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Multiple Rokhlin Tower Theorem: A Simple Proof

S. J. Eigen and V. S. Prasad

Abstract. S. Alpern has proved that an invertible antiperiodic measurable
measure preserving transformation of a Lebesgue probability space can be rep-
resented by k towers of heights n1, . . . , nk, with prescribed measures, provided
that the heights have greatest common divisor 1. In this paper we give a sim-
ple proof of Alpern’s theorem. It is elementary in the sense that it involves no
limits and uses Kakutani’s easy proof of Rokhlin’s Lemma.
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1. Alpern’s Multiple Rokhlin Tower Theorem

In this paper we show that Kakutani’s proof of Rokhlin’s Lemma [Hal56] can
be used to give a short, elementary proof of the following Multiple Rokhlin Tower
Theorem of Alpern’s [Alp79, Cor 2].

Theorem 1.1 (Alpern). For any k ≥ 2, let n1, n2, . . . , nk be relatively prime pos-
itive integers, and let q1, . . . , qk be positive numbers such that n1q1 + · · ·+nkqk = 1.
Then for any antiperiodic invertible measure preserving transformation T of a
Lebesgue probability space (X,Σ, µ), there exist sets Qi ∈ Σ, i = 1, . . . , k with
µ(Qi) = qi and such that {T j(Qi) : i = 1, . . . , k, j = 0, . . . , ni − 1} is a partition
of X (into k columns of heights n1, . . . , nk and µ-widths q1, . . . , qk).

Alpern applied this result to prove that in the space of measure preserving home-
omorphisms of a compact connected manifold with the topology of uniform con-
vergence, any measure theoretic property which is generic (dense Gδ) in the weak
topology on the space of invertible measure preserving transformations of the un-
derlying probabilty measure space is also generic (dense Gδ) in the uniform conver-
gence topology in the group of measure preserving homeomorphisms. The latter
result is a far-reaching generalization of the classical (1940) Oxtoby-Ulam Theo-
rem [OU40], where it is proved that ergodicity is generic in the space of measure
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preserving homeomorphisms. Furthermore this contains Katok and Stepin’s 1970
result [KS70] that weak mixing is generic for measure preserving homeomorphisms.

Very recently, N. Ormes [Orm] has used Alpern’s Multiple Rokhlin Tower Theo-
rem as one step in obtaining the following result about realizing an ergodic measure
preserving system as a minimal homeomorphism of the Cantor set within a given
topological orbit equivalence class: Let Y be a Cantor set, S a minimal homeomor-
phism of Y and ν a uniquely ergodic S-invariant Borel probability measure. Let T
be an ergodic invertible measure preserving transformation of the Lebesgue proba-
bility space (X,Σ, µ). Then there is a topological realization (S′, ν) of the ergodic
system (T, µ), where S′ is a minimal homeomorphism of the Cantor set Y strongly
orbit equivalent to S if and only if the finite rotations which are topological factors
of S are measurable factors of T .

Two homeomorphisms, S and S′, of the Cantor set Y , are said to be strongly
orbit equivalent if there is a homeomorphism h : Y → Y and integer valued maps
m,n : Y → Z such that hSm(x)(x) = S′h(x), hS(x) = (S′)n(x)h(x) and m and
n have no more than one point of discontinuity. Strong orbit equivalence of two
minimal Cantor homeomorphisms has been identified in the work of Giordano,
Putnam and Skau [GPS96, Theorem 2.2] as a necessary and sufficient condition for
the isomorphism of the crossed product C∗-algebras (C(Y )×S Z, and C(Y )×S′ Z)
associated with the minimal homeomorphisms .

Multiple Rokhlin Towers arise naturally in the study of minimal homeomor-
phisms S of the Cantor set in the following manner. Given any clopen set A in the
Cantor set Y , consider rA : A→ N , the first return time function to A for the home-
omorphism S, where rA(x) is the smallest positive integer such that SrA(x)(x) ∈ A.
Then the continuity of this function implies there is a finite set of positive integers
n1, . . . , nk which is the range of rA. This gives a Multiple Rokhlin Tower partition
of Y into clopen sets (into k towers of heights n1, . . . , nk over the base A). It is
this tower for S which Ormes “copies” for the ergodic T using Alpern’s theorem.
While it need not be true that the gcd{n1, . . . , nk} = 1, Ormes notes [Orm, Cor
4.2] that if gcd{n1, . . . , nk} = p, then there is periodic clopen set for S of period p.
Thus to have a similar tower picture for T , there must also be a T -periodic set in
X of order p.

Extensions of Alpern’s Multiple Rokhlin Tower Theorem to denumerably many
columns and to nonsingular aperiodic transformations may be found in [Alp81] and
[AP90]. In addition applications of these extensions to coding Markov chains and
approximate conjugacy theorems can also be found in those papers.

2. Proof of Alpern’s Theorem

Step 1: Prescribing return times: We find a set A ⊂ X such that the set of first
return times to A under T are exactly n1, . . . , nk.

Proof Step 1: Since gcd{n1, . . . , nk} = 1, let R be a positive integer such that
every integer r ≥ R, can be expressed as nonnegative integer multiples of n1, . . . , nk.

Following Kakutani’s easy proof of Rokhlin’s Lemma, let E be a sweep out set
(i.e., X = ∪∞i=0T

i(E)), such that the set of first return times back to E are all greater
than R (in Step 2 we will require that E has small measure). This is elementary
in the case that T is ergodic. See [Hal56] for a proof when T is antiperiodic. Write
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E = ∪m≥REm, where Em = {x ∈ E : the first return time to E is m}. The column
of height m over E is the set C(Em) = ∪mi=1T

i−1Em.
For each m ≥ R write m = qN + r where R ≤ r < R+N and N = n1n2 · · ·nk.

Then we can break up the column of height m over E, (C(Em)), into q new sub-
columns of height N and one new subcolumn of height r as follows: The first N
floors of C(Em) are labeled (N, 1), . . . , (N,N), as are the next N floors. After
labeling the first qN floors of C(Em) into q many N -columns in this manner, the
last r floors are labelled to form an r-column (i.e, as (r, 1), . . . , (r, r)). After doing
this for each m ≥ R and combining all of the new columns of the same height (i.e,
grouping all sets with the same label), we end up with one (large) column of height
N and at most N “remainder” columns of heights R,R+ 1, . . . R+N − 1.

For each r, R ≤ r < R+N , since we can write r = r1n1 + · · ·+rknk where the ri
are nonnegative integers, we can break up each remainder r-column as follows: the
first r1n1 floors are broken up into r1 columns of height n1; the next block of r2n2

floors are grouped into r2 columns of height n2; continuing, the last rknk floors of
the r-column is broken into rk columns of height nk.

This partitions the space into a group of columns, one of height N and the others
of heights n1, . . . , nk. The set A which is the base of these columns, has return times
N and n1, . . . , nk. Note that the column of height N can be decomposed (labeled)
into as many columns of height n1, . . . , nk as we wish, since N is a multiple of ni
for each i.

Step 2: Controlling the distribution: We note this has been a measure free con-
struction thus far. If we wish to prescribe the distribution of the return times we
note that the total measure of the “remainder” columns of height r,R ≤ r < R+N
is less than (R + N)µ(E) where E was the base of the original skyscraper. By
choosing E small enough so that (R +N)µ(E) < min {niqi : i = 1, . . . , k} we can
guarantee that after breaking up the remainder columns of height r into columns
of heights n1, . . . , nk no column of height ni has used up more than its “total
allowance” of measure niqi.

Now partition the N -column into k disjoint vertical columns, one for each i =
1, . . . , k, in the following manner: Suppose that the measure of the ni-column used
in paving all the “remainder” r-columns (R ≤ r < R+N) totals up to pi. From the
column of height N we take a vertical strip of measure niqi − pi. Then this part of
the N -column is partitioned into columns of height ni. Choosing disjoint vertical
strips from the N -column for the different i’s, the partition of X into columns of
height ni, i = 1, . . . , k, has the required distribution.
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