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Harnack Inequalities For Curvature
Flows Depending On Mean Curvature

Knut Smoczyk

ABSTRACT. We prove Harnack inequalities for parabolic flows of compact orientable
hypersurfaces in R**1, where the normal velocity is given by a smooth function f
depending only on the mean curvature. We use these estimates to prove longtime
existence of solutions in some highly nonlinear cases. In addition we prove that
compact selfsimilar solutions with constant mean curvature must be spheres and
that compact selfsimilar solutions with nonconstant mean curvature can only occur
in the case, where f = Aax® with two constants A and «.
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1. Introduction

Assume that M™ is a compact orientable surface, smoothly immersed into R™+!
by a smooth family of diffeomorphisms F; : M™ — R™*! that satisfy the PDE

0

&F:_fy,

where v denotes the outward pointing unit normal and f is a smooth function

depending only on the mean curvature H of the immersed surface, e.g. for f = H
we get the well-known mean curvature flow (MCF) and for f = —- we obtain the

inverse mean curvature flow. Hamilton [4] proved a beautiful Harnack inequality
for the MCF. In [1] Harnack inequalities were derived for convex hypersurfaces in
cases where f may depend on the full second fundamental form. The case f = —%
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has not been studied yet nor are there results for arbitrary functions f depending
only on H. The aim of this paper is to address the following questions:

I. What conditions on f guarantee that the flow becomes parabolic so that
we have shorttime existence of a solution?
II. For which f do we get nice Harnack inequalities?
III. Since selfsimilar solutions play an important role in the Harnack inequality
for the MCF, we ask: For which f do selfsimilar solutions exist and can we
say something about the nature of these solutions?

An interesting case is the inverse mean curvature flow f = —% since it is im-
portant in General Relativity [6]. There is some hope that one can generalize our
results to other target manifolds N"+1.

Throughout this paper we will use the standard terminology, i.e., (-, -) denotes the
euclidean inner product, g;jdx’@dz? is the induced metric on M™, z* coordinates for
M™ and hjjdz' @ dx? = (V,;F,V,v)dz' @ dz’ denotes the second fundamental form,
V the covariant derivative with respect to g;;. Double latin indices are summed

from 1 to n and we set
|A]? == hy;h | C = hyh R

In this paper we will always assume that f :  — R is a smooth function defined
on an open subset in R and we define

Definition. Let F : M™ — R™"! be an immersion. F is called admissible, if
H(x) €, Yx € M".

The answer to question I is then given by

Proposition I. Let Fy : M™ — R™*! be an admissible smooth immersion of a
compact orientable surface M™ and assume that f' : Q — R is strictly positive.
Then the PDE

(%) %F =—fv
F(z,0) = Fy(z), Ve e M"

has a smooth admissible solution on a mazimal time interval [0,T), T > 0.

Proof. This follows from the fact that the linearization of (x) differs from the lin-
earization for the mean curvature flow only by a factor f’ which by assumption is
strictly positive. Therefore (%) is a (nonlinear) parabolic equation and the compact-
ness of M™ and the theory for parabolic equations imply shorttime existence. [

In view of Proposition I we will always assume that f/ > 0. Then the main
theorem can be stated as follows

Theorem 1. Assume that Fy : M™ — R™! is an admissible smooth and convex
immersion of an orientable compact M™ and that f : Q — R is a smooth function
such that for all x € Q0 we have

" "

£o0, Ltz an, (Do) <o, fpe i - (P02 0
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where a € R is a constant. Then we can find a small positive constant d such that
0 o
af + 2<Vf, V> + hijVZVJ + Cf/H >0

holds for all tangent vectors V as long ast < T, d + (a + 2)t > 0 and M; stays

convex, where we have set ¢(t) := m

REMARK. We do have to make these assumptions on f to avoid negative terms in
the evolution equation for the basic Harnack expression Z (see below). f = az®
satisfies the assumptions in Theorem 1 on = (0, 00) with a = a—1. The following
Propositions show that almost all functions satisfying the assumptions in Theorem 1
are of this form.

Proposition ITa. Assume that f : (0,a) = R, 0 < a < 00 is a smooth function
that smoothly extends to x = 0 and satisfies all assumptions in Theorem 1. Let us
set iy := min{l > 0[fV(0) # 0} < co. If 0 < iy < oo then f = Aipx's with a
positive constant A.

Proof. Since f(0) =0 and f'(z) > 0, Vz € Q = (0,a) we observe that f(z) >
0, Vz € Q. By de I'Hospital’s rule we obtain

!
lim —x =iy

z—0
and .
;11)% %x =ir—1
f// 1 , .
and then (Tx) <0 and f/ > 0 imply
(1.1) e <(ig—1)f", Vz

Since fiq > 0 we have by assumption
e+ ff = (f)x = f%?w)’ >0
and then also
(1.2) fle>ipf, Vo
But (1.1) and (1.2) imply
O ff e+ ff = (e <Gy =Off' + [ —igff =0

and therefore

(];/x), ~0
which implies that

‘;lar =iy
and after integration 4

f=Aiga*

with a positive constant A (since f' > 0). O



106 Knut Smoczyk

Proposition ITb. Assume that f : (a,00) > R , 0 < a < 00 is a smooth func-
tion that satisfies all assumptions in Theorem 1 and that g(x) := —f(%) smoothly
extends to x = 0. If 0 <i, < oo then f = —Aigz"' with a positive constant A.

Proof. If we set y = % and g(y) = —f(z) then the assumptions for f and z
translate into the same assumptions for ¢ and y and as above we can derive the
desired result. ]

REMARK. f(z) = /= does not satisfy the assumptions in Proposition Ila since
it does not extend smoothly to x = 0. f(z) = = + 1 satisfies all assumptions in
Theorem 1. f(z) = Inz satisfies almost all assumptions in Theorem 1. The only
condition which is violated is that ff"z + ff' — (f/)?z = -1 < 0 on Q = (0,00).

2. Some relations and evolution equations

By assumption we have

0

(2.1) =F =

_fV

In [7] we formally derived the evolution equations for various geometric objects on
M™, these are:

(2.2) %gzj = —2fhi;

(2.3) %du = —Hfdu

(dp denotes the volume form)

(2.4) %V =Vf

(2.5) %h”— =V,V;f — fhi'h;
(2.6) %H = Af+ flAP

(2.7) %\AF = 2(hij, ViV, f) +2fC

In addition we have the well-known Gauf}-Weingarten-Codazzi-Mainardi equa-
tions

(2.8) ViV;F = —h;v

(2.9) AF = g¢“V,V;F = —Hv
(2.10) Vihjr = Vjhik

(2.11) Vi =h'V,F

(2.12) V:V,v =V'h;ViF — hlhjv
(2.13) Av=VH — |APv
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Note that in these equations we assume that F, v are sets of n + 1 functions on
M™.
We also have the Simons identity

(2.14) V.ViH = Ahy; — Hh'hyj + |Ahy;
3. Homothetic solutions

A homothetic solution F; is a family of diffeomorphisms such that the surfaces
given by the rescaled diffeomorphisms F, := UF are stationary in R"*!, where W
denotes a function depending only on time ¢. The assumption that }7} represents a
stationary surface means that the normal velocity must be zero. So we have

0~ _ 0
=(=—F = —U(Fv)— fU
0= (G F V) =g Vv = f
Let us define ¢ := —% In W. Then we have shown that for a homothetic solution
of (x) we have
(H.1) f=—cFv)

Taking covariant derivatives of f and using (2.11), (2.10), (2.8) we obtain with

(H.2) Vif = —h'V,

(H.3) Vi‘7j = cgij + fhij

(H.4) ViVif = =V'hijVi — chij — fhihy;
(H.5) Af+ fIAP? = —(VH,V) — cH
(H.6) AV; = fV;H + hjVif

N

. The Harnack inequality

In the sequel we have to calculate many evolution equations. To avoid too
complicated formulas it is most convenient to work with coordinates associated to
a moving frame. We use similar moving frame coordinates as in [4]. Here the
moving frame {E, }4=1,., evolves according to

9 i g
(4.1) &E“ = fh';E},
and we denote the coordinates of a vector V with respect to the moving frame by
y%. The following calculations closely follow the procedure in [4]. As in this paper
we have

o,
4.2 byt
( ) Va ya ayf
., 0 i 0
4. D, =t - — Fk J_Z
( 3) a ya(axz z]yb 8y§)

(44) §ab = gacvg - gva;
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In addition we define

0
(4.5) Dyi= o+ A,V
Then straightforward computations give the commutator relations

4 6) [Dm Db] = RdebaVZ
(4.7) Vi, D] = —IyD" ; [Vy, D] = I7 Dy
48) [5bc,Da] ZI;)IDC—ISD[,

)

(4.9 (2 Dal = (DalIhy) + Dyl )~ D*([has) V'

(4.10) [De, Da] = D°(fhy )b + fh Dy

(4.11) [A, Do) = D*(R%4Vg) + R, VD

(412)  [Dy— f'A,D,] = 'R, " Dybeq + f' Dah®hy?6ca + J;,/Da fA

+(f = f'H)hg' Dy + f'h"h,' Dy

(4.13)
(D1 A] = (£ = H)D, D" + 20, DyD + 21 D* (D" + D* (D))
In the moving frame the evolution equations reduce to

(4.14) Digay =05 gab = Lap

(4.15) Dihay = DaDyf + Fhy" By

(4.16) Dif = f'(Af + fIA]?)

Let us now define the following tensors, where we assume that V, is an arbitrary
tangent vector on M™ and ¢ a smooth function to be determined later and only
depending on time t¢.

X, :=Duf +h,'V;
Yop :== DoV — fhap — cgap
Z :=Dif +2(Df, V) + hay VOV’ + cf' H
Wap := Dihap + D hap Vi + chap
W :=D,f +(Df,V)+cf'H

By (H.1)—(H.6) these tensors vanish on homothetic solutions if we take V, = V,
and the induced c¢. On the other hand we have

~ ] ~
DV, = a(c(F, D.F)) + fh V4V,

_ %(znc)f/a — o(F, Du(fv)) + fh, TV,

0
= a(lnc)va - C<F, V>Daf



Harnack Inequalities 109

and therefore

(4.17) (Dy — f' AV, = %(ln OV + 'k, T

and on a homothetic solution

4 (Ine)V, — f'hay DV f

(H.7) (Dy — f'AWV, = p

In view of (H.7) we define

U = (D= £ AV = 5 o)Vt hoo DS

which also vanishes on a homothetic solution.
We want to calculate (Dy — f’A)Z. We do this in several steps. Using (4.12)
and (4.16) we obtain

"

(Dy = f'A)Dof = ?DafAf +(f = ['H)h"Dof + f'hy"h,' Dif + Da(f f'|A]?)

and therefore
(4.18)
(D¢ = f'A)Dof =f'|APDof +2f f'h**Dahic + f'hy"h,' Dy f
f//
(f")?

+(f = f'H)h,'Dyf + Do fD:f

Further, we use Simons identity to rewrite (4.15)

Dthab = Danf + fhanhnb

"

= f/(Ahgy — Hhy"hop, + | AP hay) + e

Dabef + fhanhnb

This gives

1
(419)  (Di= ' S)hos = F1APha,+ (7 = I H) o + s Daf Dif
(4.18), (4.19) and the definition of U give

(Dy — f'A) Xy = f'|APDof + 2f f'h* Dohve + f'h,"hy ' Dif + (f — f'H)h, Dy f
1! 1
+ pEDal Dl + VI APRa 4 (f = S H)B oy + /
+ hab(Ub + %(ln c)Vb — f’hbchf) — 2f’DChabDCVb
= fIA X, + (f — FH)h Xy, + h,'Up — 2f' Dahpe (Y€ 4 ¢g™)

(fl)2 Dabef)

0 " /
+ a(lnc)(Xa - Daf) + WDaf(W - Cf H)
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and finally
(4.20)
(Dy — f'A)Xo =f|APXo + (f — f'H)h" Xy + 1"Up — 2f' Dy hp Y
a f// 8 f//
at(lnc)X +(f) D, fW — (2¢ 0 (lnc)—i—c? VDo f

Next we compute

(Dy — f'A)Dyf =[Dy, f'Alf + Di(f£'|A])
=f'[Dy, Alf + Dy f'Af + Dy f' fIAP? + f/|APDif + ff' D] A
=(f = f'H)|Df)? + 2f f'hap D D° f + 2f hay D* fD° f

(J{//; (Def)? + f'|APDyf +2f 'h™ Dyhay
giving
(4.21)
(Dy — ['A)D.f =f'|APD,f +4f f'h* Dehay — 221°C + (J{”) (Dyf)?

+(f = fH)DfI> +2f hay D fD° f
Furthermore

g (Inc)ef’ H+c‘;/:Hth+thf

—cf' (H(f"AH + f"|DH*) + f'AH + 2f"|DH|?)
= S me)ef H o+ o/ H + f)(Af + fIAP)
7C(f//H+f/)(f/AH)7Cf/(Hf//I+2f“)|DH|2

Z%(lnc)cf’H +ef(f + f"H) A2+ c((f")2H — f'f" — f f"H)|DH|?

f'A)(ef'H) =

which gives

(422) (D= f)e H) = g e)ef H+cf(f+ fMAP - (L) 1D
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(4.21), (4.22) and (4.18) give

(Di = ['A)W =f"|A Dy f + 4f ['h® Dihay, — 2f?f'C + (]{/; (Def) + (f = fH)|Df?
2 DDV f 4 L o (we)ef H + cf (f + f"H)IAF = o ‘fc H)'|Df|?
+V(f'|AP Do f + 2ff "h**Dohwe + f'hy"hy' Dy f
+(F = DD + Gl Dof D)

+ D f(U, + aa (nc)V, — f'hay DO f) — 2f' DVP D, Dy f
=J|APW — (7' H ~ '~ FfH)AP + o (ne)W — 2 (ine)D.f
(JJ:) Dy fW — CJ;/:HthJr(f F'H)(X, Df)
+ f/(4fh® — 2D*V®)Dihay + 2f f' DV, hpy — 212 fC
(J;// H)'|DfI? + 2f f'VDohyeh® + (Df,U) + f'hap XDt f
=FIAPW — e((f)2H — £~ F1H)AP + 3 (o)W
(4 G oD+ LD (¢ - )X, D))
+ f/(Afh™ — 2D VYW, — f(4Fh% — 2D V) (D hay Vi + chap)

fl/ 5
D
f,)lﬂ

+2ff/VaDahbchbc +f/<hab7Danb> <Dfa U)

+2f ' D*VPhy hyy — 22 f'C — ¢

and after rearranging terms we conclude

(4.23)
(Dy — D)W =F'|APW + f/(4fh® — 2D V)W, + f' R X, Dy f + (Df,U)
+ 2f"(fhy" hay + D'hap VI)Y ™ + (2¢ + gt(ln )W
C((fPH — f — ffH)|AP — w%H+ (Inc) +2¢)D, f
f/l f//

“ea DefW + (f = f'H)(X,Df) - C(f H)'[Df? +2cf hapY ™

Ve

Eventually the evolution equation for Z is given by
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(D¢

— FAVZ =]\ APW + [(4fhe -

_f/A)ZZ<f/|A|2 f//
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2D VOYWop + f'h X, Dy f + (Df,U)

+ 21 (fhy" By + D' hap Vi)Y ®° + (2¢ + (,i(lnc))W
C(fH ~ £ — FFH)AP - (J}, O (ine) +20)D.

"

+ g D W o+ (] = H)(X.Df) - (L HY DI + 20 By

fl
+VOUFIAPX, + (f = FH)h Xy + h,"Uy — 2 Dahy Y™
8 f” a f//
T gr e Xa+ Ty Daf W = Qe G (Ine) + e H)Duf)

f/
+ XU, + g (nc)V, — f'hap DO f) — 2 Do V(W 4 ho"Y,, )

=f'|APZ + 2(X,U) — 4f" (Y% + cg®™®) Wy, — 2f R*"Y,, b (Yab-i-cgab)

(- PEXP (jf,’;z W(Dyf + (V. Df)) — (c ]; O (1ne) +20)(Dif +(DFV))

—&—Qag(lnc){X,V) + (2c+ g(lnc))W—c((f') H— ff — ff"H)|A?
(f//

f/ ) |Df|2 + 2Cf habyab
=f|APZ +2(X,U) — 2f'h,"Y;, Y0 — 4f' Wo Y —

+(f — f'H)|X|* + (ff/; W(W —cf'H) — (c J}/: (1nc)+20)( —cf'H)

—&—2%(11&0)( V) + (20+

4cW

O (o)W — ol(f)2H ~ £~ F AR — (1) |Df P

f/
So we finally arrive at
(4.24)
(Di—f'N)Z = (f'|A]” + (J{,>2 (Z —2(X,V)) - (CJ;T,H + 2c))Z
+2(X,U)+ (f — f'H)|X|)* + (JJ:/; (X, V)2 +2(c J;I,/ (1nc)+20)<X,V>
— 2f' R, Y YO — 4 WY + (cj;/H + 5 (Inc) + 2c)e f'H

f//
(£ H + ff = () H)AP = o( S H) IDSP
Now we are able to prove Theorem 1.
Proof of Theorem 1.

From (4.24) and the assumptions in Theorem 1 we con-
clude, with ¢ :=

1
d+(a+2)t

o = (Z - 2(X,V)) - 2((;’;/,/H +20))Z = 2f'h," Yo Y0 — Af' Wop Y

+2AX, U + (f — FH)XP + (JJ:) (X,V)? +2(CJ;IH+ < (In¢) + 2¢)(X, V)
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Now choose d so small such that Z > e¢ > 0 for ¢ = 0 and for all tangent vectors V.
This is possible since the initial surface is convex. On any compact time interval
[0,t0] with tg < T we can therefore estimate

(Di—f'A)Z > —bZ — 2f'h," Yy, Y0 — A f' W YO

1" 1

5 (X, V)2 +2(cf—/H+ (lnc) +2e)(X,V)
(/") f

with a large constant b depending on t3. Additionally for ¢ > 0 and an arbitrary
positive constant &

+2X,U)+ (f - fH)XP+

(Dy — f'A) (€ Z + 6t) >e" (=2 h," Y Y * — 4f’WabY“” +2(X,U) + (f — fH)XP
f// LH
+ s e S(X,V)? +2(cf,H+ (lnc)+2c)<X,V>)

If t; < to would be the first time where e?*Z + §t would become zero at some point
x € M™ and for some tangent vector V then we must have X, = 0 since it is the
first variation with respect to V and we can also extend V in spacetime such that
Y, = 0. This implies a contradiction and therefore e®*Z + 5t > 0, Vt < to. Since §
and tg are arbitrary we conclude Z > 0 whenever t < T and d + (a +2)t > 0. O

Now we want to answer the question for which f one can expect selfsimilar
solutions of (x). First we remark that if z € ©Q and = > 0, then the sphere of

constant radius 2 and with constant mean curvature H = x gives always rise to a
xr

selfsimilar solution for a short time.
For any subset A C M™ let us define

H(A):={zeQFpe A: H(p) = x}

and
P,:={pe M'|VH # 0}

The answer to question III is then given by

Proposition IIla. If Py # 0 and Fy, : M™ — R is a selfsimilar solution of
(%) for a compact connected M™, then we have f = Aax® , Vo € H(M;) with
nonvanishing constants A and c.

Proof. Since F; is selfsimilar we have P, = Py, Vt € [0,T). Since X,, W vanish on
selfsimilar solutions so must their time derivatives. From (4.20) we conclude that
on H(P;) and by continuity also on H(FP;) we must have c’}—,,/a: + 2c+ %(ln c) =0.
Since Py # () and M™ is connected we have H(M"™) C H(P;) and we derive

1 a
cj;—/x—k 2+ — 5 —(ne)=0

for all z € H(M]"). Since f’ > 0 there can be at most one point z € €2 such that
f(z) = 0. At all other points we have

Ly

fflfe+ £ = (1) x—fQ(f
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Then (4.23) implies that also

!
SRR
in all points € H(M,;) where f(z) # 0. But after integration we obtain that at
these points

f=Aaz®
with constants A, @ (nonvanishing since we must have f’ > 0) and again by conti-
nuity this also holds on all of H(M,). O

We observe that by (2.9)
A|F|? = 2(n — H(F,v))

and with (H.1) we obtain on a homothetic solution

_fH

(H.8) AlF|? =2(n C)

This implies

Proposition IIIb. If Py = 0 and M™ is a compact orientable selfsimilar solution
of (x), then My is a sphere of radius . If f = —%, then any compact orientable

homothetic solution is a sphere of radius 4.

Proof. Py = 0 and (H.8) imply A|F|?> = const. By the assumptions on M™ this
constant must be zero and then consequently |F|*> = const. This implies that M,
is a sphere. O

5. Longtime existence for some highly nonlinear flows

In this paragraph we are going to show that one can use the Harnack inequality
to prove longtime existence of solutions for some highly nonlinear flows. To be
precise

Theorem 2. Assume that f : (0,00) — R is a smooth negative function that
satisfies the assumptions in Theorem 1 with a > —2 and that lim,_,¢ f(z) = —o0
and Fy : M? — R3 is a smooth convex immersion of an orientable compact surface
M?2. Then (%) has a smooth immortal solution and we have
lim H =0, lim |F}|? = o0
t—o0 t—o0
REMARK. The functions f = ax® with —1 < a < 0 satisfy the assumptions in
Theorem 2 on = (0,00). These speed functions are not homogenous of degree
one and are not included in the class of functions considered in [2]
To prove Theorem 2 we need some lemmas that are interesting on their own.

Lemma 1. Assume f' > 0 and that Fy : M™ — R" "L is a smooth immersion of an
orientable compact surface and that on Mo = Fo(M™) we have f? > minyy, f? > 0.
Then this is also true on the mazimal time interval [0,T) where a smooth solution
of (%) exists.
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Proof. The evolution equation for f? is given by
(D = ['A)f2 = f'(=2Vf? + 2f2|A]%)
and the result follows from the parabolic maximum principle. O
Corollary 1. With the assumptions in Lemma 1 we have that for negative f
H <maxH
My
and for positive f
H > min H
My
We can do even better

Lemma 2. Assume Q= (0,00) , f <0, f' >0 and that Fy : M™ — R" ™! is an
admissible immersion of an orientable compact manifold M™. Then we can find a
positive € such that on [0,T)

a H
max H < ——0XMo 21
M 14 et maxp,, H

Proof. Since F; is admissible on [0,7) we must always have H > 0. At a point
where maxys, H is attained we have AH < 0 and VH = 0. The evolution equation

for H (2.6), Lemma 1 and the fact that |A]? > HTZ give us

0 2
_ < —
matx H e(matx H)

“maxnio Foand after integration we obtain the result. O

with € =
(2.7) and Simons identity give
(5.1) (D; — f'A)A]? = —2f|VA? + 2f'|A* +2(f — f'H)C + 2f"hi; V' HVI H

Let R = H? — | AJ? be the Scalar curvature of M;. Now we turn our attention
to the case where n = 2. In this case we can decompose C' into

C= g(3|A|2 — H?)

Then (5.1) and (2.6) imply that for n =2

(5.2)
(Dy — f'A)R =2f"([VA? — |VH|*) + 2f"(H|VH|? — hi; V' HV’ H)
— 2f|AP + (f — f'H)H)R
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Lemma 3. Under the assumptions in Theorem 2 we have

R>0, Vte[0,T)

Proof. Let tg < T be the maximal time such that R > 0 on all of M, for ¢ € [0, ¢y),
i.e., the maximal time for which M; stays convex. If t; = T we are done. So assume
that ¢g < T. Since M, is admissible for ¢ € [0,%o] we must have H > 0 on [0, to].
By definition of 3 we also have R > 0 on [0,%9) and R > 0 on [0, #]. Since M and
[0,to] are both compact and R > 0 we can find a constant ¢ such that

(5.3) (De— f'A)R=2f' (VAP = [VH|*) + 2f"(H|VH|* = hy;V'HV'H) — cR

Now assume that x is any point on M; where the minimum of R is attained.
At this point we must have f/AR > 0 and VR = 0. Let « and 3 denote the two
principal curvatures in a neighborhood of . We have

0=VR=2aV3+28Va

Since H > 0 and «, 8 > 0 we must either have a > 0 or § > 0. Let us assume that
«a > 0. First we compute that

H|VH? — hi;VIHVIH = o|VoH|? + 8|V H|? > 0,

where we choose normal coordinates such that h;; = diag(a, 8). Since f"z > af’
and H > 0,a > —2 we can estimate

!

2f"(H|VH|? — hi;V'HV'H) > —4E(a\V2H|2 + BV H|?)
On the other hand Codazzi’s equation gives us that
VAP = |Via]? +[V28[* + 3|Vaal* + 3| V187

Combining the last two statements we see that at a point where VR = 0 we must
always have

2 (IVAI> — |VH|?) + 2f"(H|VH|* — hy;V'HVIH) > 0
and consequently at any point where the minimum of R is attained
DR > —cR
which implies that

min R > (min R)e™ " > 0, Vt € [0, to]

t Mo

This proves that tg = T. O

We come to the proof of Theorem 2
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Proof of Theorem 2. On [0,7) we must have H > 0: Otherwise (%) is not
well-defined, i.e., the surfaces would not be admissible. If T is finite, then this can
only happen for two reasons. Either the solutions converge to a surface that is no
longer admissible, i.e., the mean curvature would vanish somewhere, or the surfaces
must develop a singularity. Since M; is convex on [0,7) we can apply Theorem 1
with V = 0 to obtain 9 .
—H>—-———H
ot~ d+(a+2)t

and since by assumption a > —2 we can estimate

0 1

—H>—-—-H

ot — d
which implies that

—1
H>ea'minH
Mo

So H cannot become zero in finite time. This estimate and Corollary 1 imply
that the surfaces stay admissible in finite time. Therefore we conclude that if T
is finite the surfaces must develop a singularity. It is well-known that the sec-
ond fundamental form |A|?> must then blow up for ¢ — T (compare [2] and [5]).
By Lemma 3 we conclude that in the case where T' < oo, H must also blow up
which, in view of Corollary 1, proves that T'= co. By Lemma 2 we conclude that
lim¢_, oo (maxyps, H) = 0. It remains to prove that |Fy| — co. An easy calculation
gives the following evolution equation

F, ! F‘7 /H
(D — f’A)(M +(24a)t) = 2*’C—<V(< V) +(2+4a)t),Vf)+a+1— /

/ / f /
The assumptions on f imply that lim, . f}# exists and that lim,_,q % > a.

Since lim,_,o f = —oo we can apply de 'Hospital’s rule and get lim,_.q f/Tac =

1+ lim, .9 % > a+ 1. On the other hand the assumption that (%)l > 0 implies
for any x € Q)

f'z
a+1——7<0

f

This gives
Ay S Y) %)
(De = f1A) 7t (2+a)t) < 27<V( 7t (2+a)t), V)
and with the maximum principle we conclude
(Fv) <c—(2+a)t

for a constant c¢. Using Schwarz’ inequality we have proven that

|F|

—>24+at—c

|7
and since lim;_, | f| — 00 and 2+a > 0, this can only hold when lim;_, |F| = o0,
proving the rest of Theorem 2. O



118 Knut Smoczyk

References

[1] B. Andrews, Harnack inequalities for evolving hypersurfaces, Math. Zeitschrift 217 (1994),
179-197.

[2] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J.D.G 32 (1990), 299-314.

[3] R.S. Hamilton, The Harnack estimate for the Ricci Flow, J.D.G 37 (1993), 225-243.

[4] R.S. Hamilton, Harnack estimate for the mean curvature flow, J.D.G 41 (1995), 215-226.

[5] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J.D.G 20 (1984), 237—
268.

[6] G. Huisken, T. Ilmanen, Proof of the Penrose inequality, to appear.

[7] K. Smoczyk, Symmetric hypersurfaces in Riemannian manifolds contracting to Lie-groups by
their mean curvature, Calc. Var. 4 (1996), 155-170.

[8] S.T. Yau, On the Harnack inequalities of partial differential equations, Comm. Anal. Geom.
2 (1994), 431-430.

ETH ZUricH, MATH. DEPARTMENT, CH-8092 ZURICH, SWITZERLAND
ksmoczyk@math.ethz.ch

Typeset by ApS-TEX



