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Norms of Inverses, Spectra, and Pseudospectra of
Large Truncated Wiener-Hopf Operators and

Toeplitz Matrices

A. Böttcher, S. M. Grudsky, and B. Silbermann

Abstract. This paper is concerned with Wiener-Hopf integral operators on
Lp and with Toeplitz operators (or matrices) on lp. The symbols of the op-
erators are assumed to be continuous matrix functions. It is well known that
the invertibility of the operator itself and of its associated operator imply the
invertibility of all sufficiently large truncations and the uniform boundedness
of the norms of their inverses. Quantitative statements, such as results on the
limit of the norms of the inverses, can be proved in the case p = 2 by means of
C∗-algebra techniques. In this paper we replace C∗-algebra methods by more
direct arguments to determine the limit of the norms of the inverses and thus
also of the pseudospectra of large truncations in the case of general p.
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1. Introduction

Given a complex number c ∈ C and a function k ∈ L1(R), we consider the Wiener-
Hopf integral operator W defined by

(Wϕ)(x) = cϕ(x) +

∞∫
0

k(x− t)ϕ(t) dt (0 < x <∞)(1)

on Lp(0,∞) (1 ≤ p ≤ ∞). Let Fk be the Fourier transform of k,

(Fk)(ξ) =

∞∫
−∞

k(x)eiξxdx (ξ ∈ R).

Many properties of the operator (1) can be read off from the function a = c+ Fk.
This function is referred to as the symbol of the operator (1), and we will henceforth
denote this operator by W (a). The set {c+ Fk : c ∈ C, k ∈ L1(R)} is denoted by
C + FL1(R) and called the Wiener algebra.

For τ ∈ (0,∞), the truncated Wiener-Hopf integral operator Wτ (a) is the com-
pression of W (a) to Lp(0, τ). Thus, Wτ (a) acts by the rule

(
Wτ (a)ϕ

)
(x) = cϕ(x) +

τ∫
0

k(x− t)ϕ(t) dt (0 < x < τ).(2)

The norm and the spectrum of an operator A on Lp will be denoted by ‖A‖p
and σp(A), respectively. We write ‖A−1‖p = ∞ if A is not invertible on Lp. For
ε ∈ (0,∞), the ε-pseudospectrum of an operator A on Lp is defined as the set

σεp(A) =
{
λ ∈ C : ‖(A− λI)−1‖p ≥ 1/ε

}
;(3)

of course, the points of

σp(A) =
{
λ ∈ C : ‖(A− λI)−1‖p =∞

}
all belong to σεp(A). In case W (a) or Wτ (a) is invertible, we denote the inverse by

W−1(a) and W−1
τ (a), respectively.

This paper concerns the limits of ‖W−1
τ (a)‖p, σp(Wτ (a)), σεp(Wτ (a)) as τ goes

to infinity. We also study ‖A−1
τ ‖ and σεp(Aτ ) in case {Aτ} is a more complicated

family of operators, say

Aτ =
∑
j

∏
k

Wτ (ajk) or Aτ = Pτ
∑
j

∏
k

W (ajk)Pτ ,(4)

where Pτ is given by

(Pτϕ)(x) =

{
ϕ(x) if 0 < x < τ,

0 if τ < x;
(5)

here and in what follows we freely identify Lp(0, τ) and the image of Pτ on Lp(0,∞).

Let a ∈ C + FL1(R). The set a(Ṙ) := {c} ∪ {a(ξ) : ξ ∈ R} is a closed
continuous curve in the complex plane. We give this curve the orientation induced
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by the change of ξ from −∞ to +∞. For λ 6∈ a(Ṙ), we denote by wind (a, λ) the

winding number of a(Ṙ) about λ. A classical result says that

σp

(
W (a)

)
= a(Ṙ) ∪

{
λ ∈ C \ a(Ṙ) : wind (a, λ) 6= 0

}
(6)

for 1 ≤ p ≤ ∞ (see [19] and [14]).
Now assume a ∈ C+FL1(R) and 1 ≤ p ≤ ∞. It is well known (see [14, Theorem

III.3.1] for p ∈ [1,∞) and [24, Theorem 4.58] for p =∞) that

lim sup
τ→∞

‖W−1
τ (a)‖p <∞(7)

if and only if W (a) is invertible on Lp(0,∞). Note that (7) includes the requirement
that Wτ (a) is invertible on Lp(0, τ) for all sufficiently large τ > 0.

In order to say more about the upper limit in (7), we need the notion of the
associated symbol. Given a = c + Fk ∈ C + FL1(R), the associated symbol
ã ∈ C+FL1(R) is defined by ã(ξ) := a(−ξ). Thus, W (ã) and Wτ (ã) may be given

by (1) and (2) with k(x − t) replaced by k(t − x). Since ã(Ṙ) differs from a(Ṙ)
only in the orientation, we infer from (6) that σp(W (a)) = σp(W (ã)). In particular,
W (ã) is invertible if and only if W (a) is invertible.

In this paper we prove the following results.

Theorem 1.1. Let a ∈ C + FL1(R) and 1 ≤ p < ∞. If (7) holds then the limit
limτ→∞ ‖W−1

τ (a)‖p exists and

lim
τ→∞ ‖W

−1
τ (a)‖p = max

{
‖W−1(a)‖p, ‖W−1(ã)‖p

}
.(8)

Theorem 1.2. There exist a ∈ C + FL1(R) and p ∈ (1,∞) such that

‖W−1(ã)‖p > ‖W−1(a)‖p.(9)

Given a family {Mτ}τ∈(0,∞) of subsets Mτ of C, we define the limiting set
limτ→∞Mτ as the set of all λ ∈ C for which there are τ1, τ2, . . . and λ1, λ2, . . .
such that

0 < τ1 < τ2 < . . . , τn →∞, λn ∈Mτn , λn → λ.

Here is what we will prove about the limiting sets of σp(Wτ (a)) and σεp(Wτ (a)).

Theorem 1.3. Let a ∈ C + FL1(R) and 1 ≤ p ≤ ∞. Then for every τ > 0 the
spectrum σp(Wτ (a)) is independent of p. In particular,

lim
τ→∞σp

(
Wτ (a)

)
(10)

does not depend on p. There exist a ∈ C + FL1(R) such that (10) is not equal to
the spectrum of W (a).

Theorem 1.4. If a ∈ C + FL1(R) and 1 < p <∞ then for each ε > 0,

lim
τ→∞σ

ε
p

(
Wτ (a)

)
= σεp

(
W (a)

)
∪ σεp

(
W (ã)

)
.(11)
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We remark that we will actually prove extensions of Theorems 1.1 and 1.4 which
are also applicable to operators as in (4). Furthermore, we will extend Theorems 1.1
and 1.4 to the case of matrix-valued symbols. Finally, we will establish analogues
of the above theorems for Toeplitz operators and matrices.

2. Structure of Inverses

In what follows we have to consider the products W (a)W (b) and Wτ (a)Wτ (b)
and are thus led to algebras generated by Wiener-Hopf operators.

We henceforth exclude the case p = ∞ (but see the remark at the end of this
section). The precipice between p ∈ [1,∞) and p = ∞ comes from the fact that
the projections Pτ given by (5) converge strongly to the identity operator I if and
only if 1 ≤ p <∞.

Given a Banach space X, we denote by L(X) and K(X) the bounded and com-
pact (linear) operators on X, respectively. We need a few facts from [13, Section
2] and [8, Chapter 9].

If a ∈ L∞(R), then the operator ϕ 7→ F−1aFϕ is bounded on L2(R). The set
of all a ∈ L∞(R) for which there exists a constant C = C(a, p) <∞ such that

‖F−1aFϕ‖p ≤ C‖ϕ‖p for all ϕ ∈ L2(R) ∩ Lp(R)

is denoted by Mp(R). The set Mp(R) is a Banach algebra with pointwise algebraic
operations and the norm

‖a‖Mp(R) = sup

{‖F−1aFϕ‖p
‖ϕ‖p : ϕ ∈ L2(R) ∩ Lp(R), ϕ 6= 0

}
.

We have M1(R) = C + FL1(R) and M2(R) = L∞(R). If p ∈ (1, 2) ∪ (2,∞) and
1/p+ 1/q = 1, then

C + FL1(R) ⊂Mp(R) = Mq(R) ⊂ L∞(R),

both inclusions being proper. For a ∈ Mp(R), the Wiener-Hopf integral operator
W (a) is defined by

W (a)ϕ = χ+(F−1aF )ϕ
(
ϕ ∈ Lp(0,∞)

)
,

where (F−1aF ) is the continuous extension of F−1aF from L2 ∩ Lp to all of Lp

and χ+ denotes the characteristic function of (0,∞). Of course, if a ∈ C+FL1(R)
then W (a)ϕ is given by (1).

One can also associate a Hankel operator H(a) ∈ L(Lp(0,∞)) with every a ∈
Mp(R). We confine ourselves to stating that H(a) can be given by the formula(

H(a)f
)

(x) =

∞∫
0

k(x+ t)ϕ(t) dt (0 < x <∞)

if a = c+ Fk ∈ C + FL1(R).

Let Cp(Ṙ) denote the closure of C + FL1(R) in Mp(R). We have

C1(Ṙ) = C + FL1(R), C2(Ṙ) = C(Ṙ),

where C(Ṙ) stands for the continuous functions on R which have finite and equal
limits at +∞ and −∞. If p ∈ (1, 2) ∪ (2,∞) and 1/p+ 1/q = 1, then

C + FL1(R) ⊂ Cp(Ṙ) = Cq(Ṙ) ⊂ C(Ṙ) ∩Mp(R);
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again both inclusions being proper. One can show that if a ∈ Cp(Ṙ) and a(ξ) 6= 0

for all ξ ∈ Ṙ = R ∪ {∞}, then a−1 ∈ Cp(Ṙ).
If a ∈ Mp(R) then ‖W (a)‖p = |W (a)|p = ‖a‖Mp(R), where |W (a)|p is the

essential norm of W (a) on Lp(0,∞),

|W (a)|p := inf
{
‖W (a) +K‖p : K ∈ K

(
Lp(0,∞)

)}
.

Further, if a ∈ Cp(Ṙ) and K ∈ K(Lp(0,∞)), then σp(W (a)) is the set (6) and
σp(W (a)) ⊂ σp(W (a) +K). In particular, W (a) and a are always invertible in case
W (a) +K is invertible.

We denote by Ap the smallest closed subalgebra of L(Lp(0,∞)) containing the

set {W (a) : a ∈ C + FL1(R)}. If a, b ∈ Cp(Ṙ), then

W (a)W (b) = W (ab)−H(a)H(b̃)(12)

and H(a) and H(b̃) (where b̃(ξ) = b(−ξ)) are compact. This and the equality
|W (a)|p = ‖a‖Mp(R) imply that every operator in Ap is of the form W (a) +K with

a ∈ Cp(Ṙ) and K ∈ K(Lp(0,∞)). It is well known that in fact

Ap =
{
W (a) +K : a ∈ Cp(Ṙ), K ∈ K

(
Lp(0,∞)

)}
.(13)

Suppose a ∈ Cp(Ṙ), K ∈ K(Lp(0,∞)), and W (a) + K is invertible. Then

a−1 ∈ Cp(Ṙ), and (12) with b = a−1 gives(
W (a) +K

)
W (a−1) = I −H(a)H(ã−1) +KW (a−1),

which shows that
(
W (a) +K

)−1

equals

W (a−1) +
(
W (a) +K

)−1

H(a)H(ã−1)−
(
W (a) +K

)−1

KW (a−1).

Thus, (W (a)+K)−1 is W (a−1) plus a compact operator. Note that this observation
in particular implies that Ap is inverse closed in L(Lp(0,∞)).

The finite section analogue of (12) is Widom’s formula

Wτ (a)Wτ (b) = Wτ (ab)− PτH(a)H(b̃)Pτ −RτH(ã)H(b)Rτ(14)

where Pτ is as in (5) and Rτ : Lp(0,∞)→ Lp(0,∞) is defined by

(Rτϕ)(x) =

{
ϕ(τ − x) if 0 < x < τ

0 if τ < x
(15)

(see [34] and [8, 9.43(d)]). Thus, if a ∈ Cp(Ṙ), N ∈ K(Lp(0,∞)), and W (a) +N is
invertible, then (14) with b = a−1 yields(
Wτ (a) + PτNPτ

)
Wτ (a−1)

= Pτ − PτH(a)H(ã−1)Pτ −RτH(a−1)H(ã)Rτ + PτNPτWτ (a−1)

= Pτ − PτY Pτ −RτZRτ + PτNPτWτ (a−1),

where Y and Z are compact on Lp(0,∞). Our assumptions on a and N imply that
Wτ (a) + PτNPτ is invertible for all sufficiently large τ and that(

Wτ (a) + PτNPτ

)−1

Pτ →
(
W (a) +N

)−1

(16)
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strongly on Lp(0,∞). Hence(
Wτ (a) + PτNPτ

)−1

= Wτ (a−1) +
(
Wτ (a) + PτNPτ

)−1

PτY Pτ

+
(
Wτ (a) + PτNPτ

)−1

RτZRτ +
(
Wτ (a) + PτNPτ

)−1

PτNPτWτ (a−1).

The space Lp(0,∞) is the dual space of Lq(0,∞) (1/p+1/q = 1) in case 1 < p <∞
and the dual space of

L∞0 (0,∞) =
{
ϕ ∈ L∞(0,∞) : lim

T→∞
ess sup
x>T

|ϕ(x)| = 0
}

in case p = 1. Since Pτ → I strongly on Lr(0,∞) (1 ≤ r < ∞) and on L∞0 (0,∞)
and since Y is compact, we obtain with the help of (16) that(

Wτ (a) + PτNPτ

)−1

PτY Pτ = Pτ

(
W (a) +N

)−1

Y Pτ + C(1)
τ

where ‖C(1)
τ ‖p → 0 as τ →∞. Further, as RτWτ (a)Rτ = Wτ (ã) and RτNRτ → 0

strongly, we get analogously that(
Wτ (a) + PτNPτ

)−1

RτZRτ = Rτ

(
Wτ (ã) +RτNRτ

)−1

PτZRτ

= RτW
−1(ã)ZRτ + C(2)

τ

with ‖C(2)
τ ‖p → 0 as τ →∞. Finally, in the same way we obtain(

Wτ (a) + PτNPτ

)−1

PτNPτWτ (a−1) = Pτ

(
Wτ (a) +N

)−1

NW (a−1)Pτ + C(3)
τ

where ‖C(3)
τ ‖p → 0 as τ →∞. In summary, we have shown the following result.

Proposition 2.1. Let 1 ≤ p <∞, a ∈ Cp(Ṙ), N ∈ K(Lp(0,∞)). If W (a) +N is
invertible, then for all sufficiently large τ(

Wτ (a) + PτNPτ

)−1

= Wτ (a−1) + PτKPτ +RτLRτ + Cτ(17)

where K,L ∈ K(Lp(0,∞)) and ‖Cτ‖p → 0 as τ →∞.

Formula (17) is well known to workers in the field and extraordinarily useful in
connection with all questions concerning the behavior of W−1

τ (a) for large τ . Such
formulas were first established and employed in [34] and [30] (also see [18]).

Let Sp denote the set of all families {Aτ} = {Aτ}τ∈(0,∞) of operators Aτ ∈
L(Lp(0, τ)) with supτ>0 ‖Aτ‖p < ∞. With obvious algebraic operations and the
norm

‖{Aτ}‖p = sup
τ>0
‖Aτ‖p,

the set Sp is a Banach algebra. We let Cp stand for the collection of all elements
{Cτ} ∈ Sp such that ‖Cτ‖p → 0 as τ → ∞. Obviously, Cp is a closed two-sided
ideal of Sp and if {Aτ} ∈ Sp, then the norm of the coset {Aτ}+ Cp in the quotient
algebra Sp/Cp is

‖{Aτ}+ Cp‖p = lim sup
τ→∞

‖Aτ‖p.



Truncated Wiener-Hopf Operators and Toeplitz Matrices 7

It is clear that {Wτ (a)} ∈ Sp for every a ∈Mp(R). We denote by Fp the smallest
closed subalgebra of Sp containing all families {Wτ (a)} with a ∈ C + FL1(R). If

a, b ∈ Cp(Ṙ) then all Hankel operators in (14) are compact and hence{
Wτ (a)

}{
Wτ (b)

}
=
{
Wτ (ab) + PτKPτ +RτLRτ

}
with certain compact operators K and L. This simple observation anticipates the
following result.

Proposition 2.2. If 1 ≤ p <∞ then

(18) Fp =

{{
Wτ (a) + PτKPτ +RτLRτ + Cτ

}
:

a ∈ Cp(Ṙ),K, L ∈ K(Lp(0,∞)
)
, {Cτ} ∈ Cp

}
and Cp is a closed two-sided ideal of Fp.

The discrete analogue of Proposition 2.2 is proved in [6] and [8, Proposition 7.27].
On first approximating arbitrary families {Cτ} ∈ Cp by piecewise constant families,
Proposition 2.2 can be proved in the same way as its discrete version.

Remark. For 1 ≤ p ≤ ∞, let Q(Lp(0,∞)) be the so-called quasi-commutator ideal
of Lp(0,∞), i.e., let Q(Lp(0,∞)) stand for the smallest closed two-sided ideal of
L(Lp(0,∞)) containing the set{

W (ab)−W (a)W (b) : a, b ∈ C + FL1(R)
}
.

Proposition 2.1 easily implies that Q(Lp(0,∞)) = K(Lp(0,∞)) if 1 ≤ p < ∞.
One can show that Q(L∞(0,∞)) is a proper subset of K(L∞(0,∞)) and that,
although Pτ does not converge strongly on L∞(0,∞), one has ‖K−PτK‖ → 0 and
‖K−KPτ‖ → 0 as τ →∞ for every K ∈ Q(L∞(0,∞)) (see [24, Proposition 4.55]).
Furthermore, if K ∈ Q(L∞(0,∞)), then RτKRτ goes to zero in the sense of P-
convergence (see [24, Section 4.36]). These properties can be used to show that
Propositions 2.1 and 2.2 remain true for all p ∈ [0,∞] if only K(Lp(0,∞)) is replaced
by Q(Lp(0,∞)). This in turn yields the validity of some results proved below in
the case p = ∞ (e.g., of Corollary 3.3 and Theorem 6.2 with N ∈ Q(L∞m (0,∞))
and Theorem 7.2 with N ∈ Q(l∞m )).

3. Norms of Inverses

Let Ap (1 ≤ p <∞) be the algebra (13). We equip the direct sum Ap⊕Ap with
the norm

‖(A,B)‖p = max
{‖A‖p, ‖B‖p}.

By virtue of Proposition 2.2, we may consider the quotient algebra Fp/Cp.
Here is the key result of this paper.
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Theorem 3.1. If 1 ≤ p <∞, then the map Symp : Fp/Cp → Ap ⊕Ap given by{
Wτ (a) + PτKPτ +RτLRτ + Cτ

}
+ Cp 7→

(
W (a) +K, W (ã) + L

)
is an isometric Banach algebra homomorphism. Moreover, if {Aτ} ∈ Fp then

lim sup
τ→∞

‖Aτ‖p = lim
τ→∞ ‖Aτ‖p.

Before giving a proof, a few comments are in order. We know from Proposition 2.2
that every family {Aτ} ∈ Fp is of the form

Aτ = Wτ (a) + PτKPτ +RτLRτ + Cτ

with K,L ∈ K(Lp(0,∞)) and {Cτ} ∈ Cp. Clearly, W (a) + K and W (ã) + L are
nothing but the strong limits of Aτ and RτAτRτ , respectively. Thus, we could
equivalently also define

Symp : {Aτ}+ Cp 7→
(

s−lim
τ→∞Aτ , s−lim

τ→∞RτAτRτ
)
.

This identification of Symp shows in particular that Symp is a well-defined contin-
uous Banach algebra homomorphism and that

‖Symp

({Aτ}+ Cp
)‖p ≤ lim inf

τ→∞ ‖Aτ‖p.(19)

Since the only compact Wiener-Hopf operator is the zero operator, it follows that
Symp is injective. Thus, Symp is a Banach algebra homomorphism and the only
thing we must show is that Symp is an isometry.

If p = 2, then F2/C2 and A2⊕A2 are C∗-algebras and Sym2 is easily seen to be
a ∗-homomorphism. Since injective ∗-homomorphisms of C∗-algebras are always
isometric, the proof is complete. In the p 6= 2 case, the latter conclusion requires
hand-work.

Proof. Fix ε > 0. Since a ∈ Cp(Ṙ), there is a number c ∈ C and a function
k ∈ L1(R) with finite support, say supp k ⊂ (−s, s), such that

‖{Wτ (a− c− Fk)}‖p ≤ ‖W (a− c− Fk)‖p < ε.

Furthermore, if τ0 is large enough, then ‖Pτ0KPτ0 −K‖p < ε, ‖Pτ0LPτ0 −L‖p < ε.
As ε > 0 may be chosen as small as desired, it follows that we are left with proving
that

lim
τ→∞ ‖Bτ‖p = max

{
‖W (b) +K‖p, ‖W (b̃) + L‖p

}
(20)

where

Bτ := Wτ (b) + PτKPτ +RτLRτ ,

b := c+ Fk ∈ C + FL1(R), supp k ⊂ (−s, s), and the compact operators K,L are
subject to the condition

Pτ0KPτ0 = K, Pτ0LPτ0 = L.(21)

Here s > 0 and τ0 > 0 are certain fixed numbers.
Pick l > max{τ0, s} and put τ = 4l. Let ϕ ∈ Lp(0, τ) be any function such that

‖ϕ‖p = 1. We claim that there exists a number

β ∈ (l + s, 3l − s)
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such that

β+s∫
β−s
|ϕ(t)|pdt ≤

[
l

s

]−1

(22)

where [l/s] stands for the integral part of l/s. Indeed, since

1 = ‖ϕ‖pp ≥
3l∫
l

|ϕ(t)|pdt ≥
d0−1∑
d=0

l+2(d+1)s∫
l+2ds

|ϕ(t)|pdt

with d0 := [l/s], there exists a d1 such that 0 ≤ d1 ≤ d0 − 1 and

l+2(d1+1)s∫
l+2d1s

|ϕ(t)|pdt ≤
[
l

s

]−1

,

which proves our claim with β := l + (2d1 + 1)s.
Given 0 < τ1 < τ2, we put P(τ1,τ2) := Pτ2 − Pτ1 . With β as above, we have

Bτ = PβBτPβ + P(β,τ)BτP(β,τ) + PβBτP(β,τ) + P(β,τ)BτPβ .

Since β + τ0 < 3l− s+ l < 4l = τ and Pτ0LPτ0 = L, the equality PβRτLRτPβ = 0
holds. Hence,

PβBτPβ = Pβ

(
W (b) +K

)
Pβ ,

which imples that

‖PβBτPβ‖p ≤ ‖W (b) +K‖p =: M1.(23)

As β > τ0 and Pτ0KPτ0 = K, we see that P(β,τ)PτKPτP(β,τ) = 0. Therefore,

P(β,τ)BτP(β,τ) = P(β,τ)

(
Wτ (b) +RτLRτ

)
P(β,τ)

= P(β,τ)Rτ

(
Wτ (b̃) + L

)
RτP(β,τ)

= RτPτ−β
(
Wτ (b̃) + L

)
Pτ−βRτ

= RτPτ−β
(
W (b̃) + L

)
Pτ−βRτ ,

whence

‖P(β,τ)BτP(β,τ)‖p ≤ ‖W (b̃) + L‖p =: M2(24)

Again using (21) we get

P(β,τ)BτPβ + PβBτP(β,τ) = P(β,τ)Wτ (b)Pβ + PβWτ (b)P(β,τ).

Since supp k ⊂ (−s, s), we have

(
Wτ (b)Pβϕ

)
(x) =

β∫
0

k(x− t)ϕ(t) dt =

β∫
β−s

k(x− t)ϕ(t) dt



10 A. Böttcher, S. M. Grudsky, and B. Silbermann

for x ∈ (β, τ) and

(
Wτ (b)P(β,τ)ϕ

)
(x) =

τ∫
β

k(x− t)ϕ(t) dt =

β+s∫
β

k(x− t)ϕ(t) dt

for x ∈ (0, β). Consequently,∥∥∥P(β,τ)BτPβϕ+ PβBτP(β,τ)ϕ
∥∥∥p
p

(25)

=

τ∫
β

∣∣∣∣
β∫

β−s
k(x− t)ϕ(t) dt

∣∣∣∣pdx+

β∫
0

∣∣∣∣
β+s∫
β

k(x− t)ϕ(t) dt

∣∣∣∣pdx
≤ ‖k‖p1

( β∫
β−s
|ϕ(t)|pdt+

β+s∫
β

|ϕ(t)|pdt
)

= ‖k‖p1
β+s∫
β−s
|ϕ(t)|pdt ≤ ‖k‖p1

[
l

s

]−1

,

the last two estimates resulting from the inequality ‖k ∗ ϕ‖p ≤ ‖k‖1‖ϕ‖p and from
(22), respectively. Put

f1 = PβBτPβϕ, f2 = P(β,τ)BτP(β,τ)ϕ,

f3 = (P(β,τ)BτPβ + PβBτP(β,τ))ϕ.

Then Bτϕ = f1 + f2 + f3 and thus,

‖Bτϕ‖p ≤ ‖f1 + f2‖p + ‖f3‖p =

( τ∫
0

|f1(t) + f2(t)|pdt
)1/p

+ ‖f3‖p

=

( β∫
0

|f1(t)|pdt+

τ∫
β

|f2(t)|pdt
)1/p

+ ‖f3‖p =
(
‖f1‖pp + ‖f2‖pp

)1/p

+ ‖f3‖p.

From (23), (24), (25) we therefore get

‖Bτϕ‖p ≤
(
Mp

1 ‖Pβϕ‖pp +Mp
2 ‖P(β,τ)ϕ‖pp

)1/p

+ ‖f3‖p

≤ max{M1,M2}
(
‖Pβϕ‖pp + ‖P(β,τ)ϕ‖pp

)1/p

+ ‖f3‖p
= max{M1,M2}‖ϕ‖p + ‖f3‖p
≤ max{M1,M2}+ ‖k‖1[l/s]−1.

If τ →∞ then [l/s]−1 = [τ/(4s)]−1 → 0, which gives the estimate

lim sup
τ→∞

‖Bτ‖p ≤ max{M1,M2}.(26)

Since max{M1,M2} = ‖Symp({Bτ} + Cp)‖p, we finally obtain (20) from (26) and
(19). �
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Corollary 3.2. Let 1 ≤ p <∞ and {Aτ} ∈ Fp. Put

A = s−lim
τ→∞Aτ , B = s−lim

τ→∞RτAτRτ .

and suppose A − λI and B − λI are invertible on Lp(0,∞). Then Aτ − λI (=
Aτ − λPτ ) is invertible on Lp(0, τ) for all sufficiently large τ and

lim
τ→∞ ‖(Aτ − λI)−1‖p = max

{
‖(A− λI)−1‖p, ‖(B − λI)−1‖p

}
.

Proof. Since (A−λI,B−λI) = Symp

(
{Aτ−λI}+Cp

)
, we deduce from Theorem 3.1

and the inverse closedness of Ap in L(Lp(0,∞)) that {Aτ − λI} + Cp is invertible
in Fp/Cp. Let {Dτ}+ Cp ∈ Fp/Cp be the inverse. Then

Symp

(
{Dτ}+ Cp

)
=
(

(A− λI)−1, (B − λI)−1
)
,

‖{Dτ}+ Cp‖p = lim sup
τ→∞

‖(Aτ − λI)−1‖p,

and therefore the assertion follows from Theorem 3.1. �

The following corollary of Theorem 3.1 clearly contains Theorem 1.1.

Corollary 3.3. Let 1 ≤ p < ∞, a ∈ Cp(Ṙ), N ∈ K(Lp(0,∞)). If W (a) + N is
invertible on Lp(0,∞) then the limit

lim
τ→∞ ‖

(
Wτ (a) + PτNPτ

)−1‖p(27)

exists and is equal to

max
{
‖(W (a) +N

)−1‖p, ‖W−1(ã)‖p
}
.(28)

Proof. Theorem 3.1 and Proposition 2.1 show that the limit (27) exists and equals

max
{
‖W (a−1) +K‖p, ‖W (ã−1) + L‖p

}
.

Passing in (17) to the strong limit τ →∞ we get
(
W (a) +N

)−1

= W (a−1) +K,

and multiplying (17) from both sides by Rτ and then passing to the strong limit
τ →∞ we see that W−1(ã) = W (ã−1) + L. �

Corollary 3.4. Let 1 ≤ p < ∞ and let ajk be a finite collection of functions in

Cp(Ṙ). Put

A =
∑
j

∏
k

W (ajk), B1 =
∑
j

∏
k

W (ãjk), B2 = W
(∑

j

∏
k

ãjk

)
.

and suppose A is invertible on Lp(0,∞)
(a) If B1 is invertible on Lp(0,∞) then

lim
τ→∞

∥∥∥(∑
j

∏
k

Wτ (ajk)

)−1∥∥∥
p

= max
{
‖A−1‖p, ‖B−1

1 ‖p
}
,(29)
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while if B1 is not invertible on Lp(0,∞) then

lim
τ→∞

∥∥∥(∑
j

∏
k

Wτ (ajk)
)−1∥∥∥

p
=∞.(30)

(b) The operator B2 is invertible and

lim
τ→∞

∥∥∥(Pτ∑
j

∏
k

W (ajk)Pτ

)−1∥∥∥ = max
{
‖A−1‖p, ‖B−1

2 ‖p
}
.(31)

Proof. Let h =
∑
j

∏
k ajk.

(a) We know from Section 2 that A = W (h) + M and B1 = W (h̃) + N with
compact operators M and N . Obviously,

Aτ :=
∑
j

∏
k

Wτ (ajk)→ A strongly(32)

and

RτAτRτ =
∑
j

∏
k

Wτ (ãjk)→ B1 strongly.(33)

Suppose the limit in (30) does not exist or is finite. Then there are τk → ∞
such that ‖(RτkAτkRτk)−1‖p = ‖A−1

τk
‖p ≤ m < ∞. This implies that ‖Pτkϕ‖p ≤

m‖RτkAτkRτkϕ‖p and thus ‖ϕ‖p ≤ m‖B1ϕ‖p for all ϕ ∈ Lp(0,∞). Consequently,
B1 is injective. Since A = W (h) + M is assumed to be invertible, the operator

B1 = W (h̃) + N must be Fredholm of index zero (see [14]). This in conjunction
with the injectivity of B1 shows that B1 is actually invertible. Thus, if B1 is not
invertible, then (30) holds.

Now suppose B1 is invertible. From (32) and (33) we infer that Symp

(
{Aτ}+Cp

)
equals (A,B1), so that (29) is immediate from Theorem 3.1.

(b) If A = W (h)+M is invertible, then so also is B2 = W (h̃) and (31) is nothing
but the conclusion of Corollary 3.2. �

For p = 2, Theorem 3.1 was established in [31], and Corollaries 3.2 to 3.4 ap-
peared explicitly in [4] for the first time. It should be noted that [4] and [31] deal
with Wiener-Hopf operators generated by piecewise continuous symbols, in which
case the analogues of the algebras Ap and Fp/Cp do not admit such simple de-
scriptions as in (13) and (18). The proofs given in [4] and [31] make heavy use of
the C∗-algebra techniques which have their origin in [6] (also see [5], [8], [17], [28],
[32]). We remark that the aforementioned works raised some psychological barrier,
in view of which the validity of such p 6= 2 results as Theorem 3.1 is fairly surprising.
The psychological barrier was broken only in [16], where (the discrete analogue of)
the N = 0 version of Corollary 3.3 was established for p = 1 by different methods.
In particular, in view of the proofs of [16] and the proof of Theorem 3.1 given here,
one of the authors withdraws his too enthusiastic statement that “formulas like

lim sup
τ→∞

‖Wτ
−1(a)‖2 = ‖W−1(a)‖2

cannot be proved by bare hands”, which is on p. 274 of [4]. Finally, it should be
mentioned that the lp version of Theorem 3.1 was de facto predicted already in [27,
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Remark 3 on p. 303] and is in very disguised form also contained in the results of
[17, pp. 186–205].

We remark that Corollary 3.3 can be stated in slightly different terms. Define
the sesquilinear operator R on Lp(0,∞) by (Rϕ)(x) = ϕ(x). Obviously,

R2 = I and W (ã) = RW (a)R

where a(ξ) = a(ξ). Notice that if a = c+Fk ∈ C+FL1(R), then W (a) and Wτ (a)

are given by (1) and (2) with k(t− x) in place of k(x− t). Since R is an isometry,
we have

‖W−1(ã)‖p = ‖W−1(a)‖p(34)

for 1 ≤ p ≤ ∞. On identifying the dual space of Lp (1 < p < ∞) with Lq (1/p +
1/q = 1), we may think of W (a) as the adjoint operator of W (a). Thus,

‖W−1(a)‖p = ‖W−1(a)‖q(35)

for 1 < p < ∞, and in Theorem 1.1 and Corollary 3.3 we can replace ‖W−1(ã)‖p
by ‖W−1(a)‖q in case 1 < p <∞. If p = 2, then Corollary 3.3 implies that

lim
τ→∞ ‖W

−1(a)‖2 = ‖W−1(a)‖2.(36)

Theorem 1.2 shows that in the above results the maximum cannot be removed.
We remark that the previous results extend to certain spaces with weights. Given

a real number µ and a measurable function f on (0,∞), we define

(Λµf)(x) := (1 + |x|)µf(x).

Let Lp,µ(0,∞) stand for the measurable functions f on (0,∞) satisfying

‖f‖p,µ := ‖Λµf‖p <∞,
and let L1,µ(R) be the space of all measurable functions on R for which Λµf is in

L1(R). If a ∈ C + FL1,|µ|(R), then W (a) and Wτ (a) are bounded on Lp,µ(0,∞)
and Lp,µ(0, τ) for all p ∈ [1,∞) and all µ ∈ R. The algebras Ap,µ and Fp,µ are
defined in the natural manner. Taking into account [24, Remark 4.51, 2◦] one can
construct an isometric Banach algebra isomorphism of Fp,µ/Cp,µ onto the direct

sum Ap,µ ⊕Ap. It follows in particular that if a ∈ C + FL1,|µ|(R), a(ξ) 6= 0 for all

ξ ∈ Ṙ, and wind (a, 0) = 0, then

lim sup
τ→∞

‖W−1
τ (a)‖p,µ = lim

τ→∞ ‖W
−1
τ (a)‖p,µ = max

{
‖W−1(a)‖p,µ, ‖W−1(ã)‖p

}
.

Proof of Theorem 1.2. For ξ ∈ R, put

a−(ξ) = 1 +
i

2(ξ − i) , a+(ξ) = 1 +
2i

ξ + i
− 6

(ξ + i)2

and consider a = a−1
− a−1

+ . Since a± ∈ C+FL1(R) and these functions have no zeros
on R, the symbol a belongs to C + FL1(R) by Wiener’s theorem. The functions
a− and a+ have no zeros in the lower and upper complex half-planes, respectively,
which implies (see, e.g., [14]) that W (a) is invertible on Lp(0,∞) for 1 ≤ p ≤ ∞
and that W−1(a) = W (a+)W (a−). Consequently,(

W−1(a)ϕ
)

(x) = ϕ(x) +

∞∫
0

γ(x, t)ϕ(t) dt (0 < x <∞)(37)
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where

γ(x, t) = γ+(x− t) + γ−(x− t) +

min{t,x}∫
0

γ+(x− r)γ−(r − t) dr

and γ± are the kernels defined by a± = 1 + Fγ±. Clearly,

γ+(x) =
1

2π

∞∫
−∞

(
2i

ξ + i
− 6

(ξ + i)2

)
e−iξxdξ =

{
2e−x + 6xe−x if x > 0,

0 if x < 0,

γ−(x) =
1

2π

∞∫
−∞

i

2(ξ − i)e
−iξxdξ =

{ −1
2e
x if x < 0,

0 if x > 0,

whence

γ(x, t) =
1

4

{
(3 + 18(x− t))e−(x−t) + (5 + 6x)e−(x+t) if x > t,

−7ex−t + (5 + 6x)e−(x+t) if x < t.

From the representation (37) we infer that

‖W−1(a)‖1 = 1 + sup
t>0

∞∫
0

|γ(x, t)| dx, ‖W−1(a)‖∞ = 1 + sup
x>0

∞∫
0

|γ(x, t)| dt.

It is obvious that γ(x, t) > 0 for x > t, and taking into account that f(x) =
(5 + 6x)e−2x is monotonically decreasing on (0,∞) it is easily seen that γ(x, t) < 0
for x < t. Thus, a straightforward computation gives

S1(t) :=

∞∫
0

|γ(x, t)| dt = 7− 9

2
e−t +

(
11

2
+ 3t

)
e−2t,

S∞(x) :=

∞∫
0

|γ(x, t)| dt = 7− (4 + 3x)e−x −
(

5

2
+ 3x

)
e−2x.

We have S1(0) = 8, S1(∞) = 7, and S′1(t) = e−2t
(

(9/2)et− (8+6t)
)
. Let t0 > 0 be

the unique solution of the equation (9/2)et = 8 + 6t. Then S1(t) is monotonically
decreasing on (0, t0) and monotonically increasing on (t0,∞), which implies that

‖W−1(a)‖1 = 1 + sup
t>0

S1(t) = 1 + S1(0) = 9.(38)

Since S′∞(x) = (1 + 3x)e−x + (2 + 6x)e−2x > 0 for all x ∈ (0,∞), it follows that

‖W−1(a)‖∞ = 1 + sup
x>0

S∞(x) = 1 + S∞(∞) = 8.(39)

We now show that if p ∈ (1,∞) is sufficiently large and 1/p+ 1/q = 1, then

‖W−1(a)‖p < ‖W−1(a)‖q.(40)

This together with (34) and (35) gives the desired inequality (9).
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Abbreviate W−1(a) to A. By (38), there is a function f ∈ L∞(R) with finite
support, say supp f ⊂ (0, T ), such that ‖Af‖1/‖f‖1 > 9− ε. Since

‖f‖1+δ
1+δ =

T∫
0

|f(x)|1+δdx

depends continuously on δ ∈ [0,∞), we see that ‖f‖1+δ
1+δ → ‖f‖1 as δ → 0, whence

‖f‖1+δ → ‖f‖1 as δ → 0. Further, we know that

(Af)(x) = f(x) +

T∫
0

γ(x, t)f(t) dt.

If x > T , then
∫ T

0
γ(x, t)f(t) dt equals

T∫
0

(
3 + 18(x− t)

)
e−xetf(t) dt+

T∫
0

(5 + 6x)e−xetf(t) dt,

which is of the form αe−x + βxe−x with α, β ∈ C. Consequently,

(Af)(x) = g(x) + (α+ βx)e−x

where g ∈ L∞(0,∞) and supp g ⊂ (0, T ). This easily implies that ‖Af‖1+δ
1+δ →

‖Af‖1 and thus ‖Af‖1+δ → ‖Af‖1 as δ → 0.
In summary, we have shown that ‖Af‖1+δ/‖f‖1+δ > 9− 2ε and thus ‖A‖1+δ >

9 − 2ε whenever δ > 0 is sufficiently small. From the Riesz-Thorin interpolation
theorem and from (38), (39) we obtain that

‖A‖p ≤ ‖A‖1/p1 ‖A‖1−1/p
∞ = 91/p81−1/p < 8 + ε

if only p is sufficiently large. But if p is large enough, then q = 1+δ with δ as small
as desired. As 8 + ε < 9− 2ε for ε < 1/3, we arrive at (40). �

4. Spectra

The comparision of the spectra of W (a) and Wτ (a) as well as the discrete ana-
logue of this problem, the comparision of the spectra of infinite Toeplitz matrices
and their large finite sections, has been the subject of extensive investigations for
many decades and is nevertheless a field with still a lot of mysteries. Clearly, the
Szegö-Widom theorem and its continuous analogue, the Achiezer-Kac-Hirschman
formula, pertain to this topic (see the books [7], [8], [15], [35]). The asymptotic
spectral behavior of truncated Toeplitz and Wiener-Hopf operators is explicitly dis-
cussed in the papers [1], [2], [4], [5], [9], [12], [23], [27], [29], [36], [33]; this list is
incomplete. We here confine ourselves to pointing out only a couple of phenomena.

The equality (6) holds for every a ∈ Cp(Ṙ) and shows that σp(W (a)) is indepen-
dent of p (note that this is no longer true for piecewise continuous symbols). The
following result confirms the same effect for truncated Wiener-Hopf operators.

Theorem 4.1. If a ∈ C +FL1(R) and τ > 0, then σp(Wτ (a)) does not depend on
p ∈ [1,∞].
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Proof. Define the shift operators Vτ and V
(−1)
τ on Lp(0,∞) by

(Vτϕ)(x) =

{
ϕ(x− τ) if τ < x

0 if 0 < x < τ
, (V (−1)

τ ϕ)(x) = ϕ(x+ τ).

We think of the elements of the direct sum Lp(0,∞) ⊕ Lp(0,∞) =: Lp2(0,∞) as
column vectors and consider the operator B given on Lp2(0,∞) by the operator
matrix

B =

(
Vτ W (a)

0 V
(−1)
τ

)
.

It is easily seen that Wτ (a) is invertible on Lp(0, τ) if and only if B is invertible on
Lp2(0,∞).

Let a = c + Fk with c ∈ C and k ∈ L1(R). The operator B may be identified
with the block Wiener-Hopf operator W (b) whose symbol is

b(ξ) =

(
eiτξ a(ξ)

0 e−iτξ

)
(see [14]). Letting

m−(ξ) :=

( −c 0
eiτξ 1

)
, m+(ξ) :=

(
1 0

e−iτξ −c
)
,

we can write W (m−)W (b)W (m+) = W (d) where

d(ξ) = m−(ξ)b(ξ)m+(ξ)

=

(
eiτξ(Fk)(ξ) c+ (Fk)(ξ)
−c+ (Fk)(ξ) e−iτξ(Fk)(ξ)

)
=

(
(Fkτ )(ξ) c+ (Fk)(ξ)
−c+ (Fk)(ξ) (Fk−τ )(ξ)

)

with kτ (x) = k(x − τ), k−τ (x) = k(x + τ). The operators W (m±) are invertible,
the inverses being W (m−1

± ). Thus, B = W (b) is invertible if and only if W (d) is
invertible.

The operator W (d) is a block Wiener-Hopf operator and the symbols of the
entries of W (d) belong to C + FL1(R). We have det d(ξ) = c2, and hence W (d) is
invertible if and only if c 6= 0 and the partial indices of d are both zero (again see
[14]). As the partial indices of a nonsingular matrix function with entries in the
Wiener algebra do not depend on p, we arrive at the conclusion that the invertibility
of our original operator Wτ (a) on Lp(0,∞) is independent of p.

Since Wτ (a) − λI = Wτ (a − λ), we finally see that the spectrum σp(Wτ (a)) is
the same for all p ∈ [1,∞]. �

Thus, when considering the limiting set

Λ(a) := lim
τ→∞σp

(
Wτ (a)

)
for a ∈ C + FL1(R) we can restrict ourselves to the case p = 2.

For Toeplitz matrices with rational symbols the discrete analogue of Λ(a) was
completely identified by Schmidt and Spitzer [29] and Day [11], [12]. The Wiener-
Hopf analogue of this result was established in [9] with the help of formulas for
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Wiener-Hopf determinants contained in [3]. We only remark that if a ∈ C+FL1(R)
is a rational function, then Λ(a) is a nonempty bounded set which is comprised of
a finite union of closed analytic arcs and which is in no obvious way related to the
spectrum of W (a). For example, if a(ξ) = (3 + iξ)/(1 + ξ2), then σp(W (a)) is a set
bounded by an ellipse while Λ(a) is the union of the circle {λ ∈ C : |λ − 1/12| =

1/12} and the interval [3/2−√2, 3/2+
√

2] (see [1] and [9]). Note that Theorem 4.1
and this example completes the proof of Theorem 1.3.

The situation is more delicate for non-rational symbols. Curiously, in this case
the behavior of σp(Wτ (a)) is often more “canonical” than one might expect. Let,
for example, a(ξ) = −sign ξ. This is a piecewise continuous function with two
jumps, one at the origin and one at infinity. The Wiener-Hopf operator associated
with this function is the Cauchy singular integral operator(

W (a)ϕ
)

(x) =
1

πi

∞∫
0

ϕ(t)

t− x dt (0 < x <∞).

Of course, Wτ (a) is given by the same formula with ∞ replaced by τ . It is well
known (see, e.g., [13]) that if 1 < p <∞, then

σp

(
Wτ (a)

)
= σp

(
W (a)

)
= Op(−1, 1) for all τ > 0,

where Op(−1, 1) is the set of all λ ∈ C at which the line segment [−1, 1] is seen at
an angle θ satisfying

max{2π/p, 2π/q} ≤ θ ≤ π (1/p+ 1/q = 1).

Thus, we are in the best of all possible cases. In a sense, it is continuous and
non-rational (or non-analytic) symbols which cause real problems. We refer to [36]
and [2] for a discussion of this phenomenon.

5. Pseudospectra

Things are dramatically simpler when passing from spectra to pseudospectra.
Henry Landau [20], [21], [22] was probably the first to study pseudospectra of
truncated Toeplitz and Wiener-Hopf operators. For p = 2, the discrete analogue
of Theorem 1.4 was established by Reichel and Trefethen [26], although their proof
contained a gap. A completely different proof (based on C∗-algebra techniques)
was given in [4]. Pseudospectra of Wiener-Hopf integral operators (with Volterra
kernels) were also considered in [25]. We remark that in [4] the formula (11) and its
discrete analogue are proved for p = 2 under the sole assumption that a is a locally
normal function, which is, for example, the case if a is piecewise continuous.

We will derive formula (11) from Corollary 3.2. In order to do this, we need the
following result, which says that the norm of the resolvent of an operator on Lp

cannot be locally constant. For p = 2, we learned this result from Andrzej Daniluk
(private communication, see [10]); his proof is published in [4]. We here give a proof
for general p.

Theorem 5.1. Let (X, dµ) be a space with a measure and let 1 < p <∞. Suppose
A is a bounded linear operator on Lp(X, dµ) and A−λI is invertible for all λ in some
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open subset U of C. If ‖(A−λI)−1‖p ≤M for all λ ∈ U , then ‖(A−λI)−1‖p < M
for all λ ∈ U .

Remark. It should be noted that such a result is not true for general analytic

operator-valued functions. To see this, equip C2 with the norm
∥∥∥( z

ω

)∥∥∥
p

=

p
√|z|p + |ω|p and consider the function

A : C→ L(C2), λ 7→
(
λ 0
0 1

)
.

Clearly, ‖A(λ)‖p = max{|λ|, 1} and thus ‖A(λ)‖p = 1 for all λ in the unit disk.

Proof. We may without loss of generality assume that p ≥ 2; otherwise we can
pass to the adjoint operator.

A little thought reveals that what we must show is the following: if U is an open
subset of C containing the origin and ‖(A − λI)−1‖p ≤ M for all λ ∈ U , then
‖A−1‖p < M . Assume the contrary, i.e., let

‖A−1‖p = M.(41)

We have

(A− λI)−1 =
∞∑
j=0

λjA−(j+1)

for all λ = reiϕ in some disk |λ| = r ≤ r0. Hence, for every f ∈ Lp(X, dµ),

‖(A− λI)−1f‖pp =

∫
X

∣∣∣∣ ∞∑
j=0

λj(A−(j+1)f)(x)

∣∣∣∣pdµ(x)(42)

=

∫
X

∣∣∣∣ ∞∑
j=0

rjeijϕ(A−(j+1)f)(x)

∣∣∣∣2p/2dµ(x)

=

∫
X

∣∣∣∣C(r, x) +
∞∑
l=1

Bl(r, x, ϕ)

∣∣∣∣p/2dµ(x)

with

C(r, x) =

∞∑
j=0

r2j
∣∣∣(A−(j+1)f)(x)

∣∣∣2,
Bl(r, x, ϕ) = 2

∞∑
k=0

rl+2kRe
(
eilϕ(A−(l+k+1)f)(x)(A−(k+1)f)(x)

)
.

For n = 0, 1, 2, . . . , put

In(r, ϕ, f) =

∫
X

∣∣∣∣C(r, x) +
∞∑
l=1

B2nl(x, r, ϕ)

∣∣∣∣p/2dµ(x).(43)

We now apply the inequality

|a+ b|p/2 + |a− b|p/2
2

≥ |a|p/2(44)
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to

a = C(r, x) +

∞∑
l=0

B2l(r, x, ϕ), b =
∞∑
l=1

B2l−1(r, x, ϕ)

and integrate the result over X. Taking into account that∫
X

|a− b|p/2dµ(x) = I0(r, ϕ+ π, f),

we get

I0(r, ϕ, f) + I0(r, ϕ+ π, f)

2
≥ I1(r, ϕ, f).(45)

Letting

a = C(r, x) +

∞∑
l=1

B4l(r, x, ϕ), b =
∞∑
l=1

B4l−2(r, x, ϕ)

in (44), we analogously obtain after integration that

I1(r, ϕ, f) + I1(r, ϕ+ π/2, f)

2
≥ I2(r, ϕ, f).(46)

Combining (45) and (46) we arrive at the inequality

(47)
I0(r, ϕ, f) + I0(r, ϕ+ π/2, f) + I0(r, ϕ+ π, f) + I0(r, ϕ+ 3π/2, f)

4

≥ I1(r, ϕ, f) + I1(r, ϕ+ π/2, f)

2
≥ I2(r, ϕ, f).

In the same way as above we see that

I2(r, ϕ, f) + I2(r, ϕ+ π/4, f)

2
≥ I3(r, ϕ, f),

which together with (47) gives

1

8

7∑
m=0

I0

(
r, ϕ+

mπ

4
, f
)
≥ I3(r, ϕ, f).

Obviously, continuing this process we obtain

1

2n

2n−1∑
m=0

I0

(
r, ϕ+

mπ

2n−1
, f

)
≥ In(r, ϕ, f)(48)

for every n ≥ 0.
Now put ϕ = 0 in (48). From (43) we infer that the right-hand side of (48)

converges to ∫
X

|C(r, x)|p/2dµ(x)

as n→∞. The left-hand side of (48) is an integral sum and hence passage to the
limit n→∞ gives

lim
n→∞

1

2π

π

2n−1

2n−1∑
m=0

I0

(
r,
mπ

2n−1
, f

)
=

1

2π

2π∫
0

I0(r, ϕ, f) dϕ.
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As I0(r, ϕ, f) = ‖(A− reiϕI)−1f‖pp by (42), it follows that

1

2π

2π∫
0

‖(A− reiϕI)−1f‖ppdϕ ≥
∫
X

|C(r, x)|p/2dµ(x).(49)

Assume ‖f‖p = 1. Then our hypothesis ‖(A−λI)−1‖p ≤M and (49) imply that

Mp ≥ 1

2π

2π∫
0

‖(A− reiϕI)−1f‖ppdϕ ≥
∫
X

|C(r, x)|p/2dµ(x)

≥
∫
X

(
|(A−1f)(x)|2 + r2|(A−2f)(x)|2

)p/2
dµ(x).

Since (|a|+ |b|)p/2 ≥ |a|p/2 + |b|p/2, we get

Mp ≥
∫
X

|(A−1f)(x)|pdµ(x) + rp
∫
X

|(A−2f)(x)|pdµ(x)(50)

= ‖A−1f‖pp + rp‖A−2f‖pp.
Let ε > 0 be an arbitrary number. By virtue of (41), we can find an f ∈ Lp(X, dµ)
such that ‖f‖p = 1 and ‖A−1f‖pp ≥Mp − ε. Since

‖A−2f‖p ≥ ‖A2‖−1
p ‖f‖p = ‖A2‖−1

p ,

we finally obtain from (50) that

Mp ≥Mp − ε+ rp‖A2‖−pp for all r ∈ (0, r0],

which is impossible if ε is sufficiently small. This contradiction completes the
proof. �
Theorem 5.2. Let 1 < p <∞ and Aτ = Wτ (a) + PτKPτ + RτLRτ + Cτ with a

in Cp(Ṙ), K, L ∈ K(Lp(0,∞)), and ‖Cτ‖p → 0 as τ →∞. Then for each ε > 0,

lim
τ→∞σ

ε
p(Aτ ) = σεp

(
W (a) +K

)
∪ σεp

(
W (ã) + L

)
.(51)

Proof. Put A = W (a) +K and B = W (ã) + L. We first show the inclusion

σεp(A) ⊂ lim
τ→∞σ

ε
p(Aτ ).(52)

Pick λ ∈ σp(A). We claim that

lim sup
τ→∞

‖(Aτ − λI)−1‖p =∞.(53)

Assume the contrary, i.e., let ‖(Aτ − λI)−1‖p ≤ m <∞ for all τ > τ0. Then

‖Pτϕ‖p ≤ m‖(Aτ − λI)Pτϕ‖p
for every ϕ ∈ Lp(0,∞) and all τ > τ0, whence ‖ϕ‖p ≤ m‖(A − λI)ϕ‖p for every
ϕ ∈ Lp(0,∞). This shows that A− λI has a closed range and a trivial kernel. Our
assumption implies that ‖(A∗τ + λI)−1‖q ≤ m <∞ where 1/p+ 1/q = 1. Arguing

as above, we see that A∗ − λI has a trivial kernel on Lq(0,∞), which implies that
the range of A − λI is dense in Lp(0,∞). In summary, A − λI must be invertible
on Lp(0,∞). As this is impossible if λ ∈ σp(A), we see that (53) is true.
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From (53) we deduce the existence of τ1, τ2, . . . such that τn →∞ and

‖(Aτn − λI)−1‖p ≥ 1/ε.

This shows that λ belongs to the set on the right of (52).
Now suppose λ ∈ σεp(A) \ σp(A). Then ‖(A − λI)−1‖p ≥ 1/ε. Let U ⊂ C be

any open neighborhood of λ. From Theorem 5.1 we see that there is a point µ ∈ U
such that ‖(A− µI)−1‖ > 1/ε. Hence, we can find an integer n0 > 0 such that

‖(A− µI)−1‖p ≥ 1

ε− 1/n
for all n ≥ n0.

Because U was arbitrary, it follows that there exists a sequence λ1, λ2, . . . such that

λn ∈ σε−1/n
p (A) and λn → λ.

For every invertible operator T ∈ L(Lp(0,∞)) we have

‖T−1‖p = sup
ψ 6=0

‖T−1ψ‖p
‖ψ‖p = sup

ϕ6=0

‖ϕ‖p
‖Tϕ‖p =

(
inf
ϕ6=0

‖Tϕ‖p
‖ϕ‖p

)−1

.(54)

Since ‖(A− λnI)−1‖p ≥ 1/(ε− 1/n), we obtain from (54) that

inf
‖ϕ‖p=1

‖(A− λnI)ϕ‖p ≤ ε− 1/n,

implying the existence of a ϕn ∈ Lp(0,∞) such that

‖ϕn‖p = 1 and ‖(A− λnI)ϕn‖p < ε− 1/(2n).

Because ‖(Aτ−λnI)Pτϕn‖p → ‖(A−λI)ϕ‖p and ‖Pτϕn‖p → ‖ϕn‖p = 1 as τ →∞,
it follows that

‖(Aτ − λnI)Pτϕn‖p/‖Pτϕn‖p < ε− 1/(3n)

for all τ → τ0(n). Again invoking (54) we see that

‖(Aτ − λnI)−1‖p >
(
ε− 1/(3n)

)−1

> 1/ε

and thus λn ∈ σεp(Aτ ) for all τ > τ0(n). This implies that λ = limλn lies in the set
on the right of (52). At this point the proof of (52) is complete.

Repeating the above reasoning with RτAτRτ and B in place of Aτ and A,
respectively, we get the inclusion

σεp(B) ⊂ lim
τ→∞σ

ε
p(RτAτRτ ).(55)

Because Rτ is an isometry on Lp(0, τ) and

RτAτRτ − λPτ = Rτ (Aτ − λI)Rτ ,

it is clear that σεp(RτAτRτ ) = σεp(Aτ ). Thus, in (55) we may replace RτAτRτ by
Aτ , which in conjunction with (52) proves the inclusion “⊃” in (51).

We are left with proving the inclusion “⊂” of (51). So let λ 6∈ σεp(A) ∪ σεp(B).
Then

‖(A− λI)−1‖p < 1/ε, ‖(B − λI)−1‖p < 1/ε,

whence

‖(Aτ − λI)−1‖p < 1/ε− δ < 1/ε for all τ > τ0(56)
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with some δ > 0 due to Corollary 3.2. If |µ− λ| is sufficiently small, then Aτ − µI
is invertible together with Aτ − λI, and we have

‖(Aτ − µI)−1‖p ≤ ‖(Aτ − λI)−1‖p
1− |µ− λ| ‖(Aτ − λI)−1‖p .(57)

Let |µ− λ| < εδ/(1/ε− δ). In this case (56) and (57) give

‖(Aτ − µI)−1‖p < 1/ε− δ
1− εδ(1/ε− δ)/(1/ε− δ) =

1

ε
.

Thus, µ 6∈ σεp(Aτ ) for τ > τ0. This shows that λ cannot belong to lim
τ→∞σ

ε
p(Aτ ). �

Obviously, Theorem 1.4 is a special case of Theorem 5.2. We remark that in the
p = 2 case the equalities (34) and (35) imply that

lim
τ→∞σ

ε
2

(
Wτ (a)

)
= σε2

(
W (a)

)
(58)

for each ε > 0. With the notation as in Corollary 3.4, we have for each ε > 0,

lim
τ→∞σ

ε
p

(∑
j

∏
k

Wτ (ajk

)
= σεp(A) ∪ σεp(B1),

lim
τ→∞σ

ε
p

(
Pτ
∑
j

∏
k

W (ajk)Pτ

)
= σεp(A) ∪ σεp(B2).

Finally, note that Theorems 5.2 and 1.2 imply that σεp(Wτ (a)) in general depends
on p.

6. Matrix Case

Given a positive integer m, we denote by Lpm(0,∞) the direct sum of m copies
of Lp(0,∞) and we think of the elements of Lpm(0,∞) as columns. We define the
norm on Lpm(0,∞) by

‖(f1, . . . , fm)T ‖pp :=

∞∫
0

( m∑
j=1

|fj(x)|2
)p/2

dx.

Let Cm×mp (Ṙ) stand for the collection of all m×m matrix functions with entries in

Cp(Ṙ). For a = (ajk)mj,k=1 ∈ Cm×mp (Ṙ) the (block) Wiener-Hopf integral operator

W (a) is defined on Lpm(0,∞) by the operator matrix (W (ajk))mj,k=1. The direct sum

Lpm(0, τ) of m copies of Lp(0, τ) may be identified with a subspace of Lpm(0,∞) in
a natural manner. The operators on Lpm(0,∞) given by the diagonal matrices
diag (Pτ , . . . , Pτ ) and diag (Rτ , . . . , Rτ ) are also denoted by Pτ and Rτ . If a =

(ajk)mj,k=1 ∈ Cm×mp (Ṙ), then the compression Wτ (a) of W (a) to Lpm(0, τ) is nothing

but (Wτ (ajk))mj,k=1. Finally, we give Fm×mp , Cm×mp , Am×mp the natural meaning.
The results proved above extend to the matrix case with obvious adjustments.

We confine ourselves to formulating the basic theorems.



Truncated Wiener-Hopf Operators and Toeplitz Matrices 23

Theorem 6.1. Let 1 ≤ p <∞. Then

Am×mp =
{
Wτ (a) +K : a ∈ Cm×mp (Ṙ), K ∈ K(Lpm(0,∞)

)}
,

Fm×mp =
{
Wτ (a) + PτKPτ +RτLRτ + Cτ : a ∈ Cm×mp (Ṙ),

K, L ∈ K(Lpm(0,∞)
)
, ‖Cτ‖p → 0 as τ →∞

}
,

the map Symp : Fm×mp /Cm×mp → Am×mp ⊕Am×mp sending

{Wτ (a) + PτKPτ +RτLRτ + Cτ}+ Cm×mp to
(
W (a) +K, W (ã) + L

)
is an isometric Banach algebra homomorphism, and

lim sup
τ→∞

‖Aτ‖p = lim
τ→∞ ‖Aτ‖p

for every family {Aτ} ∈ Fm×mp .

Theorem 6.2. Let 1 ≤ p < ∞, a ∈ Cm×mp (Ṙ), and N ∈ K(Lpm(0,∞)). If
W (a) + N and W (ã) (where ã(ξ) := a(−ξ)) are invertible on Lpm(0,∞) then the
limit (27) exists and is equal to (28). If one of the operators W (a) +N and W (ã)
is not invertible on Lpm(0,∞), then

lim sup
τ→∞

‖(Wτ (a) + PτNPτ )−1‖p =∞.

Note that in the scalar case (m = 1) the operatorW (ã) is automatically invertible
if W (a) +N is invertible. This is no longer true in the matrix case (see e.g., [14]).
Also notice that in the matrix case the equality

lim
τ→∞ ‖W

−1
τ (a)‖2 = max

{
‖W−1(a)‖2, ‖W−1(ã)‖2

}
cannot be simplified to (36).

Theorem 6.3. Let 1 < p < ∞ and Aτ = Wτ (a) + PτKPτ + RτLRτ + Cτ , where

a ∈ Cm×mp (Ṙ), K, L ∈ K(Lpm(0,∞)), and ‖Cτ‖p → 0 as τ →∞. Then for each
ε > 0,

lim
τ→∞σ

ε
p(Aτ ) = σεp

(
W (a) +K

)
∪ σεp

(
W (ã) + L

)
.

We emphasize again that the equality

lim
τ→∞σ

ε
2

(
Wτ (a)

)
= σε2

(
W (a)

)
∪ σε2

(
W (ã)

)
cannot be reduced to (58) if m > 1.

7. Block Toeplitz Matrices

Let T be the complex unit circle. Given a function a ∈ L∞(T), we denote by
{an}n∈Z the sequence of its Fourier coefficients,

an =
1

2π

2π∫
0

a(eiθ)e−inθdθ,
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and we let W (T) stand for the Wiener algebra of all functions a with absolutely
convergent Fourier series. We think of lp = lp(Z+) = lp({0, 1, 2, . . . }) as a space
of infinite columns. If a ∈ L∞(T), then the Toeplitz operator T (a) given by the
Toeplitz matrix

(aj−k)∞j,k=0(59)

is bounded on l2. For 1 ≤ p <∞, let Mp(T) be the set of all functions a ∈ L∞(T)
satisfying

‖T (a)ϕ‖p ≤ C‖ϕ‖p for all ϕ ∈ l2 ∩ lp

with some C = C(a, p) <∞ independent of p. The set Mp(T) is a Banach algebra
with the norm

‖a‖Mp(T) = sup
{
‖T (a)ϕ‖p/‖ϕ‖p : ϕ ∈ l2 ∩ lp, ϕ 6= 0

}
.

It is easily seen that W (T) ⊂ Mp(T) for all p ∈ [1,∞). The closure of W (T) in
Mp(T) is denoted by Cp(T). One can show that C1(T) = W (T), C2(T) = C(T),
and that if p ∈ (1, 2) ∪ (2,∞), then

Cp(T) = Cq(T) ⊂ C(T) ∩Mp(T),

the inclusion being proper (see, e.g., [7], [8]). If a ∈ Cp(T), then the matrix (59)
induces a bounded operator on lp. This operator is denoted by T (a) and called the
Toeplitz operator (or the Toeplitz matrix) with the symbol a.

For a ∈ Cp(T) and n ∈ Z+ we denote by Tn(a) the (n + 1) × (n + 1) Toeplitz
matrix (aj−k)nj,k=0. On defining Pn on lp by

(Pnϕ)j =

{
ϕj if 0 ≤ j ≤ n,
0 if j > n,

we can identify Tn(a) with the compression of T (a) to lp(Zn) = lp({0, 1, . . . , n}).
The discrete analogue of the operator Rτ given by (15) is the operator Rn defined
by

(Rnϕ)j =

{
ϕn−j if 0 ≤ j ≤ n,

0 if j > n.

We regard lp(Zn) as a subspace of lp = lp(Z+). This specifies the norms in lp(Zn)
and L(lp(Zn)). The norm and the spectrum of an operator A on lp(Zn) or lp(Z+)
are denoted by ‖A‖p and σp(A), respectively. The ε-pseudospectrum σεp(A) is
defined as the set (3).

Finally, given a positive integer m, we define lpm, l
p
m(Zn), Cm×mp (T), Pn, Rn

as well as T (a) and Tn(a) for a ∈ Cm×mp (T) in the natural fashion. The norm of

(f1, . . . , fm)T ∈ lpm is defined by

‖(f1, . . . , fm)T ‖pp =
∑
j

( m∑
k=1

|(fk)j |2
)p/2

.

All results established above for Wiener-Hopf integral operators have analogues
for Toeplitz operators. The proofs in the Toeplitz case are completely analogous to
(and sometimes even simpler than) the proofs for Wiener-Hopf integral operators.
We therefore only state the results.
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Let Am×mp be the smallest closed subalgebra of L(lpm) containing {T (a) : a ∈
W (T)}. One can show that

Am×mp =
{
T (a) +K : a ∈ Cm×mp (T), K ∈ K(lpm)

}
and that Am×mp is inverse closed in L(lpm). Denote by Sm×mp the Banach algebra
of all sequences {An} = {An}∞n=0 of operators (matrices) An ∈ L(lpm) such that

‖{An}‖p := sup
n∈Z+

‖An‖p <∞,

let Cm×mp be the closed two-sided ideal of all sequences {An} ∈ Sm×mp for which

‖An‖p → 0 as n → ∞, and let Fm×mp stand for the smallest closed subalgebra of

Sm×mp containing all sequences {Tn(a)}∞n=0 with a ∈W (T).

Theorem 7.1. Let 1 ≤ p <∞. Then

Fm×mp =
{
Tn(a) + PnKPn +RnLRn + Cn : a ∈ Cm×mp (T),

K, L ∈ K(lpm), ‖Cn‖p → 0 as n→∞
}
.

The map

Symp : Fm×mp /Cm×mp → Am×mp ⊕Am×mp

sending

{An}+ Cm×mp =
{
Tn(a) + PnKPn +RnLRn + Cn

}
+ Cm×mp

to (
s−lim
n→∞An, s−lim

n→∞RnAnRn
)

=
(
T (a) +K, T (ã) + L

)
(ã(t) := a(1/t) for t ∈ T) is an isometric Banach algebra homomorphism. Further-
more,

lim sup
n→∞

‖An‖p = lim
n→∞ ‖An‖p

for every {An} ∈ Fm×mp .

Theorem 7.2. Let 1 ≤ p <∞, a ∈ Cm×mp (T), and N ∈ K(lpm). If T (a) +N and
T (ã) are invertible on lpm then the limit

lim
n→∞ ‖(Tn(a) + PnNPn)−1‖p

exists and equals

max
{
‖(T (a) +N)−1‖p, ‖T−1(ã)‖p

}
.

If one of the operators T (a) +N and T (ã) is not invertible on lpm then

lim sup
n→∞

‖(Tn(a) + PnNPn)−1‖p =∞.



26 A. Böttcher, S. M. Grudsky, and B. Silbermann

Theorem 7.3. Let 1 < p < ∞ and An = Tn(a) + PnKPn + RnLRn + Cn where
a ∈ Cm×mp (T), K, L ∈ K(lpm), and ‖CN‖p → 0 as n→∞. Then for each ε > 0,

lim
n→∞σ

ε
p(An) = σεp

(
T (a) +K

)
∪ σεp

(
T (ã) + L

)
.

In Theorem 7.3, limn→∞ σεp(An) is defined as the set of all λ ∈ C for which there
exist n1, n2, . . . and λ1, λ2, . . . such that

n1 < n2 < . . . , nk →∞, λn ∈ σεp(Ank), λn → λ.

For p = 2, the previous three theorems were established in [31] and [4] by means
of C∗-algebra techniques. For p = 1, m = 1, N = 0, Theorem 7.2 was first obtained
in [16]. The paper [16] also contains an example of a function a ∈W (T) such that

‖T−1(a)‖1 > ‖T−1(a)‖∞;(60)

the proof of Theorem 1.2 given here is nothing but the continuous analogue of the
proof of (60) presented in [16]. Of course, once (60) is known, one can proceed as
in the proof of Theorem 1.2 to show that

‖T−1(a)‖p < ‖T−1(ã)‖p
if only p is sufficiently large. We remark that in [16] one can also find estimates for
the convergence speed of ‖T−1

n (a)‖1 to ‖T−1(a)‖1 as n→∞.
The discrete analogue of Theorem 4.1 amounts to the triviality that the eigen-

values of Tn(a) do not depend on the space Tn(a) is thought of as acting on.
Given a, b ∈ Cm×mp (T), we put

aP + bQ :=



. . . . . . . . . . . . . . . . . . . . .

. . . b0 b−1 a−2 a−3 a−4 . . .

. . . b1 b0 a−1 a−2 a−3 . . .

. . . b2 b1 a0 a−1 a−2 . . .

. . . b3 b2 a1 a0 a−1 . . .

. . . b4 b3 a2 a1 a0 . . .

. . . . . . . . . . . . . . . . . . . . .


(61)

and call aP + bQ a paired matrix (see [14, Chapters V and VI]). Let lpm(Z) (1 ≤
p <∞) denote the usual lpm spaces on the integers Z and define Pn on lpm(Z) by

Pn : (xk)∞k=−∞ 7→ (. . . , 0, x−n, . . . , x−1, x0, . . . , xn−1, 0, . . . ).

If K ∈ K(lpm(Z)), then Pn(aP + bQ + K)Pn may be identified with a 2nm × 2nm
matrix. The hypothesis a, b ∈ Cm×mp (T) implies that the north-east and south-
west quarters of the matrix (61) represent compact operators. Thus (61) is in fact
a compactly perturbed direct sum of two Toeplitz matrices. From Theorems 7.2
and 7.3 we therefore easily deduce that

lim
n→∞ ‖(Pn(aP + bQ+K)Pn)−1‖p

= max
{
‖(aP + bQ+K)−1‖p, ‖T−1(ã)‖p, ‖T−1(b̃)‖p

}
and, for ε > 0,

lim
n→∞σ

ε
p

(
Pn(aP + bQ+K)Pn

)
= σεp

(
aP + bQ+K

)
∪ σεp

(
T (ã)

)
∪ σεp

(
T (b̃)

)
.
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Of course, systems of paired Wiener-Hopf integral operators may be tackled in
the same way.

We remark that all results can also be carried over to block Toeplitz operators
on the Hardy spaces Hp(T) (1 < p < ∞) and to Wiener-Hopf integral operators
with matrix symbols on the Hardy spaces Hp(R) (1 < p <∞).

8. Pseudospectra of Infinite Toeplitz Matrices

From (6) we know the spectrum of the Wiener-Hopf operator W (a) on Lp(0,∞)
(1 ≤ p ≤ ∞) in case a ∈ C + FL1(R). An analogous result is true for Toeplitz
operators on lp (1 ≤ p ≤ ∞): if b ∈W (T), then

σp

(
T (b)

)
= b(T) ∪

{
λ ∈ C \ b(T) : wind (b, λ) 6= 0

}
.(62)

Theorems 5.2 and 7.3 do not pertain to spectra but to pseudospectra. Thus, it is
desirable to know more about the pseudospectra σεp(W (a)) and σεp(T (b)).

Given a Banach space X and a bounded linear operator A on X, we define the
spectrum σX(A) and the ε-pseudospectrum σεX(A) in the natural manner:

σX(A) =
{
λ ∈ C : A− λI is not invertible

}
,

σεX(A) =
{
λ ∈ C : ‖(A− λI)−1‖ ≥ 1/ε

}
.

One always has

σX(A) + ∆ε ⊂ σεX(A)(63)

where ∆ε = {λ ∈ C : |λ| ≤ ε}. Indeed, if λ 6∈ σεX(A) then ε < ‖(A − λI)−1‖−1,
which implies that A− λI − δI is invertible whenever |δ| ≤ ε.

The following two theorems provide additional information about Hilbert space
Wiener-Hopf and Toeplitz operators. For a function c in L∞ on R or T, we denote
by R(c) its essential range and by convR(c) the convex hull of R(c). Note that
σ0
X(A) is nothing but σX(A).

Theorem 8.1. If ε ≥ 0, a ∈ L∞(R), b ∈ L∞(T), then

σ2

(
W (a)

)
+ ∆ε ⊂ σε2

(
W (a)

)
⊂ convR(a) + ∆ε,(64)

σ2

(
T (b)

)
+ ∆ε ⊂ σε2

(
T (b)

)
⊂ convR(b) + ∆ε.(65)

Proof. The left inclusions in (64) and (65) are immediate from (63). For ε = 0,
the right inclusions of (64) and (65) are known as the Brown-Halmos theorem (see,
e.g., [8, Theorem 2.33]). For ε > 0, the proof of the latter inclusions is similar to
the proof of the Brown-Halmos theorem. Here it is.

Let λ 6∈ convR(a) + ∆ε. Then 0 6∈ convR(a−λ) + ∆ε, and hence we can rotate
convR(a− λ) + ∆ε into the right open half-plane, i.e., there is a γ ∈ T such that

convR
(
γ(a− λ)

)
+ ∆ε ⊂ {z ∈ C : Re z > 0}.
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Then we can find a (sufficiently large) disk {z ∈ C : |z− r− ε| < r} containing the

set convR
(
γ(a− λ)

)
. We so have |γ(a(ξ)− λ)− r − ε| < r and therefore∣∣∣∣γ(a(ξ)− λ)

r + ε
− 1

∣∣∣∣ < r

r + ε

for almost all ξ ∈ R. Since

γ

r + ε
W (a− λ) = I +W

(
γ(a− λ)

r + ε
− 1

)
and the norm of the Wiener-Hopf operator on the right is less than r/(r + ε) < 1,
it follows that (γ/(r + ε))W (a− λ) is invertible and that

r + ε

|γ| ‖W
−1(a− λ)‖2 < 1

1− r/(r + ε)
,

whence ‖W−1(a− λ)‖2 < |γ|/ε = 1/ε. Thus, λ 6∈ σεp(W (a)).
The proof is the same for the Toeplitz operator T (b). �

It is readily seen that the right inclusions of (64) and (65) may be proper. Indeed,
suppose a ∈ C + FL1(R) and R(a) is the half-circle {z ∈ T : Im z ≥ 0}. From
(6) we infer that W (a) is invertible and hence, if ε > 0 is small enough then
‖W−1(a)‖2 < 1/ε. Thus, 0 6∈ σε2(W (a)) although 0 ∈ convR(a) + ∆ε. The
following result tells us that the left inclusions of (64) and (65) may also be proper.

Theorem 8.2. Given ε > 0, there exist a ∈ C + FL1(R) and b ∈W (T) such that

σ2

(
W (a)

)
+ ∆ε 6= σε2

(
W (a)

)
, σ2

(
T (b)

)
+ ∆ε 6= σε2

(
T (b)

)
.

Proof. Put

b(eiθ) =

{
e2iθ for 0 ≤ θ < π,
e−2iθ for π ≤ θ < 2π.

If eiθ traverses T, then b(eiθ) twice traces out the unit circle, once in the positive
and once in the negative direction. Thus, σ2(T (b)) = T due to (62). We claim that

σ
3/4
2

(
T (b)

)
= {λ ∈ C : |λ| ≤ 7/4},(66)

which is clearly properly larger than T + ∆3/4. From Theorem 8.1 we deduce that

{λ ∈ C : 1/4 ≤ |λ| ≤ 7/4} ⊂ σ3/4
2

(
T (b)

)
⊂ {λ ∈ C : |λ| ≤ 7/4}.

Consequently, (66) will follow as soon as we have shown that

‖T−1(b− λ)‖2 ≥ 4/3 whenever |λ| < 1/4.(67)

So assume |λ| < 1/4. The Fourier coefficients of b can be easily computed:

b0 = 0, b2 = b−2 = 1/2,

bn = 0 if n 6= ±2 is even,

bn = 4/
(
πi(n2 − 4)

)
if n is odd.
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It follows in particular that b ∈ W (T). Writing the elements of l2 in the form
(x0, x1, x2, . . . ) and taking into account (54) we get

‖T−1(b− λ)‖2 =

(
inf
ϕ6=0

‖T (b− λ)ϕ‖2
‖ϕ‖2

)−1

≥ ‖T (b− λ)(1, 0, 0, . . . )‖−1
2

= ‖(b0 − λ, b1, b2, b3, . . . )‖−1
2

=

(
|b0 − λ|2 +

∑
n≥1

|bn|2
)−1/2

.

Since b0 = 0 and |bn| = |b−n| for all n, we obtain

|b0 − λ|2 +
∑
n≥1

|bn|2 = |λ|2+
1

2

∑
n∈Z

|bn|2

= |λ|2 +
1

2

1

2π

2π∫
0

|b(eiθ)|2dθ (Parseval’s equality)

= |λ|2 + 1/2 (note that b is unimodular)

< (1/4)2 + 1/2 = 9/16.

Thus, ‖T−1(b−λ)‖2 > (9/16)−1/2 = 4/3, which gives (67) and completes the proof
of (66).

Replacing b by bε := (4ε/3)b we easily conclude from (66) that

σε2

(
T (bε)

)
= {λ ∈ C : |λ| ≤ 7ε/3},

which is strictly larger than

σ2

(
T (bε)

)
+ ∆ε = {λ ∈ C : ε/3 ≤ |λ| ≤ 7/ε}.

At this point we have proved the assertion for Toeplitz matrices.
To prove the theorem for Wiener-Hopf operators, notice first that an orthonormal

basis in L2(0,∞) is given by {en}∞n=0 where en(x) =
√

2e−xΠn(2x) and Πn is the
normalized nth Laguerre polynomial. The map

U : l2 → L2(0,∞), (ϕ0, ϕ1, ϕ2, . . . ) 7→
∞∑
n=0

ϕnen

is an isometric isomorphism, and if b ∈W (T) has the Fourier coefficients {bn}n∈Z

then UT (b)U−1 is the Wiener-Hopf operator W (a) with the symbol

a(ξ) =
∑
n∈Z

bn

(
ξ − i
ξ + i

)n
(ξ ∈ R);

see, e.g., [14, Chap. III, Sec. 3]. Obviously, a ∈ C+FL1(R), σ2(W (a)) = σ2(T (b)),
and since

‖W−1(a− λ)‖2 = ‖UT−1(b− λ)U−1‖2 = ‖T−1(b− λ)‖2,
it results that σε2(W (a)) = σε2(T (b)) for each ε > 0. This reduces the proof in the
Wiener-Hopf case to the proof in the Toeplitz case. �
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[6] A. Böttcher and B. Silbermann, The finite section method for Toeplitz operators on the
quarter-plane with piecewise continuous symbols, Math. Nachr. 110 (1983), 279–291.
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[9] A. Böttcher and H. Widom, Two remarks on spectral approximations for Wiener–Hopf op-
erators, J. Integral Equations Appl. 6 (1994), 31–36.
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