn

j=1 αj(bj , 0)′ +
∑k=2rn

k=1 βk(0, bk)′. We have

||x̂ − xn||2 ≤
j=2rn∑
j=1

α2
j ||x − xn||2/4rn +

k=2rn∑
k=1

β2
k||x − xn||2/4rn

= ||xn||2||x − xn||2.
If x were orthogonal to V then

||x − x̂|| =
√
||x||2 + ||x̂||2

=
√

1 + ||x̂||2
≥ 1.

But,

||x − x̂|| ≤ ||x − xn|| + ||xn − x̂||
≤ ||x − xn|| + ||xn|| ||xn − x||
< 2||x − xn||
< 1.

Hence x could not be orthogonal to V . Therefore V has dense range for p∞.
Since p and ε were arbitrary, there exists a dense set S ⊂ TGr(r, H) for which
span{ξfst |q, gradfst|q} = TqTGr(r, H), q ∈ S. �

Remark 4.1. For TGr(H) the proof is similar except

• we compose μ with an isometry φ : UHS(H) → UHS(H) in order to demon-
strate points where A has dense range.

• The set of Poisson-commuting functions consist of

fst = f ′
st ◦ φ ◦ μ,

{
t ≤ 2s s < ∞
t = 2, 4, . . . s = ∞
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5. A Spectral Invariant of Geodesics

We begin by recalling two properties of symmetric spaces we need:
1. if K is a closed subalgebra of UHS(H) ⊂ Ures then exp(K) is a totally geodesic

subgroup of UHS(H) ⊂ Ures and
2. if K ⊂ M then π ◦ exp(K) is a totally geodesic submanifold of Gr(H).
Let {fi}n

i=1 ⊂ C∞(M) be a maximal set of non-degenerate Poisson-commuting
functions for a symplectic manifold M . It is well-known ([1]) that the Hamiltonian
fields {ξfi} generate a locally-injective action α : R

n ×M → M with α(0, ) = idM

which preserves the level sets of {fi}.
Let p ∈ M and U a connected component of

⋂
fi

−1(fi(p)) containing p. If U is
compact then the map αp := α( , p) : R

n → U has a discrete kernel lattice K with
a basis we denote as {ei}n

i=1. By defining an equivalence relation ∼ on R
n

x, y ∈ R
n x ∼ y ⇔ x − y ∈ K

we can define a projection π : R
n → T n and factor αp through a diffeomorphism

α∗
p : T n → U .
Moreover, the flows {φi} generated by the {fi} correspond to the images of lines

in R
n projected onto T n. Let Li denote the line in R

n which corresponds to φi with
φi(0) = p. Let (xi) = (ait) denote a parameterization of Li with respect to the
basis {ei}. Let mi denote the size of the largest subset of {ai} which is rationally
independent. Then the closure of the image of φi beginning at p is an mi torus.

Under certain conditions we can generalize the above results to symplectic Hilbert
manifolds.

Definition 5.1. Let H be a separable real Hilbert space. Let {ei} be a topological
basis for H . We define an equivalence relation ∼ via

x, y ∈ H, x − y =
∑

niei ni ∈ Z

We define a Hilbert torus TH as TH = H/ ∼.

Suppose {fi} is a maximal set of non-degenerate Poisson-commuting functions
of a symplectic Hilbert manifold M . Let p ∈ M and U the path component of⋂

fi
−1(fi(p)) which contains p. Suppose as well that the flows generated by the

Hamiltonian fields of the {fi} generates an action α : H × U → U for some real
separable Hilbert space H . If the action has a kernel K whose basis {ei} is a
topological basis for H then we can factor αp := α( , p) : H → U through a
diffeomorphism αp

∗ : TH → U .
For the symplectic Hilbert manifold Gr(H) we can define an analogous action

by a Hilbert torus. We begin by first defining a real separable Hilbert space:

Lemma 5.1. For every x ∈ M there exists a maximal abelian subalgebra of M
which contains x.

Proof. The proof consists of an application of Zorn’s lemma: Let ≺ denote a
partial ordering on the set A of abelian subalgebras of M which contain x where
U ≺ V ⇔ U ⊆ V . Let A1 ≺ A2 ≺ . . . , be a chain. Let A∞ :=

⋃
Ai. Then A∞

is a maximal element such that Ai ≺ A∞ for all i. For x �= 0, defining A1 = Rx
demonstrates the non-emptiness of the set A. For x = 0, 0 trivially belongs to
every maximal abelian subalgebra of M. �
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Remark 5.1. For x ∈ M it is clear that x2n+1 ∈ M. Moreover, every polynomial
of x consisting of odd powers of x commutes with x. If the spectrum of x has no
multiplicities then every element of M which commutes with x has to be a limit of
polynomials of odd powers of x.

Remark 5.2. For every x ∈ M there exists a y ∈ M such that
• [x, y] = 0
• The spectrum of y has no multiplicities.

For x ∈ M let y ∈ M be as in the preceding remark. Let A∞ be the maximal
abelian algebra which is the closure of the span {y2k+1}. Let (vi) be a set of
eigenvectors for y such that with respect to (vi), y = diag(iλ1,−iλ1, iλ2,−iλ2, . . . )
where 0 < λi+1 < λi and spec(y) = {0} ∪ {±iλj}∞j=1. Since all elements belonging
to A∞ commute, then with respect to the basis (vi) all elements of A∞ are diagonal
matrices. A∞ will be our real, separable Hilbert space.

We now define an equivalence relation: We consider now the group homomor-
phism exp : (A∞, +) → (Ures,

.). The kernel K of this map consists precisely of
those elements of A∞ whose eigenvalues are integer multiples of 2πi. Our equiva-
lence relation is defined to be x ∼ y ⇔ x− y ∈ K for x, y ∈ A∞. We define a basis

for the kernel to be elements of the form ej = diag(0, . . . , 0,

jth pair︷ ︸︸ ︷
2πi,−2πi, 0, . . . ). This

basis is also a topological basis for A∞. Thus we can define a Hilbert torus TH .
Now we define how our Hilbert torus acts on Gr(H): Since the group Ures acts

by isometries on Gr(H) then TH acts as a subgroup of isometries on the Gr(H)
such that the action of TH on the base point o is injective. Moreover, if γ(t) is a
geodesic of Gr(H) such that γ(0) = o and γ′(t) corresponds to an x ∈ A∞ then
γ(t) is the just the image of a line L ⊂ A∞ projected onto TH . Let x =

∑
xiei

denote a decomposition of x with respect to the basis {ei}. Then the behavior of
γ(t) is determined entirely by the �2-sequence (xi).

Remark 5.3. The spectrum of a sum
∑

αjej is equal to {±2πiαj}. Let {ei}, {fi}
denote the respective bases for the maximal abelian subalgebras A′∞, A′′∞ generated
by y1 and y2. Suppose x ∈ A′

∞ ∩ A′′
∞. Let x =

∑
αiei =

∑
βjfj denote the

respective decompositions of x. Then (βj) is at most a permutation of (αi).

Since the spectrum of x ∈ M determines its coefficients in a maximal Abelian
algebra we can define an �2-valued function for TGr(H) which determines com-
pletely the behavior of the geodesics of Gr(H). For TGr(H) we define the function
F : TGr(H) → �2 as

F (p, v) := (λ1, λ2, . . . ) ∈ �2

where (iλj) is the set of eigenvalues of μ(p, v) counted with multiplicities and

(λ2i−1) ≥ 0, (λ2i) = −(λ2i−1), |λ2i+1| ≤ |λ2i−1|
For TGr(r, H) we can define Fr : TGr(r, H) → �2 similarly. However, since
Gr(r, H) has rank r then for i > 2r, λi = 0. Under the inclusion map
ir : Gr(r, H) ↪→ Gr(H), Gr(r, H) is embedded isometrically as a geodesic subman-
ifold of Gr(H) with F ◦ ir = Fr .

Theorem 5.1. F determines the behavior of all geodesics of Gr(r, H) and Gr(H).
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Proof. The only point left to observe is that if (p, v) = φ(q, w) for (p, v), (q, w) in
Gr(H) and φ an isometry, then v and w are related by the adjoint action of some
element h ∈ L. But the adjoint action preserves the spectrum of the operators
in M which correspond to v and w. Hence F is an invariant of the geodesics of
Gr(H). �

For a geodesic γ of Gr(r, H) we have that γ is a torus of rank 1, . . . , r. The
interesting cases are for geodesics of Gr(H) which are not geodesics of any Gr(r, H).
Three cases have been determined:

• γ is an Euclidean line.
• γ is a Hilbert torus.
• γ is a “dna” group.
For the following theorems A∞ will denote a maximal abelian subalgebra for M

generated by y ∈ M with basis {ei} which is also a basis for the kernel K of the
map exp : A∞ → Ures.

Theorem 5.2. Let x =
∑

αiei ∈ A∞. Then exp(Rx) = T n ⊂ TH for some n < ∞
if and only if all but a finite number of the αi are zero.

Proof. The “if” part of the proof is clear. For the “only if” part of the proof let
v1, . . . , vn ∈ A∞ denote generators of T n. Then vi is of the form vi =

∑ni

j=1 αijej.

Let n′ = max{ni}. Since x ∈ span{v1, . . . , vn} then x =
∑n′

j=1 αjej . �

For the theorems which classify the three interesting types of geodesics we require
a metric for TH which we define as follows: For x, y ∈ A∞ we define

d(exp(x), exp(y)) := inf{|x − y + k|k ∈ K}.
Theorem 5.3. If x =

∑
1
jp ej, p > 1

2 then exp(Rx) is a Euclidean line embedded
in TH .

Proof. It suffices to show there exists an ε neighborhood U of exp(0) in TH and a
δ > 0 such that exp(tx) ⊂ U ⇔ |t| < δ.

Suppose there does not exist a δ > 0 for an ε neighborhood of exp(0) with
0 < ε � 1/3.

Then there exists a sequence (ti), ti ↗ ∞ such that d(exp(tix), exp(0)) < ε.
We define ni := [[(2ti)1/p]], σi := (2ti)1/p − ni.
For ti � 1 we have then

1
2
≤ ti

1
ji

p =
ti

((2ti)1/p − σi)p
<

ti

2ti(1 − O( 1
(2ti)1/p ))

=
1

2(1 − O( 1
(2ti)1/p ))

<
2
3

Hence for ti � 2, d(exp(tix), exp(0)) ≥ (ti 1
ji

p ) mod 1 > 1
3 > ε.

Hence, exp(Rx) is an embedded Euclidean line in TH . �

Corollary 5.1. Let x =
∑

αjej ∈ A∞, If there exists a p > 1
2 , and a subsequence

(αji) ⊆ (αj) such that limi |αjij
p
i | = c > 0 then exp(Rx) is an embedded Euclidean

line.

Theorem 5.4. If x =
∑

rjej , 0 < r < 1 then exp(Rx) is an embedded Euclidean
line.
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Proof. As in the previous theorem the proof is by contradiction. We begin again
with an ε-neighborhood of exp(0) with ε � 1. Again we suppose that there exists
a sequence (ti), ti ↗ ∞ such that d(exp(tix), exp(0)) < ε.

If d(exp(tix), exp(0)) < ε then tir
j mod 1 < ε for all j ≥ 1. By decreasing

the size of ε we can create a sequence (t′i) such that d(exp(t′ix), exp(0)) → 0. In
particular, t′ir

j mod 1 → 0 for all j ≥ 1. Now for t′i � 1 we have a decreasing
sequence t′i, t

′
ir, t

′
ir

2
, . . . ,→ 0. R

+ = (0, +∞) can be partioned into intervals of the
form (rs+1, rs]. Under the action of multiplication by r the interval (rj+1, rj ] is
mapped to (rj+2, rj+1]. For t′i > 1 there exists a j > 0 such that t′ir

j ∈ (r2, r].
Hence t′ir

j mod 1 ≥ min{1−r, r2}. Hence d(exp(t′ix), exp(0)) ≥ min{1−r, r2}. �

Corollary 5.2. Let x =
∑

αjej ∈ A∞. If there exists a subsequence (αji) ⊆ (αj)
and an r > 0 such that limi |αjir

ji | = c > 0 then exp(Rx) is an embedded Euclidean
line.

Theorem 5.5. There exist x ∈ A∞ such that exp(Rx) = TH .

Proof. The proof is motivated by a problem from symbolic dynamics. Let X be
the space of of sequences of the numbers 1 and 0. Let d be a metric defined for X
as follows: for two sequences (an), (bn),

d((an), (bn)) :=
∞∑

n=1

|an − bn|
2n

Let S be the shift map which maps a sequence a1, a2, . . . to the sequence 0, a1, a2, . . . .
The problem is whether or not there exists a sequence (an) whose orbit under S is
dense in X . The answer is yes, and the example is given by

(an) = 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1 . . . ,

The sequence consists of listing all sequences of length 1 then listing all sequences
of length 2, etc.

For our theorem we will consider the number:

a = .1010010001000010000010000001 . . .

This number has the property that the lim 10
n(n+1)

2 −ra = 10−r mod 1.
By taking subsequences of the digits of a we generate an �2 sequence:

a1 = .100001000000000000001 . . .(2)

a2 = .0010000001000000000000000001 . . .(3)

a3 = .000000000000001000000000000000000001 . . .(4)

a4 = .000000000000000000000000000000000000000000001 . . .(5)
...(6)

The ai’s are chosen so that the digits of 1 make a snake–like pattern. Mod 1,
multiplying this sequence by 10 is equivalent to the left–shift operator on the digits.
By choosing the pattern of 1s and 0s in the sequence (ai) as above we will be able to
demonstrate that the image of p(t) =

∑
i taiei is dense in A∞. To be more precise,

let x =
∑

aiei. Then x has the property that

d(exp(10nirx), exp(10−rei)) → 0
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where nir is a sequence of the form nir = i(i+1)
2 − r.

For any element of the form q = .d1d2 . . . dmej we have that

d(exp(d1d2 . . . dm ∗ 10njmx), exp(q)) → 0.

If q =
∑m

j=1 qjej with each the decimal expansion of each qj terminating at the
mth digit then

d
(
exp

((∑
(qj) ∗ 10njm

)
x
)

, exp(q)
)
→ 0

where (qj) denotes the integer whose digits consists of the digits of the decimal
expansion of qj .

Since the set of elements of the form
∑<∞

i=1 αiei are dense in A∞ and among those
elements, the elements whose coefficients have terminating decimal expansions are
also dense in A∞, we have that exp(Rx) is dense in TH . �

Corollary 5.3. There exists a dense subset {x} of A∞ whose orbits {exp(Rx)} are
dense in TH.

Proof. It’s enough to observe that if z ∈ A∞ and ε > 0 there exists an a z′ =∑m
i=1 αiei+

∑∞
i=m+1 ai−mei for some m such that |z−z′| < ε and the set {αi}∪{ai}

is rationally independent. �

Remark 5.4. The closure of any 1-parameter group for T n is necessarily a Lie
group. In the case of TH however, this is not true. In the following theorem we prove
for particular x ∈ A∞ that exp(Rx) is a topological group with an uncountable
number of components. Groups of this type we denote as “dna” groups simply
because a mental picture of a double helix is the easiest picture we can think of
which suggests the form of these groups.

Theorem 5.6. Let (pi) denote a strictly increasing sequence of prime numbers.
Let (ri) denote a sequence of positive integers with the properties:

• ri ≥ 2 ∀i

• lim
n→∞(p1

r1 . . . pn
rn)2

∞∑
i=n+1

(
1

pi
ri

)2 = 0

If x =
∑ 1

pi
ri

ei then exp(Rx) is a dna group.

Proof. From the hypothesis we have d(exp((p1
r1 . . . pn

rn)2x), exp(0)) → 0. Hence
exp(Rx) cannot be a Euclidean line embedded in TH . And since none of the coef-
ficients of the expansion of x are zero, exp(Rx) cannot be a torus.

We determine some of the cluster points of exp(Rx). Let tn := p2
r2 . . . pn

rn .
Then the cluster points of {exp(tnx)} are of the form: exp(

a

p1
r1

e1), 0 < a < p1
r1 .

Similarly, it’s not too hard to see that points of the form exp(
a

pn
rn

en), 0 < a <

pn
rn are cluster points as well of exp(Rx).
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Let gn denote the element exp(
1

pn
rn

en) and Gn the abelian group of order pn
rn

generated by gn. We claim

exp(Rx) ⊕
∞⊕

n=1

Gn = exp(Rx)

where it’s understood that elements of
⊕∞

n=1 Gn must be �2 summable in TH . It’s
clear that

exp(Rx) ⊕
∞⊕

n=1

Gn ⊆ exp(Rx)

To show inclusion in the other direction we sketch an induction proof. Let y ∈
exp(Rx). Let Tn := exp(Re1 + Re2 + ... + Ren) and let πn : TH → Tn denote the
projection operator that maps elements of the of TH onto the n-torus. Note that
for any y ∈ TH the limit of the projections {πn(y)} has to converge to y. Since
the set {p1

r1 , . . . , pn
rn} is rationally dependent, πn(Rx) is necessarily a circle with

period p1
r1 . . . pn

rn .
Since the map π1 : TH → T1 is continuous, and π1(exp(Rx)) is a circle there is

a t ∈ R such that

π1(exp((t + n1p1
r1)x)) = π1(y) n1 ∈ Z

Let y1 = exp((t + n1p1
r1)x). Now consider π2(y). For some n1 ∈ Z we have

π2(exp((t + n1p1
r−1 + n2p1

r1p2
r2)x)) = π2(y) n2 ∈ Z

Let y2 = exp((t + n1p1
r−1 + n2p1

r1p2
r2)x). We can proceed in this fashion such

that at the mth induction step we have

πm

(
exp

((
t +

m+1∑
i=1

nip1
r1 · · · pi

ri

)
x

))
= πm(y) n1, . . . , nm+1 ∈ Z

and define the mth in a sequence as ym = exp((t +
∑m+1

i=1 nip1
r1 · · · pi

ri)x). In this
fashion by choosing the {ni} carefully we generate a Cauchy sequence {ym} which
converges to y. Observe that exp(tx) ∈ exp(Rx) and that the sequence of points
yi◦exp(−tx) converges to an element of

⊕∞
n=1 Gn. Hence y ∈ exp(Rx)⊕⊕∞

n=1 Gn.
Hence exp(Rx) = exp(Rx) ⊕⊕∞

n=1 Gn.
Since

⊕∞
n=1 Gn has uncountably many components, exp(Rx) is a “dna” group.

�

Remark 5.5. Just as for the first two type of geodesics, geodesics of the above
form are also dense in TH .

6. Functions which Poisson-commute with the Energy
Hamiltonian

From [9] we know that the pullback of any function f̃ ∈ C∞(UHS(H)) Poisson-
commutes with the kinetic energy Hamiltonian H ∈ C∞(TGr(H)) (resp. Hr ∈
C∞(TGr(r, H))). We would like to conclude the converse as well, that is, if f ∈
C∞(TGr(H)) (resp. f ∈ C∞(TGr(r, H)) Poisson-commutes with H (resp. Hr)
then f must be the pullback of some function f̃ of UHS(H). In fact, we can.
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Theorem 6.1. If f ∈ C∞(TGr(H)) Poisson-commutes with H then f is the pull-
back by μ of some function f̃ : UHS(H) → R.

Proof. From the previous section there exists a dense set of Hilbert tori in TGr(H)
generated by the geodesic flow which are contained in the level surfaces of f . For
any 2 points (p1, v1), (p2, v2) ∈ TGr(H) such that μ(p1, v1) = μ(p2, v2) there is a
path connecting the points along one of the mentioned Hilbert tori.
Hence f(p1, v1) = f(p2, v2). Hence f is determined by μ. �
Remark 6.1. The proof is the same if we replace TGr(H) by TGr(r, H) and
Hilbert tori by tori of finite rank r.

7. Conjugate points

Since the Grassmannians are symmetric we can concentrate on the geodesics
passing through the point o. Let γ(t) denote a geodesic of Gr(H) with unit velocity
and o = γ(0). Let T ∈ M represent γ′(0). We have then:

Theorem 7.1. Conjugate points of o along the geodesic γ occur at

t =
π

(|λi| + |λj |)2 and at t =
π

(|λi| − |λj |)2 (|λi| �= |λj |)

where F (e, T ) = (λi).

Proof. By [6] the symmetric operator which determines the behavior of Jacobi
fields is given by

[T, [ , T ]] : ToGr(H) → ToGr(H).

The eigenvalues of [T, [ , T ]] are explicitly computed to be (|λi| − |λj |)2 and
(|λi| + |λj |)2 where F (e, T ) = (λi). �
Remark 7.1. The above theorem is the same for the finite-rank Grassmannians.

This theorem demonstrates again the fundamental difference between the finite-
rank Grassmannians and the Grassmannian Gr(H). For Gr(r, H) if we consider any
unit velocity geodesic γ passing through an arbitrary point o then a conjugate point
of p along the geodesic γ has to occur by t = rπ/4. Moreover, the conjugate points
along any geodesic will be discretely spaced with no cluster points. On the other
hand, for Gr(H) if we again consider an arbitrary point p no such upper bound
exists for the first conjugate point of p along every every unit velocity geodesic.
There is also a dense set S of geodesics passing through p for which the conjugate
points of p along any geodesic in S have cluster points.

8. Conclusion

While the Hilbert Grassmannians are all locally diffeomorphic, we have seen
that based on the behavior of the geodesics Gr(H) is globally fundamentally more
complex than the finite rank Grassmannians. In spite of the complexity of the
Grassmannians we’ve also been able to extend the results of [9] and [3] to our
Grassmannians at the price of weakening the definition of integrability. We’ve also
determined that for geodesic flow there is no other method of generating a complete
set of Poisson-commuting functions other than using Thimm’s algorithm.

This paper has been a summary of the author’s dissertation [2].
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