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Ergodic Theory and Connections with Analysis
and Probability

Roger L. Jones

Abstract. In this paper we establish a variety or results in ergodic theory
by using techniques from probability and analysis. We discuss divergence of
operators, including strong sweeping out and Bourgain’s entropy method. We
consider square functions, oscillation operators, and variational operators for
ergodic averages. We also consider almost everywhere convergence of convo-
lution powers.

Contents

1. Introduction 31
2. Divergence and Strong Sweeping Out 33
3. Proof of Bourgain’s Entropy Theorem 38
4. Convolution Powers 47
5. Good-λ Inequalities for Convolution Powers 54
6. Oscillation Inequalities 58
7. Concluding Remarks 64
References 65

1. Introduction

There are many connections between ergodic theory, probability and harmonic
analysis. In the discussion to follow, we will be mainly interested in ergodic theory
results, but we will obtain these results by applying techniques or results from
analysis or probability. In most cases, the results below appear elsewhere, in some
cases in greater generality. However the idea here is to highlight some of the tools
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from analysis and probability that have proven to be most useful in the study of
certain of questions in ergodic theory.

We begin Section 2 with a discussion of ways to show that a sequence of operators
diverges a.e.. This discussion will include Bourgain’s Entropy Theorem, which has
already become a very useful tool in ergodic theory. To demonstrate this, we
highlight some of the results that have already been obtained using his theorem.
Since the proof involves a nice blend of analysis, probability and ergodic theory,
Section 3 contains a discussion of the proof.

In Section 4 we discuss convolution powers of a single measure µ on Z. This
discussion leads to a discussion of the transfer principle, the Calderón-Zygmund
decomposition, and some connections with singular integrals.

In Section 5 we discuss a “good–lambda” inequality that relates two maximal
functions. These kinds of inequalities have proven useful in both probability and
harmonic analysis. Currently only minimal work has been done regarding such
inequalities in ergodic theory.

In Section 6 we discuss oscillation and variational inequalities. The proofs of
these results involve an interesting interaction between martingales and certain
ergodic averages. The variational inequalities give rise to inequalities for the number
of “λ-jumps” that a sequence of ergodic averages can take. The results for “λ-
jumps” were motivated by similar previously known results for martingales.

Throughout the paper, (X,Σ,m) denotes a complete non-atomic probability
space, and τ denotes an ergodic, measurable, measure preserving point transfor-
mation from X to itself. To simplify the discussion, we will assume τ is invertible,
although in many cases this assumption is not needed. If µ is a probability measure
on Z, we can define an associated operator

µ(f)(x) =
∞∑

k=−∞
µ(k)f(τkx).

In this situation we will also refer to µ as an operator. It should be clear from the
context if µ is being considered as a measure or as an operator.

The proofs of several of the results that will be discussed below are based on the
same general principle. While the results are in ergodic theory, we can remove any
discussion of ergodic theory from the proofs. The idea is to transfer the problem
in ergodic theory to a problem in harmonic analysis. To understand what is going
on, consider the orbit of a single point, x, τx, τ2x, . . . , and relabel the points as
0, 1, 2, . . . . We can then pretend we are working on Z, with results obtained on Z
implying results about the orbit of the point x. The details to make this precise
are contained in a paper by A. P. Calderón [27] that appeared in the Proc. of
the National Academy of Science in 1968. See Bellow’s paper [8] for an excellent
discussion of this general principle.

As a consequence of this transfer principle, when we see Akf(x) = 1
k

∑k−1
j=0 f(τ jx)

we can, without loss of generality, think of x ∈ Z and τ(x) = x+1, so that Akf(x) =
1
k

∑k−1
j=0 f(x + j), for f ∈ `1(Z). In fact, more is true. In many cases the results

on Z imply the same results for averages associated with positive contractions. See
[45] or [46] for details.
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In general, we will not be interested in obtaining the best constants in the in-
equalities we consider. Hence c will often be used to denote a constant, but c may
not be the same constant from one occurrence to the next.

2. Divergence and Strong Sweeping Out

In ergodic theory we are often interested in knowing if a given sequence of oper-
ators converges or diverges. Consequently, for a sequence of operators, {Tk}, each
mapping Lp(X,Σ,m) to itself for some p, 1 ≤ p ≤ ∞, it is useful to have a collection
of tools that can be used to establish a.e. divergence. Further, when divergence oc-
curs, it is useful to know how badly the sequence diverges. In particular, sometimes
it is possible that divergence occurs for some f ∈ Lp0 , but convergence occurs for all
f ∈ Lp for all p > p0. Examples of this behavior, for averages along subsequences,
were first constructed by Bellow [10] and later refinements were given by Reinhold
[65].

For a sequence of L1 − L∞ contractions, about the worst possible divergence
that can occur is divergence of {TkχE} where χE is the characteristic function of
the measurable set E. For such operators, applied to χE , the possible values range
from 0 to 1. The worst that can happen is for the operators to get arbitrarily close
to both of these two extremes a.e.. This leads to the following definition.

Definition 2.1. A sequence {Tn}, of positive linear contractions on L1 and L∞,
is said to be strong sweeping out if given ε > 0 there is a set E such that m(E) < ε
but lim supn TnχE(x) = 1 a.e. and lim inf TnχE(x) = 0 a.e..

There are several methods of showing that a sequence of operators is strong
sweeping out. Moreover, many examples of operators that are strong sweeping out
arise naturally in ergodic theory.

One family of operators that is of interest to ergodic theorists is the following.
Let {wk} denote an increasing sequence of positive integers and let {νn} denote a
dissipative sequence of probability measures with support on {wk}. (A sequence
of probability measures {µn} is said to be dissipative if limn→∞ µn(j) = 0 for each
integer j. If a sequence of measures is not dissipative, then certain early terms
will continue to play a significant role in the value of the associated averages for
arbitrarily late averages.) Define

νnf(x) =
∞∑
n=1

νn(wk)f(τwkx).

For example if we let wk = 2k, and νn(wk) = 1
n if k ≤ n, then

νnf(x) =
1
n

n∑
k=1

f(τ2kx),

and we have the usual Cesaro averages along the subsequence {2n}. We could also
consider the Riesz harmonic means, given by

Rnf(x) =
αn
lnn

n−1∑
k=1

1
n− kf(τwkx),

where αn is chosen so that αn
lnn

∑n−1
k=1

1
n−k = 1, or many other similar weighted

averages.
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In [1] a condition was introduced that is sometimes useful to establish strong
sweeping out. This condition is a condition on the Fourier transforms of the asso-
ciated sequence of measures.

To fix notation, we define the Fourier transform as follows.

Definition 2.2. Let ν be a probability measure that is supported on the sequence
{wk}. The Fourier Transform of ν is given by

ν̂(t) =
∞∑
k=1

ν(wk)e2πiwkt.

(In some cases it is convenient to let γ = e2πit and write ν̂(γ) =
∑∞
k=1 ν(wk)γwk .)

Theorem 2.3. [1] Let {νn} denote a dissipative sequence of measures on Z. If
there is a dense set D ⊂ R such that

lim
n→∞ |ν̂n(t)| = 1

for all t ∈ D, then the operators (νn), given by

νnf(x) =
∑
j∈Z

νn(wj)f(τwjx),

are strong sweeping out.

To see how to apply this condition, we give a few examples.

Example 2.4. Let {µn} denote the sequence of Cesaro averages along the sub-
sequence {2k}. That is, let µn = 1

n

∑n
j=1 δ2j . Then the associated operators are

strong sweeping out. To see this just note that µ̂n(t) = 1
n

∑n
j=1 e

2πi2jt. If we
take t = r

2s for some positive integers r and s, then for large enough j (j ≥ s)
we have e2πi2jt = 1. Consequently, it is clear that we have limn→∞ µ̂n(t) = 1 for
each dyadic rational t. Since such t are dense, we can apply the theorem. (The
fact that these averages diverge for f ∈ Lp, p < ∞, was first shown by Bellow [9],
following Krengel’s result [54] showing the existence of a subsequence for which a.e.
divergence occurs. See also [42]. The study of strong sweeping out for the Cesaro
averages along lacunary sequences, and for the Riemann sums, (that is, for averages
of the form Anf(x) = 1

n

∑n
k=1 f(x+ k

n ), where f is periodic with period 1), started
in the 1980’s. The first proof of the strong sweeping out for Cesaro averages along
lacunary sequences (ak), as well as the first proof for strong sweeping out of the
Riemann sums, was given by Bellow and Losert using a different technique from
the one in Theorem 2.3. Their argument appears in the appendix to [1]. The fact
that divergence occurs for bounded functions when we average along any lacunary
sequence was first shown by Rosenblatt [68] using Bourgain’s entropy condition,
which we will discuss below.)

Remark 2.5. Actually the argument associated with Example 2.4 shows more.
For any dissipative sequence of probability measures that are supported on the
subsequence {2k}, the associated operators are strong sweeping out. In particular,
this means that the operators obtained from averaging the Cesaro averages, using
other weighted averages, or selecting a subsequence of the Cesaro averages, will
all result in a sequence of operators that is strong sweeping out. No matter what
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we do, if the dissipative sequence of measures is supported on the set of dyadic
integers, strong sweeping out will always occur.

In some cases, even if the Fourier transform condition fails to show that we have
strong sweeping out, we can still use the Fourier transform condition to obtain
useful information. Consider the following.

Example 2.6. Let µn denote the Cesaro averages along the sequence of integers of
the form n[log2 n]. (Here [ · ] is being used to denote the greatest integer function.)
Then the associated sequence of operators diverges a.e. In fact, give ε > 0, we
can find a set E, m(E) < ε, such that lim supn→∞ µnχE(x) ≥ 1

2 a.e. To see this

just note that µ2n+1 ≥ 1
2

1
2n

∑2n+1

k=2n δk[log2 k] = 1
2νn. Now just apply the Fourier

transform condition to show that {νn} is strong sweeping out. This follows, since it

is enough to look at the subsequence {ν2n}. We have ν̂2n(t) = 1
22n

∑2×22n

j=22n e2πij2nt.
Now just take t = r

2s as before, and the result follows. (At this time it is not known
if the averages associated with µn are strong sweeping out.)

Remark 2.7. It is interesting that as we saw above, the Cesaro averages along the
subsequence {n[log2 n]} can diverge even for f ∈ L∞ while Wierdl [75] has shown
that the Cesaro averages along the subsequence {[n log2 n]} converge a.e. for all
f ∈ Lp, p > 1. This shows quite clearly that sequences can have the same rate
of growth, and still have the associated averages behave quite differently. See also
the paper by Boshernitzan and Wierdl, [22], where it is shown that many more
subsequences yield convergent sequences of Cesaro averages.

In [1] an example is constructed to show that the Fourier transform condition is
not necessary for a sequence of averages to have the strong sweeping out property.
Consequently it becomes interesting to consider other conditions that imply strong
sweeping out.

A second condition for establishing strong sweeping out was also introduced in
[1]. This condition is sometimes satisfied when the Fourier transform condition
fails.

Definition 2.8. A sequence of real numbers {wk} satisfies the C(α) condition,
0 < α < 1

2 , if given any finite sequence of real numbers, x1, . . . , xN , there is a real
number r such that

rwk ∈ xk + (α, 1− α) + Z,
for k = 1, 2, . . . , N .

This condition can be thought of as a very weak form of the following Theorem
due to Kronecker.

Theorem 2.9 (Kronecker). Let w1, . . . , wN be real numbers such that w1, . . . , wN
and 1 are linearly independent over the rationals. Let ε > 0 and x1, . . . , xN be given.
Then there is an integer r such that rwk ∈ xk + (−ε, ε) + Z, for k = 1, . . . , N .

The reason for introducing the C(α) condition is clear from the following theo-
rem.

Theorem 2.10 ([1]). If {wk} satisfies the C(α) condition, and {νn} is a dissipative
sequence of measures with support on {wk}, then the associated operators {νn}
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defined by νnf(x) =
∑∞
k=1 νn(wk)f(τwkx) are strong sweeping out. The same result

holds if

νnf(x) =
∞∑
k=1

νn(wk)f(Uwkx),

where Utx is a measure preserving flow. (In this case {wk} need not be an integer
sequence.)

We now easily have the following.

Example 2.11. Let {wk} be a sequence of real numbers that are linearly inde-
pendent over the rationals. Let {νn} be a dissipative sequence of measures with
support on {wk}. Then the associated operators {νn} are strong sweeping out.
This is immediate from Theorem 2.10, combined with Kronecker’s Theorem. In
particular, if we consider wk =

√
k, it is not difficult to see that we can extract a

subsequence which is linearly independent over the rationals, and has positive den-
sity in the sequence. Consequently we know that Cesaro averages 1

n

∑n
k=1 f(U√kx)

can diverge a.e. (See [52] for further discussion of this example as well as further
examples of situations where Kronecker’s Theorem can be used to imply strong
sweeping out.)

There are many sequences which satisfy the C(α) condition. In [1] it is shown
that any lacunary sequence of integers (after possibly neglecting the first few terms)
satisfies the C(α) condition. In fact, any finite union of lacunary sequences (again
after possibly neglecting the first few terms) satisfies the C(α) condition. (See [56].)
Consequently there is the following theorem.

Theorem 2.12. If {wk} is a lacunary sequence of positive integers, (or a finite
union of lacunary sequences of positive integers) and {νn} is any dissipative se-
quence of probability measures with support on {wk}, then the associated operators,
{νn} are strong sweeping out.

In [44] Theorem 2.12 is applied to obtain the following example.

Example 2.13. Let {Yn} be a sequence of Bernoulli random variables with P (Yn =
1) = 1

n and P (Yn = 0) = 1 − 1
n . Then for a.e. ω, the Cesaro averages associated

with the subsequence A(ω) = {n : Yn(ω) = 1} will be strong sweeping out. The
idea of the proof is to show that by eliminating only a small proportion of the set
A(ω), one can obtain a lacunary sequence, then apply Theorem 2.12 above.

The above theorem and example suggest some interesting questions. For an
arbitrary sequence of integers, Λ, let CΛ denote the space of all continuous function
on T such that f̂(n) = 0 for all n /∈ Λ. The set Λ is a Sidon set if every f ∈ CΛ has
an absolutely convergent Fourier series. It is not difficult to see that every Lacunary
sequence is a Sidon set, and further, so are finite unions of lacunary sequences.

Question 2.14. Is it true that the Cesaro averages associated with a Sidon set are
strong sweeping out? (In Rosenblatt [67] it is shown that the Cesaro averages along
Sidon sets fail to converge in mean.) Second, if we form the sets A(ω) as above, we
see that they are close to lacunary for a.e. ω, but are these sets Sidon sets for a.e.
ω?
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In [15] moving averages of the form νk = 1
`k

∑nk+`k−1
j=nk

δk are studied. Conditions,
which are both necessary and sufficient for the a.e. convergence of these averages
are given. In particular, if nk = k2 and `k = k then the averages are strong sweeping
out. (Akcoglu and del Junco [2] had already shown that this particular sequence
of averages diverge a.e.) To see that the Fourier transform condition will not help
in this case, just note that ν̂k(t) = 1

`k

∑nk+`k−1
j=nk

e2πijt = e2πinkt 1
`k

∑`k−1
j=0 e2πijt =

e2πinkt e
πi`kt

eπit
sinπ`kt
`k sinπt . It is clear that this converges to zero for all t 6= 0 (mod 1).

It is also easy to see the C(α) condition fails to be satisfied for this example as
well. (In a forthcoming paper, [4], the C(α) condition will be generalized, and that
generalization can be used to show strong sweeping out for this class of examples,
as well as other related examples.)

These moving averages are associated with the following example. Let µ =
1
2 (δ0+δ1), and consider µn = µ?µ · · ·?µ where there are n terms in the convolution.
Then µn = 1

2n

∑n
j=0

(
n
j

)
δj . (See Rosenblatt’s paper, [66], where these averages were

first shown to be strong sweeping out.) By looking at the normal approximation to
the binomial, we see that most of the “mass” of these measures will be in an interval
proportional to

√
n and centered at n

2 . Consequently, it is like a moving average,
for which we already know strong sweeping out. (See [15] for further discussion
of this example.) However, neither the Fourier transform condition, nor the C(α)
condition are satisfied. (It turns out that modifications of either condition can in
fact be used to establish strong sweeping out for these examples. See [1], [3] and
[4].)

This brings us to a third condition that can be used to show divergence of a
sequence of operators.

Theorem 2.15 (Bourgain[18]). Let (Tk) denote a sequence of uniformly bounded
linear operators in L2 of a probability space. Assume

(1) The Tk’s commute with a sequence (Rj) of positive isometries on L2 of the
same probability space, satisfying Rj(1) = 1 and the mean ergodic theorem.

(2) There is a δ > 0 such that given any N > 0 there is a function f , ‖f‖2 ≤ 1,
and n1, n2, . . . , nN such that

‖Tnjf − Tnkf‖2 ≥ δ
for j 6= k, 1 ≤ j, k ≤ N .

Then there is a bounded function g such that (Tkg) is not a.e. convergent.

Condition (2) in the above theorem is often referred to as Bourgain’s entropy
condition. Bourgain used this theorem to prove a number of very interesting results.

(1) The Bellow problem: Let {ak} denote a sequence of real numbers that con-
verges to zero. Does there exist a bounded function f on the real line such
that limn→∞ 1

n

∑n
k=1 f(x+ ak) diverges a.e.?

(2) A problem of Marcinkiewicz and Zygmund on Riemann sums: Does there
exist a bounded function f on [0, 1) such that

lim
n→∞

1
n

n−1∑
j=0

f(x+
j

n
)
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diverges? (Here we are using addition mod 1.) This was first solved by Rudin
[70] by different techniques, and as mentioned earlier, strong sweeping out
was first shown by Bellow and Losert (see the appendix to [1]).

(3) Khinchine’s Problem: Does there exist a bounded function on [0, 1) such that
the averages 1

n

∑n
j=1 f(jx) diverge? (This was first solved by Marstrand [57],

again by different techniques.)

In each of the above problems, Bourgain was able to use his theorem to show
divergence of the averages being considered. While the second and third problems
had been solved earlier, his method gives a unified way of solving such problems.
Later Rosenblatt [68] used Bourgain’s Entropy Theorem to show that for any dis-
sipative sequence of measures supported on a lacunary sequence, divergence occurs
when these averages are applied to the indicator function of some very small set.
This was part of the motivation for later trying to prove strong sweeping out for
such averages. In [13] Bourgain’s Entropy Theorem is used to show that the con-
volution powers (see Section 4 below), applied to bounded functions, can diverge
if a condition known as the bounded angular ratio condition fails to be satisfied.
Applications to problems outside ergodic theory also occur. For example in [39] the
operators defined by

Tγf(x) =
∞∑

n=−∞
f̂(n)|n|iγsgn(n)einx

are considered. These operators are related to the Hilbert transform, and conver-
gence in mean is known. However, using Bourgain’s Entropy Theorem it is possible
to prove the following.

Theorem 2.16 ([39]). Let (γn) denote a sequence of real numbers, converging to
zero. Then there is a function f ∈ L∞(T) such that limj→∞ Tγjf(x) fails to exist
on a set of positive measure.

3. Proof of Bourgain’s Entropy Theorem

In this section we want to sketch a proof of Bourgain’s Entropy Theorem, and
show its relation with strong sweeping out. Bourgain’s Entropy Theorem does not
imply strong sweeping out. However, the following more quantative version does.
This version is a slight variation on a result that is contained in joint work with
M. Akcoglu and M. D. Ha [3]. Most of the ideas involved in the proof are either in
Bourgain’s original paper or are the result of discussions with Akcoglu and Ha.

Theorem 3.1. Let (Tk) denote a sequence of uniformly bounded linear operators
on L2 of a probability space. Assume

(1) The Tk’s commute with a sequence (Rj) of positive isometries on L2 of the
same probability space, which satisfy Rj(1) = 1 and the mean ergodic theo-
rem. (That is, ‖ 1

J

∑J
j=1Rif −

∫
X
f(x)dx‖2 → 0.)

(2) There is a 0 < ρ < 1 and d > 0 such that for any integer L we can find
(n1, n2, . . . , nL) and f , ‖f‖2 ≤ 1, such that∫

X

Tnjf(x)Tnkf(x)dx ≤ ρ‖Tnjf‖2‖Tnkf‖2
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for all k 6= j, and ∫
X

|Tnjf(x)|2dx ≥ d2

for 1 ≤ j ≤ L.
Then for any η > 0, ε > 0, and ε′ > 0, we can find a function g such that

‖g‖2 < η, ‖g‖∞ ≤ 1 and

m
{
x : max

1≤k≤L
Tnkg(x) > d(1− ε)

√
1− ρ

1 +
√
ρ

}
> 1− ε′.

Remark 3.2. If in a particular application we can take d as close to 1 as we desire,
and if ρ can be taken as close to zero as desired, then with g as above, and any
ε > 0, ε′ > 0 we have

m{x : max
1≤k≤L

Tnkg > 1− ε} > 1− ε′.(1)

If in addition, the (Tk) are positive contractions on L1 and L∞, then, using inequal-
ity (1), strong sweeping out can be obtained. See [12] for a discussion of replacing
a function of small norm by a characteristic function, and see [32], where del Junco
and Rosenblatt show how to go from inequality (1), (with g the characteristic func-
tion of a set of small measure) to strong sweeping out. Also see [3] where further
discussion of this, as well as related details, can be found.

We want to give a proof of this version of Bourgain’s entropy theorem. The
idea is to exploit the fact that condition (2) above implies a degree of orthogonality
between the vectors in the family {Tnjf}Lj=1. However, before we give the proof,
we want to show how Theorem 3.1 implies Theorem 2.15.

Proof of Theorem 2.15. If we could show that the hypothesis of Theorem 2.15
implies the hypothesis of Theorem 3.1 then we would have the conclusion of Theo-
rem 3.1. We could then finish the proof by applying the Banach Principle for L∞.
(See [12] for a discussion of this principle and the necessary details to complete the
argument.)

To see that the hypothesis of Theorem 2.15 implies the hypothesis of Theorem 3.1
we argue as follows. There are two ways that vectors can be far apart. One way is
for them to have different lengths, and the other is for them to point in very different
directions. If we can eliminate the possibility that they have different lengths, they
must point in different directions. That is, we have the required orthogonality.

Let (Tk), f and δ be as in assumptions 1) and 2) of Theorem 2.15. In the
following argument we can assume that the uniform bound on the operators is 1. If
not, just divide by the uniform bound, and consider the new sequence of operators.

In the hypothesis of Theorem 3.1, we need to find L vectors with the orthogo-
nality property (2). If there is a vector with norm less than δ

2 , then the rest must
all have norm greater than δ

2 . Hence by taking one extra vector, we can assume
that all L vectors have norm greater than δ

2 . Fix γ < δ
4 , and cut the interval [ δ2 , 1]

into a finite number, (say r), pieces of length less than γ. Call the kth interval Ik.
In the hypothesis of Theorem 2.15 take N > rL.

Let Ak = {j| ‖Tnjf‖2 ∈ Ik}. Since N > rL, and there are only r sets, Ak, at
least one Ak, say Ak0 must have at least L elements. If we rename our terms, we
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have (T1f, T2f, . . . , TLf) such that ‖Tjf‖2 ∈ Ik0 , and ‖Tif − Tjf‖2 ≥ δ. That is,
the functions (T1f, . . . , TLf) are all about the same length, and satisfy condition
(2) of Theorem 2.15.

Define T̃j = 1
‖Tjf‖2Tj . We now have that ‖T̃jf‖2 = 1 for each j, 1 ≤ j ≤ L. We

also have

δ ≤ ‖Tif − Tjf‖2
=
∥∥∥‖Tif‖2T̃if − ‖Tjf‖2T̃jf∥∥∥

2

=
∥∥∥‖Tif‖2T̃if − ‖Tif‖2T̃jf + ‖Tif‖2T̃jf − ‖Tjf‖2T̃jf

∥∥∥
2

≤
∥∥∥‖Tif‖2T̃if − ‖Tif‖2T̃jf∥∥∥

2
+
∥∥∥‖Tif‖2T̃jf − ‖Tjf‖2T̃jf∥∥∥

2

≤ ‖Tif‖2‖T̃if − T̃jf‖2 + ‖T̃jf‖2(‖Tif‖2 − ‖Tjf‖2)

≤ ‖T̃if − T̃jf‖2 + γ.

Thus δ − γ ≤ ‖T̃if − T̃jf‖2.
From this we see

(δ − γ)2 ≤
∫
X

|T̃if(x)− T̃jf(x)|2dx

≤
∫
X

|T̃if(x)|2dx− 2
∫
X

T̃if(x)T̃jf(x)dx+
∫
X

|T̃jf(x)|2dx

≤ 2− 2
∫
X

T̃if(x)T̃jf(x)dx.

Solving for the inner product, we see∫
X

T̃if(x)T̃jf(x)dx ≤ 1− (δ − γ)2

2
.

Thus if we take ρ = 1− (δ−γ)2

2 , we have 〈Tif, Tjf〉 < ρ‖Tif‖2‖Tjf‖2. Consequently
the hypothesis of Theorem 2.15 is satisfied (with ‖Tjf‖2 ≥ δ

2 ). �

Before we prove Theorem 3.1 we will first prove a proposition. While this propo-
sition appears too special to be useful for our purposes, it is in fact the key ingredient
in the proof of Theorem 3.1. In the following, when we say a random vector has
N(0,Σ) distribution we mean it is a multivariate normal random vector, with mean
given by the zero vector, and covariance given by the matrix Σ.

Proposition 3.3. Fix ρ, 0 ≤ ρ < 1. Assume that for all large L, we can find
(Tn1 , Tn2 , . . . , TnL) and f such that (Tn1f, Tn2f, . . . , TnLf) has N(0,Σ) distribution
with σij ≤ ρ for 1 ≤ i < j ≤ L and σii = 1 for 1 ≤ i ≤ L. Further, assume f is
distributed N(0, 1). Let 0 < ε < 1

4 and ε′ > 0 be given. Then for any η > 0 and
for all L large enough, depending on ρ, ε and ε′, we can find a function g such that
‖g‖2 ≤ η, ‖g‖∞ ≤ 1, and

m
{
x| max

1≤k≤L
Tnkg(x) > (1− ε)

√
1− ρ

1 +
√
ρ

}
> 1− ε′.
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Remark 3.4. We do not necessarily need to have the {Tnj} defined on all of L2.
It is enough for the operators to be defined and uniformly bounded on the linear
subspace generated by functions of the form fχE where χE can be any L2 function
that takes on only the values 0 and 1.

Remark 3.5. While the constant, (1 − ε)
√

1−ρ
1+
√
ρ looks complicated, it will arise in

the computation below. While we could replace it with a simpler expression, the
proof would be slightly less natural.

To prove Proposition 3.3 we need a lemma about the multivariate normal and a
lemma about the size of the tail of a normal random variable.

Lemma 3.6. Let (Y1, Y2, . . . , YL) denote a random vector with multivariate normal
distribution N(0,Σ) with σij ≤ ρ for i 6= j and σii = 1 for 1 ≤ i ≤ L. Let 0 < ε < 1
and 0 < ε′ be given. Then for all L large enough (depending on ρ and ε and ε′) we
have the following estimate:

P
{
ω : max

1≤k≤L
Yk(ω) > (1− ε)

√
1− ρ

1 +
√
ρ

√
2 lnL

}
> 1− ε′.

Proof. Slepian’s lemma (see [74] for a proof) says that if we have 2 multivariate
normal random vectors, X and Y , both with mean zero, and covariance Σ and Σ′

respectively, and if each entry of Σ is less than or equal to the corresponding entry
in Σ′, then

P ( max
1≤k≤L

Xk > λ) ≥ P ( max
1≤k≤L

Yk > λ).

This is not too surprising since the more positive correlation, the less the vector
should behave like an independent sequence, and so the maximum should be smaller.

Using Slepian’s Lemma, we can increase some entries in Σ, so that without loss
of generality we can assume σij = ρ for i 6= j. The special covariance structure
makes it possible to obtain the necessary estimate of

P
{
ω : max

1≤k≤L
Yk(ω) > (1− ε)

√
1− ρ

1 +
√
ρ

√
2 lnL

}
.

To make the required computation, we first consider a vector of independent
standard normal random variables; (Z0, Z1, . . . , ZL). Form the new vector(√

1− ρZ1 +
√
ρZ0,

√
1− ρZ2 +

√
ρZ0, . . . ,

√
1− ρZL +

√
ρZ0

)
.

This new random vector has the multivariate normal distribution. In fact the
covariance matrix for this random vector is the same as the covariance matrix of
the random vector (Y1, Y2, . . . , YL). Consequently, by Slepian’s Lemma we have

P{ max
1≤k≤L

Yk > λ} = 1− P{∩Lk=1(Yk ≤ λ)}

= 1− P{∩Lk=1(
√

1− ρZk +
√
ρZ0 ≤ λ)}.

We will now take advantage of the structure of this new sequence. We note that

P
( ∩Lk=1 (

√
1− ρZk +

√
ρZ0) ≤ λ) = P

(
max

1≤k≤L

√
1− ρZk +

√
ρZ0 ≤ λ

)
.
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Since max1≤k≤L
√

1− ρZk and
√
ρZ0 are independent, the distribution of the sum

is given by a convolution. Thus for all λ we have

P
{
∩Lj=1

(√
1− ρZj +

√
ρZ0 ≤ λ

)}
=
∫ ∞
−∞

P
(
∩Lj=1(

√
1− ρZj +

√
ρt ≤ λ)

) 1√
2π
e−

t2
2 dt

=
∫ ∞
−∞

P

(
∩Lj=1Zj ≤

λ−√ρt√
1− ρ

)
1√
2π
e−

t2
2 dt

=
∫ ∞
−∞

L∏
j=1

(∫ λ−√ρt√
1−ρ

−∞

1√
2π
e−

z2
2 dz

)
1√
2π
e−

t2
2 dt.

We need to estimate this last integral, and show it is less than ε′ if L is large
enough.

Let λ = (1− ε)
√

1−ρ
1+
√
ρ

√
2 lnL, and select L so large that

∫∞
λ

1√
2π
e−

t2
2 dt < ε′

2 . We
now break the integral into 2 parts,∫ −λ

−∞

L∏
j=1

(∫ λ−√ρt√
1−ρ

−∞

1√
2π
e−

z2
2 dz

)
1√
2π
e−

t2
2 dt

+
∫ ∞
−λ

L∏
j=1

(∫ λ−√ρt√
1−ρ

−∞

1√
2π
e−

z2
2 dz

)
1√
2π
e−

t2
2 dt

= I + II.

Because of our choice of λ, we clearly have that I < ε′
2 if L is large enough. We

now need an estimate for the integral II.
We have

II =
∫ ∞
−λ

L∏
j=1

(∫ λ−√ρt√
1−ρ

−∞

1√
2π
e−

z2
2 dz

)
1√
2π
e−

t2
2 dt

≤
∫ ∞
−λ

L∏
j=1

(∫ λ(1+
√
ρ)√

1−ρ

−∞

1√
2π
e−

z2
2 dz

)
1√
2π
e−

t2
2 dt

=
∫ ∞
−λ

(∫ λ(1+
√
ρ)√

1−ρ

−∞

1√
2π
e−

z2
2 dz

)L
1√
2π
e−

t2
2 dt.

Thus if (∫ λ(1+
√
ρ)√

1−ρ

−∞

1√
2π
e−

z2
2 dz

)L
<
ε′

2
,

then we have the desired estimate.
Let M = λ(1+

√
ρ)√

1−ρ = (1− ε)
√

1−ρ
1+
√
ρ

(
1+
√
ρ√

1−ρ
)√

2 lnL = (1− ε)√2 lnL. We need(∫ M

−∞

1√
2π
e−

t2
2 dt

)L
<
ε′

2
,
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or (
1−

∫ ∞
M

1√
2π
e−

t2
2 dt

)L
<
ε′

2
.

Taking logs, we see that we need to establish the inequality

L ln
(

1−
∫ ∞
M

1√
2π
e−

t2
2 dt

)
< ln

ε′

2
.

Since ln(1− x) ≤ −x, it will be enough to show

L

(
−
∫ ∞
M

1√
2π
e−

t2
2 dt

)
< − ln (2/ε′).

Estimating the integral, (see [34] page 175) we need to have

L
( 1
M
− 1
M3

) 1√
2π
e−

M2
2 > ln (2/ε′).

Using the value of M given above, and the fact that ε > 0, we can now easily
check that we have the desired estimate if L is large enough. �
Lemma 3.7. Let X have N(0, 1) distribution, and let 0 < δ < 1

2 be given. Define
b = δXχ{|δX|>1}. Then

‖b‖22 ≤
3δ√
2π
e−

1
2δ2 .

Proof. The proof is just a standard computation with the density function of a
normal random variable, and is left as an exercise for the reader. �
Proof of Proposition 3.3. Let

δ =
µ√

2 lnL
,

where µ < 1 will be chosen later. Define

g(x) = δf(x)χ{x||δf(x)|≤1}(x).

Assume that supj ‖Tj‖2 ≤ β. For L large enough we have δ < η, and hence
‖g‖2 < η. We need to estimate

P
{
x| max

1≤k≤L
|Tnkg(x)| > (1− ε)

√
1− ρ

1 +
√
ρ

}
.

Write g = δf − b. We then have

P
{
x : max

1≤k≤L
|Tnkg(x)| > (1− ε)

√
1− ρ

1 +
√
ρ

}
= P

{
x : max

1≤k≤L
|Tnk(δf(x)− b(x))| > (1− ε)

√
1− ρ

1 +
√
ρ

}
≥ P

{
x : max

1≤k≤L
|Tnkδf(x)| > (1− 1

2
ε)
√

1− ρ
1 +
√
ρ

}
− P

{
x : max

1≤k≤L
|Tnkb(x)| > 1

2
ε

√
1− ρ

1 +
√
ρ

}
= I − II.
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For I, using our value of δ above, and Lemma 3.6 (with 1− ε2
µ in place of 1− ε in

Lemma 3.6, hence we need 1− ε2
µ < 1), we have

I = P
{
x : max

1≤k≤L
Tnkf(x) > (

1− 1
2ε

µ
)
√

1− ρ
1 +
√
ρ

√
2 lnL

}
≥ 1− ε′

2

for all L large enough.
We now need to estimate II. We will show that for L large enough, we have

II < ε′
2 . By taking L large enough, both the estimate of I and the estimate of II

will hold, and we will have the estimate.

P
{
x : max

1≤k≤L
|Tnkg(x)| > (1− ε)

√
1− ρ

1 +
√
ρ

}
> 1− ε′.

Let α = ε
2

√
1−ρ

1+
√
ρ . We have

P
{
x : max

1≤k≤L
|Tkb(x)| > α

}
≤ 1
α2

∫
X

max
1≤k≤L

|Tkb(x)|2dx

≤ 1
α2

∫
X

L∑
k=1

χEk(x)|Tkb(x)|2dx

where Ek is the set of x where the maximum is achieved for that value of k. However,∫
X

L∑
k=1

χEk(x)|Tkb(x)|2dx ≤
L∑
k=1

∫
X

χEk(x)|Tkb(x)|2dx

≤
N∑
k=1

∫
X

|Tkb(x)|2dx

≤
L∑
k=1

β2

∫
X

|b(x)|2dx

≤ Lβ2‖b‖22.
Thus we have II ≤ 1

α2Lβ
2‖b‖22. Applying Lemma 3.7, we see

II <
1
α2
Lβ2 3δ√

2π
e−

1
2δ2 .

The required estimate will follow if 1
2δ2 ≥ γ lnL for some γ > 1, since then we

would have II < cβ
2

α2Le
−γ lnL < cβ

2

α2L
1−γ . Thus we could take L large enough so

that cβ
2

α2L
1−γ < ε′

2 . Since

δ =
µ√

2 lnL
,

we see that we need 1
µ2 > γ. Thus we select µ such that 1 − ε

2 < µ < 1, and then
select γ with 1

µ2 > γ > 1. With these selections, all the required estimates are
satisfied, and the proof is complete. �

Proof of Theorem 3.1. Assume f and Tn1 , Tn2 , . . . , TnL are given as in the state-
ment of the theorem. We can assume that

∫
Tnjf(x)Tnkf(x) dx ≤ ρ for j 6= k and∫ |Tnkf(x)|2 dx = 1 for 1 ≤ k ≤ L, since if not, replace each operator Tnk by the
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new operator Snk defined by Snkg(x) = Tnkg(x)/‖Tnkf‖2. These new operators
will be uniformly bounded since ‖Tnkf‖2 ≥ d for all k, and the Tnk were uniformly
bounded. Further, they clearly satisfy

∫
Snjf(x)Snkf(x) dx ≤ ρ for j 6= k and∫ |Snkf(x)|2 dx = 1, as required.

Fix α and γ so that ρ < α < γ < 1 and α
γ < γ < 1. Define ρ̃ = α

γ . (This is to
give us some room, since the best we know is that certain averages are converging
to a number less than or equal to ρ, but at any finite stage we may be above ρ,
and other averages are converging to 1, but at any finite time may be below 1.)
We will now introduce a product space X × Ω and extend the operators to that
space. In the product space we will see that for most fixed x, treating our function
on the product space as a function of ω ∈ Ω, we will be able to get an example
with the required properties. We will then apply Fubini’s Theorem to see that for
some fixed ω ∈ Ω, the associated function of x will have the required properties,
concluding the proof. To do this, we need to first put ourselves into position to use
Proposition 3.3. With this in mind, we introduce the following matrix.

For each x ∈ X and positive integer J , let

A(x) =
1√
J


R1Tn1f(x) R1Tn2f(x) . . . R1TnLf(x)
R2Tn1f(x) R2Tn2f(x) . . . R2TnLf(x)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RJTn1f(x) RjTn2f(x) . . . RJTnLf(x)

 .

Let (Z1, Z2, . . . ) be a sequence of independent standard normal random variables.
Let Z = (Z1, Z2, . . . , ZJ) denote the initial segment of length J , and let Yx(ω) =
(Y1(ω), Y2(ω), . . . , YL(ω)) be given by Yx(ω) = Z(ω)A(x).

Then Yx has a multinormal distribution with covariance matrix given by Γ =
AtA. Thus

γjk(x) =
1
J

J∑
i=1

RiTnjf(x)RiTnkf(x)

=
1
J

J∑
i=1

Ri(TnjfTnkf)(x).

Since the sequence (Ri) satisfies the mean ergodic theorem, we have that

1
J

J∑
i=1

Ri(TnjfTnkf)(x)

converges in mean to ∫
X

Tnjf(x)Tnkf(x)dx.

Hence for each fixed function f and sequence Tn1 , Tn2 , . . . , TnL , we can let

EJ = {x : γjk(x) < α for all 1 ≤ j < k ≤ L; γjj(x) > γ for 1 ≤ j ≤ L}.
Since ∫

X

Tnjf(x)Tnkf(x)dx ≤ ρ for all 1 ≤ j < k ≤ L,
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and ∫
X

Tnjf(x)Tnjf(x)dx = 1 for 1 ≤ j ≤ L,

we see that m(EJ)→ 1 as J →∞.
On the new space, X × Ω, we extend the definition of {Tk} to functions of the

form
∑
Zj(ω)fj(x) by Tk(

∑
Zj(ω)fj(x) =

∑
Zj(ω)Tkfj(x).

Define F (x, ω) = 1√
J

∑J
j=1 Zj(ω)Rjf(x).

For x ∈ EJ we now modify each Tnj slightly. For x ∈ EJ define T̃njF (x, ω) =
1√
γjj
TnjF (x, ω). For x /∈ EJ we can let T̃njF (x, ω) = TnjF (x, ω).

For each fixed x we can now think of our operators as operators on Ω.
For each fixed x ∈ EJ , since ρ̃ = α

γ < 1, we are now in the situation of Propo-
sition 3.3, and hence given η > 0, ε > 0 and ε1 > 0, we know if L is large enough,
depending only on η, ε, ε1 and ρ̃ then we can find a function G(x, ω) such that∫

Ω
|G(x, ω)|2dP (ω) < (η2 )2, ‖G(x, ·)‖∞ ≤ 1, and

P
{
ω : max

1≤k≤L
T̃nkG(x, ω) > (1− ε)

√
1− ρ̃

1 +
√
ρ̃

}
> 1− ε1.

For x /∈ EJ let G(x, ω) = 0. An examination of the proof of Proposition 3.3 shows
that G(x, ω) is obtained from F (x, ω) by multiplication by a constant, truncation
by a function which is measurable on the product σ-field, and multiplication by
χEJ , a function measurable on the product σ-field. Thus we see that G(x, ω) is
measurable on the product σ-field.

We have

m⊗ P
{

(x, ω) : max
1≤k≤L

T̃nkG(x, ω) > (1− ε)
√

1− ρ̃
1 +
√
ρ̃

}
> (1− ε1)m(EJ).

We now consider G(x, ω) as a function of x for ω fixed. Let

Ω1 = {ω :
∫
X

|G(x, ω)|2dx ≤ η2}.

Clearly P (Ω1) ≥ 3
4 since we have∫

Ω

∫
X

|G(x, ω)|2dxdP (ω) =
∫
X

∫
Ω

|G(x, ω)|2dP (ω)dx < (
η

2
)2

and if P (Ω1) < 3
4 then we would have∫

Ω

∫
X

|G(x, ω)|2dxdP (ω) ≥ 1
4
η2,

a contradiction.
Let

Ω2 =
{
ω : m{x : max

1≤k≤L
T̃nkG(x, ω) > (1− ε)

√
1− ρ̃

1 +
√
ρ̃
} > 1− ε′

}
.

We see that P (Ω2) ≥ 3
4 since if not, we would have

m⊗ P
{

(x, ω) : max
1≤k≤L

T̃nkG(x, ω) > (1− ε)
√

1− ρ̃
1 +
√
ρ̃

}
<

3
4

+
1
4

(1− ε′).



Ergodic Theory 47

Since we have

m⊗ P
{

(x, ω) : max
1≤k≤L

T̃nkG(x, ω) > (1− ε)
√

1− ρ̃
1 +
√
ρ̃

}
> (1− ε1)m(EJ),

we see we will have a contradiction if

(1− ε1)m(EJ) > 1− ε′

4
.

By taking J large enough, and ε1 small enough, this can be achieved.
Since P (Ω1) ≥ 3

4 and P (Ω2) ≥ 3
4 , we clearly can find ω0 ∈ Ω1∩Ω2. The required

function is G(x, ω0). For that ω0, because of our definition of T̃nj , we also have

m
{
x : max

1≤k≤L
TnkG(x, ω0) > γ(1− ε)

√
1− ρ̃

1 +
√
ρ̃

}
> 1− ε′.

By taking α close enough to ρ and γ close enough to 1, (which we can do by
taking J large enough), we can make ρ̃ as close to ρ as desired. In particular we
can have

γ(1− ε)
√

1− ρ̃
1 +
√
ρ̃
> (1− 2ε)

√
1− ρ

1 +
√
ρ
.

Thus we can have

m
{
x : max

1≤k≤L
TnkG(x, ω0) > (1− 2ε)

√
1− ρ

1 +
√
ρ

}
> 1− ε′.

We now just replace ε by ε/2 to achieve the desired conclusion. �

4. Convolution Powers

Let µ be a probability measure on Z. Define

µ(f)(x) =
∞∑

k=−∞
µ(k)f(τkx).

and for n > 1,

µn(f)(x) = µ(µn−1(f))(x).

It is quite clear that the operator µ is a positive contraction on L1 and L∞,
and hence is a Dunford Schwartz operator. Consequently we know the averages
1
n

n−1∑
k=0

µk(f)(x) converges a.e. for all f ∈ Lp, 1 ≤ p ≤ ∞. However, much more is

true. If the measure µ is symmetric, that is, µ(k) = µ(−k) for all k, then the op-
erator µ is self-adjoint. For self-adjoint operators, Burkholder and Chow [24], with
a very nice argument involving a square function, proved the following theorem.

Theorem 4.1 (Burkholder and Chow, [24]). Let T be a linear self-adjoint opera-
tor in L2(X) such that for each f ∈ L2(X) we have

∫
X
|Tf(x)|dx ≤ ∫

X
|f(x)|dx

and ‖Tf‖∞ ≤ ‖f‖∞. Then for each f ∈ L2, limn→∞ T 2nf(x) exists a.e.

Applying the result to Tf , we also have convergence for T 2n+1f . For symmetric
measures, µ, the associated operator µ satisfies the hypothesis of Theorem 4.1, and
an easy square function argument shows that µ2n and µ2n+1 are close, so either
both converge or both diverge a.e.. Thus we have the following theorem.
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Theorem 4.2. If µ is a symmetric measure on Z, then µn(f)(x) converges a.e.
for all f ∈ L2.

Later Stein [71], using his complex interpolation method, was able to extend
Theorem 4.1 to obtain convergence of µnf for all f ∈ Lp, 1 < p ≤ ∞.

Working with A. Bellow and J. Rosenblatt [14], we were able to extend Stein’s
Theorem to measures that were not necessarily symmetric. This generalization
depends on the following definition.

Definition 4.3. A probability measure µ on Z has bounded angular ratio if |µ̂(γ)| =
1 only for γ = 1, and

sup
|γ|=1

|µ̂(γ)− 1|
1− |µ̂(γ)| <∞.

We obtained the following theorem.

Theorem 4.4 ([15]). Let µ have bounded angular ratio.
(1) For f ∈ Lp, 1 < p ≤ ∞, µnf(x) converges a.e..
(2) For 1 < p ≤ ∞ we have

‖ sup
n
|µnf |‖p ≤ c(p)‖f‖p.

Proof. Below is a sketch of the proof of this result in the case p = 2. The general
result follows in a similar way, using Stein’s complex interpolation method to reach
the values of p < 2. (For values of p > 2, the result follows from the case p = 2, the
trivial estimate ‖ supn |µnf |‖∞ ≤ ‖f‖∞, and an application of the Marcinikewicz
interpolation theorem.)

We have (for N > 2M)

1
N −M

N∑
k=M

µkf(x)

=
1

N −M
N∑

k=M

( N∑
j=k

(
µjf(x)− µj+1f(x)

)
+ µN+1f(x)

)

=
1

N −M
N∑

j=M

(
µjf(x)− µj+1f(x)

) j∑
k=M

1 + µN+1f(x)

=
1

N −M
N∑

j=M

(j −M + 1)
(
µjf(x)− µj+1f(x)

)
+ µN+1f(x).

Consequently for N > 2M , we have∣∣∣ 1
N −M

N∑
k=M

µkf(x)− µN+1f(x)
∣∣∣ ≤ 1

N −M
N∑

j=M

j
∣∣∣µjf(x)− µj+1f(x)

∣∣∣
≤ 1
N −M

( N∑
j=M

(
√
j)2
) 1

2
( N∑
j=M

(
√
j)2
∣∣∣µjf(x)− µj+1f(x)

∣∣∣2) 1
2

≤ c
( ∞∑
j=M

j
∣∣∣µjf(x)− µj+1f(x)

∣∣∣2) 1
2
.
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Since the operator µ is a positive contraction on L1 and L∞, by the Dunford–
Schwartz ergodic theorem, we know 1

n

∑n−1
k=0 µ

kf(x) converges a.e.
Clearly for each fixed M , 1

N−M
∑N
k=M µk(f)(x) converges a.e. If we could show

that the right hand side goes to zero as M goes to ∞, so would the left hand side.
Consequently, forM large enough, andN > 2M , we have that 1

N−M
∑N
k=M µk(f)(x)

and µN+1f(x) are close. This implies µN+1f(x) must converge a.e. too.

The argument to show that
(∑∞

j=M j
∣∣∣µjf(x)−µj+1f(x)

∣∣∣2) 1
2

converges to zero
involves first transferring the problem to Z. (See Bellow’s paper [8].) A Fourier
transform argument is then used to show that the multiplier is bounded, with
M = 1, and consequently, goes to zero as M goes to ∞. The details of the Fourier
transform argument are as follows.

∥∥∥( ∞∑
j=1

j
∣∣∣µjf(x)− µj+1f(x)

∣∣∣2) 1
2
∥∥∥2

2
=
∫
|γ|=1

∞∑
j=1

j
∣∣∣µ̂jf(γ)− µ̂j+1f(γ)

∣∣∣2 dγ
=
∫
|γ|=1

∞∑
j=1

j
∣∣∣(µ̂(γ)

)j
f̂(γ)− (µ̂(γ)

)j+1
f̂(γ)

∣∣∣2 dγ
=
∫
|γ|=1

∞∑
j=1

j|µ̂(γ)|2j |1− µ̂(γ)|2|f̂(γ)|2 dγ

≤
∫
|γ|=1

( 1
1− |µ̂(γ)|2

)2

|1− µ̂(γ)|2|f̂(γ)|2 dγ

≤ sup
|γ|=1

( |1− µ̂(γ)|
|1− |µ̂(γ)||1 + |µ̂(γ)|

)2
∫
|γ|=1

|f̂(γ)|2 dγ

≤ c sup
|γ|=1

( |1− µ̂(γ)|
|1− |µ̂(γ)|

)2

‖f‖22.

Hence, with the assumption that µ has bounded angular ratio, the first part of the
theorem follows. As we see, the bounded angular ratio condition arose naturally in
the computation.

The maximal inequality follows from the fact that

|µN+1f(x)| ≤ | 1
N

N∑
k=1

µkf(x)|+ c
( ∞∑
k=1

j|µjf(x)− µj+1f(x)|2
) 1

2
.

Now take the supremum over N on both sides. Note that

‖ sup
N
| 1
N

N∑
k=1

µkf(x)|‖p ≤ cp‖f‖p,

since µ is a contraction on all Lp, and we just saw that at least for p = 2, the
square function is a bounded operator. The general case follows by Stein’s complex
interpolation.

�

Of course, the theorem is only useful if there are measures that satisfy the
bounded angular ratio condition. It turns out that there are many examples of
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such measures. The following theorem from [13] shows how to find a large class of
examples.

Theorem 4.5. If
∞∑

k=−∞
kµ(k) = 0

and
∞∑

k=−∞
k2µ(k) <∞

then µ has bounded angular ratio, and µnf(x) converges a.e. for f ∈ Lp, 1 < p <
∞.

Remark 4.6. If µ has finite first moment (in particular, if µ has finite second mo-
ment) and E(µ) =

∑∞
k=−∞ kµ(k) 6= 0 then µ has unbounded angular ratio. Hence

if E(µ) = 0 then the statement µ has finite second moment, and the statement µ
has bounded angular ratio are equivalent.

It turns out that the bounded angular ratio condition is not only sufficient for
a.e. convergence of the convolution powers, but it also is (almost) necessary. We
have the following result. (See [1], [3] and [15].)

Theorem 4.7. If lim
γ→1

|µ̂(γ)− 1|
1− |µ̂(γ)| =∞ then (µn) has the strong sweeping out prop-

erty

It is possible that lim
γ→1

|µ̂(γ)− 1|
1− |µ̂(γ)| fails to exist. In that case, there are situations

where we are still uncertain if divergence occurs.

Remark 4.8. In [13] Bourgain’s entropy method was used to show that divergence
occurs. Later in [1] a modification of the Fourier transform condition for strong
sweeping out was used to obtain the stronger result. In [3] a modification of the
entropy method was used to also obtain strong sweeping out.

In the above discussion we have only considered the case p > 1. The case p = 1
is much more difficult. The first non-trivial result in this direction was obtained by
Karin Reinhold [64].

Theorem 4.9 (Reinhold [64]). If µ has bounded angular ratio and
∞∑

k=−∞
|k|2+δµ(k) <∞

for some δ > (
√

17−3)
2 , then µnf(x) converges a.e. for all f ∈ L1.

(Recall that for µ as above, since µ has bounded angular ratio, we are restricted
to µ such that E(µ) = 0.)

The argument used by Reinhold involved a comparison with the appropriate
normal density, and used the fact that the maximal function associated with con-
volution of dilates of the normal density function will satisfy a weak (1,1) inequality.
However, it seemed unlikely that the term (

√
17−3)
2 could be sharp.
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Encouraged by Reinhold’s result, the problem was later studied by A. Bellow
and A. P. Calderón. They knew about the Calderón transfer principle, and they
realized that in some ways, these convolution powers behaved like singular integrals.
Moreover they knew how to use the Calderón-Zygmund decomposition to obtain
results about singular integrals. With these tools, they improved Reinhold’s result
to obtain the following.

Theorem 4.10 (Bellow–Calderón [11]). If µ has bounded angular ratio and
∞∑

k=−∞
|k|2µ(k) <∞,

then:
• For each λ > 0 we have

m{x : sup
n
|µnf(x) > λ} ≤ c

λ
‖f‖1;

• For all f ∈ L1(X), µnf(x) converges a.e..

A sketch of their proof is given below. They first transfer the problem to Z, and
write µn(x) =

∫ 1
2
− 1

2
µ̂(e2πiθ)ne−2πixθ dθ. They then use a clever integration by parts

argument to obtain the following Lemma.

Lemma 4.11 (Bellow–Calderón). If µ has bounded angular ratio and
∞∑

k=−∞
|k|2µ(k) <∞,

then

sup
n
|µn(x− y)− µn(x)| ≤ c|y|

|x|2 .

This lemma gave them exactly the same control of the “smoothness” of the con-
volution powers that one has for the Hilbert transform. Once Bellow and Calderón
established this control, they knew the proof could be finished in exactly the same
way that one completes the proof of the weak type (1,1) inequality for the Hilbert
transform. Convergence on a dense class (all of L2) was known. Consequently, by
the Banach principle, to establish convergence for all f ∈ L1, it was enough to prove
this weak type (1,1) inequality. To prove such inequalities, with either the convo-
lution powers or the Hilbert transform, one begins with the Calderón-Zygmund
decomposition. The version of this important decomposition stated below is for
Z, however, with nothing more than a change in notation, the same decomposi-
tion holds on R. It is the key to prove the weak type (1,1) result for the Hilbert
transform, and as Bellow and Calderón showed, for convolution powers as well.

Theorem 4.12 (Calderón-Zygmund decomposition). Given a nonnegative function
f ∈ `1(Z) and λ > 0, we can write f = g + b, where g ∈ `2(Z) and

(1) ‖g‖`1 ≤ ‖f‖`1 ,
(2) ‖g‖∞ ≤ 2λ,
(3) b =

∑
i bi where each bi satisfies:

a) each bi is supported on a dyadic interval Bi,
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b)
∑
j bi(j) = 0 for each i,

c) 1
|Bi|

∑
j∈Bi |bi(j)| ≤ 4λ and λ ≤ 1

|Bi|
∑
j∈Bi |f(j)|,

d) For each i 6= j we have Bi ∩Bj = ∅.

Remark 4.13.

• We are using |S| to denote the number of integers in the set S.
• The conditions above imply

∑
i

|Bi| ≤ 1
λ

∑
i

‖bi‖`1 ≤ 1
λ
‖f‖`1 .

• In the above decomposition, if λ > ‖f‖∞ then we can take f = g and b = 0.

Proof of 4.12. The proof is not difficult. First find a dyadic interval, I, so large
that 1

|I|
∑
j∈I |f(j)| ≤ λ, and |f(j)| ≤ λ for j /∈ I. Now divide I into two equal

dyadic subintervals, I1 and I2. Look at the average over each piece. If in either
case the averages is more than λ, keep that interval and it will become one of
the Bi’s. If the average is less than λ, divide that interval into two equal dyadic
subintervals, and repeat the procedure. The process clearly stops after only a finite
number of steps. We then have a collection of disjoint dyadic intervals. The average
over any one of the selected intervals is dominated by 2λ. The value of f off the
union of these selected intervals is at most λ. Denote the selected intervals by
B1, B2, . . . . On Bi define g = 1

|Bi|
∑
j∈Bi f(j), and off ∪Bi define g(j) = f(j).

Define b(j) = f(j)− g(j), and let bi = bχBi . It is easy to check that all the desired
properties are satisfied. �

Remark 4.14. There is also an analog of the Calderón–Zygmund decomposition
for martingales. This was discovered by Gundy, [38], and has been useful for proving
several results about martingales.

Proof of 4.10. The following proof is due to Bellow and Calderón. We first use the
strong type (2,2) inequality to maintain control of g. We then use the smoothness
of the operator to control b when we are far from the support of b, and use the
fact that b has small support to control what happens near the support of b. The
details are as follows.

Note that

|{sup
n
|µnf(x)| > 2λ}| ≤ |{sup

n
|µng(x)| > λ}|+ |{sup

n
|µnb(x)| > λ}|.

To handle the first term, recall that by Theorem 4.4 we have

‖ sup
n
|µng‖`2 ≤ c‖g‖`2 .
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Consequently,

|{sup
n
|µng(x)| > λ}| ≤ 1

λ2
‖ sup

n
|µng|‖2`2

≤ c

λ2
‖g‖2`2

≤ c

λ2

∑
j

|g(j)|2

≤ c

λ2

∑
j

|g(j)|λ

≤ c

λ
‖g‖`1

≤ c

λ
‖f‖`1 .

To handle the second term, we first write B̃i for the interval with the same center
as Bi, but with five times the length. We also let B̃ = ∪iB̃i. Let B̃c denote the
complement of B̃. We then have

|{sup
n
|µnb(x)| > λ}| ≤ |{sup

n
|µnb(x)| > λ} ∩ B̃c|+ |B̃|.

This time the second term is easy. We have

|B̃| ≤ 5
∑
i

|Bi| ≤ 5
λ
‖f‖`1 .

For the remaining term, we need some additional notation. Let ri denote a point
near the center of the interval Bi. Recall that µnb(x) =

∑
r µ

n(x− r)b(r), and that∑
r b(r) = 0. Consequently,

∑
r∈Bi

µn(x− ri)b(r) = 0.

For x ∈ B̃ci , we know |x− ri| > 2|B| and for r ∈ Bi, we know |r− ri| ≤ |B|. Hence

∑
x∈B̃ci

|r − ri|
|x− ri|2 ≤ 2

∞∑
k=|Bi|

|B|
k2
≤ c.
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We have

|{sup
n
|µnb(x)| > λ} ∩ B̃c| ≤ 1

λ

∑
x∈B̃c

sup
n
|µnb(x)|

≤ 1
λ

∑
i

∑
x∈B̃ci

sup
n
|µnb(x)|

≤ 1
λ

∑
i

∑
x∈B̃ci

sup
n

∣∣∣∑
r

µn(x− r)b(r)−
∑
r

µn(x− ri)b(r)
∣∣∣

≤ 1
λ

∑
i

∑
x∈B̃ci

∑
r

sup
n

∣∣∣µn(x− r)− µn(x− ri)
∣∣∣|b(r)|

≤ 1
λ

∑
i

∑
r

|b(r)|
∑
x∈B̃ci

c
|r − ri|
|x− ri|2

≤
∑
i

c

λ

∑
r

|b(r)|

≤ c
∑
i

|Bi|

≤ c

λ
‖f‖`1 .

�

5. Good-λ Inequalities for Convolution Powers

The above discussion suggested that convolution powers exhibit a behavior sim-
ilar to that of a singular integral. In this section we give an additional result in the
same spirit. That is, the result is proved in the same way as a related result for
singular integrals. Let µ be a probability measure on Z. As before, let

µf(x) =
∞∑

k=−∞
µ(k)f(τkx),

and for n > 1, µnf(x) = µ(µn−1f)(x). Let µ?f(x) = supn≥0 |µnf(x)| and

f?(x) = sup
a≤0≤b

1
b− a+ 1

b∑
j=a

|f(τ jx)|.

Theorem 5.1. Assume µ is a probability measure on Z which has finite second
moment and

∑
k kµ(k) = 0. There are constants C > 0 and C ′ > 0 (which depend

only on µ) such that if β > 1 and 0 < γ ≤ 1 satisfy β − 1− γC′ > 0 then

m{x : µ?f(x) > βλ, f?(x) < γλ} ≤ Cγ

β − 1− γC ′m{x : µ?f(x) > λ}.

Remark 5.2. Joint distribution function inequalities such as given in the above
theorem are often called “good–lambda” inequalities. They were introduced by
Burkholder and Gundy, and have played an important role both in probability and
in harmonic analysis. For example, see Coifman’s article [28], where he proves
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a similar inequality between certain singular integrals and the Hardy-Littlewood
maximal function.

Proof. First we will prove the result on Z and then transfer the result to the
ergodic theory setting in the standard way. We will use the same notation for the
operators on Z with the transformation being translation.

Let φ ∈ `1. We can assume without loss of generality that φ is non-negative.
Let S = {j : µ?φ(j) > λ}. Then we can write S = ∪Ii, where the Ii are disjoint
intervals of integers, and the intervals are of maximal length. That is, if Ii =
{pi + 1, . . . , pi + di}, then µ?φ(pi + j) > λ for j = 1, 2, . . . , di, µ?φ(pi) ≤ λ and
µ?φ(pi + di + 1) ≤ λ.

Let I = {p+ 1, . . . , p+ d} be one of these intervals. It will be enough to prove

|{j ∈ I : µ?φ(j) > βλ, φ?(j) < γλ}| ≤ Cγ

β − 1− γC ′ |I|.(2)

We can assume that there is a point p0 ∈ I so that φ?(p0) < γλ since otherwise
the left side of (2) is zero and the result is obvious.

Let Ĩ = {p− d, . . . , p+ 2d}. Then I ⊂ Ĩ, and I is at least a distance d from the
boundary of Ĩ. Let φ = φ1 + φ2 where φ1(j) = φ(j)χĨ(j).

Although we only need to estimate µ?φ(j) for j ∈ I ∩ {k : φ?(k) < γλ}, we
will actually show first that there is a constant C ′ such that we have the uniform
estimate µ?φ2(j) < (1 + C ′γ)λ for all j ∈ I.

For fixed n, we have for j ∈ I,

µnφ2(j) =
∞∑

k=−∞
µn(j − k)φ2(k)

=
∞∑

k=−∞
µn(p− k)φ2(k) +

∞∑
k=−∞

(
µn(j − k)− µn(p− k)

)
φ2(k)

= A+B.

We have

A ≤
∞∑

k=−∞
µn(p− k)φ(k) = µnφ(p) ≤ λ

since φ2 ≤ φ and µ?φ(p) ≤ λ by assumption.
For B we need to work harder. We can write

B =
∞∑

k=−∞

(
µn(j − k)− µn(p0 − k)

)
φ2(k)

+
∞∑

k=−∞

(
µn(p0 − k)− µn(p− k)

)
φ2(k)

= B1 +B2.

Recalling that φ2 is supported outside Ĩ, that φ?(p0) ≤ γλ, and the smoothness
condition on µn, from Lemma 4.11, that is

|µn(j − k)− µn(p0 − k)| ≤ c |p0 − j|
|p0 − k|2 ,
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which was established in [11], we now estimate

B1 =
∞∑

k=−∞

(
µn(j − k)− µn(p0 − k)

)
φ2(k)

≤
∞∑

|p0−k|>d

(
µn(j − k)− µn(p0 − k)

)
φ2(k)

≤
∞∑

|p0−k|>d
c
|j − p0|
|k − p0|2φ(k)

≤ cd
∞∑
k=d

1
k2
φ(p0 − k) + cd

∞∑
k=d

1
k2
φ(p0 + k)

≤ cd
∞∑
k=d

φ(p0 − k)
∞∑
j=k

( 1
j2
− 1

(j + 1)2

)
+ cd

∞∑
k=d

φ(p0 + k)
∞∑
j=k

( 1
j2
− 1

(j + 1)2

)

≤
∞∑
j=d

1
j3

j∑
k=0

φ(p0 − k) + cd

∞∑
j=d

1
j3

j∑
k=0

φ(p0 + k)

≤ 2cdφ?(p0)
∞∑
j=d

1
j2

≤ 2cγλ.

The term B2 is estimated in exactly the same way, and we also obtain B2 ≤ 2cγλ.
Hence if we let C ′ = 4c, then we have µ?φ2(j) ≤ (1 + C ′γ)λ for all j ∈ I.

We now return to estimating the left side of (2). Here we will use Theorem 4.10,
the fact established by Bellow and Calderón [11], that µ? is a weak type (1,1)
operator. We have

|{j ∈ I : µ?φ(j) > βλ, φ?(j) < γλ}|
≤ |{j ∈ I : µ?φ1(j) + µ?φ2(j) > (β − 1− γC ′)λ+ (1 + γC ′)λ}|
≤ |{j ∈ I : µ?φ1(j) > (β − 1− γC ′)λ}|

≤ C

(β − 1− γC ′)λ‖φ1‖1

≤ C

(β − 1− γC ′)λ |I|
1
|I|
∑
k∈I
|φ(k)|

≤ C

(β − 1− γC ′)λ |I|φ
?(p0)

≤ C

(β − 1− γC ′)λ |I|γλ

≤ Cγ

β − 1− γC ′ |I|
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as required. �

This implies the following corollary.

Corollary 5.3. Assume µ is a probability measure on Z which has finite second
moment and

∑
k kµ(k) = 0. Let Φ(t) ≥ 0 be increasing and such that Φ(2t) ≤ cΦ(t)

for t ≥ 0. Then there is a constant c̃ such that∫
X

Φ
(
µ?f(x)

)
dx ≤ c̃

∫
X

Φ
(
f?(x)

)
dx.

In particular, taking Φ(t) = tp, we have∫
X

|µ?f(x)|p ≤ cp
∫
X

|f?(x)|pdx

for 0 < p <∞.

Remark 5.4. Note that the range of p is 0 < p < ∞, we do not have the usual
restriction that p > 1.

Proof. Take β = 2 and γ = 1
2N

for some large enough integer N . We have

∫
X

Φ(
1
2
µ?f(x))dx ≤

∫ ∞
0

m{x : µ?f(x) > 2λ}dΦ(λ)

≤
∫ ∞

0

m{x : µ?f(x) > 2λ, f?(x) <
1

2N
λ}dΦ(λ)

+
∫ ∞

0

m{x : µ?f(x) > 2λ, f?(x) >
1

2N
λ}dΦ(λ)

≤
∫ ∞

0

C 1
2N

2− 1− C′
2N

m{x : µ?f(x) >
1

2N
λ}dΦ(λ)

+
∫ ∞

0

m{x : f?(x) >
1

2N
λ}dΦ(λ)

≤ C 1
2N

1− C′
2N

∫
X

Φ
(
µ?f(x)

)
dx

+
∫
X

Φ
(
2Nf?(x)

)
dx.

Hence we have∫
X

Φ(
1
2
µ?f(x))dx ≤ C 1

2n

1− C′
2N

∫
X

Φ
(
µ?f(x)

)
dx+

∫
X

Φ
(
2Nf?(x)

)
dx.

Using the properties of Φ we see that this implies∫
X

Φ
(1

2
µ?f(x)

)
dx ≤ C 1

2N

1− C′
2N

c

∫
X

Φ
(1

2
µ?f(x)

)
dx+ cN+1

∫
X

Φ
(1

2
f?(x)

)
dx.

Now we solve, and obtain

(
1− c C 1

2N

1− C′
2N

)∫
X

Φ(
1
2
µ?f(x))dx ≤ cN+1

∫
X

Φ
(1

2
f?(x)

)
dx.
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Replacing f by 2f , and taking N large enough so that C ′ < 2N , we have the
conclusion of the theorem.

(Actually there is an additional step. We first establish the theorem with µ? re-
placed by sup0≤k≤K |µk|. For this operator we know that the term

∫
X

Φ
(

1
2µ

?f(x)
)
dx

on the right hand side will be finite, so we can solve. Then we note that the in-
equality does not depend on K, so we have the result for the maximal operator,
µ?.)

�

6. Oscillation Inequalities

To understand some of the discussion in this section, it helps to have a little
background about martingales. We will not need the full theory, and consequently,
will restrict our attention to two special cases: the dyadic martingale on [0, 1), and
the dyadic reverse martingale on Z.

For f ∈ L1([0, 1)) and n = 0, 1, . . . , define

fn(x) = 2n
∫ k

2n

k−1
2n

f(t) dt for
k

2n
≤ x < k + 1

2n
,

with k = 1, 2, . . . , 2n.
Some important operators include the martingale maximal function

f?(x) = sup
n
|fn(x)|,

and the martingale square function

SMf(x) =
( ∞∑
k=0

|fk(x)− fk+1(x)|2
) 1

2
.

Doob, in his classical 1953 book, [33], proved that ‖f?‖p ≤ cp‖f‖p and also
proved the associated weak type (1,1) inequality, that is, m{x : |f?(x)| > λ} ≤
c
λ‖f‖1. (See Doob’s book, [33] for further discussion, as well as many other impor-
tant facts about martingales.) Austin [7] first proved the weak type (1,1) inequality
for SMf in 1966. As in the case of the maximal function, we have ‖SMf‖p ≤ cp‖f‖p
for 1 < p <∞. It was Burkholder who first realized the importance of the martin-
gale square function, and later working with Gundy and Silverstein, they were able
to use the martingale square function to give the first real variable characterization
of the Hardy space H1 [26]. (See Petersen’s book [61], “Brownian Motion, Hardy
Spaces and Bounded Mean Oscillation”, for an exposition.)

We can also consider two additional operators. First, if we fix an increasing
sequence (nk) we can define the oscillation operator,

OMf(x) =
( ∞∑
k=1

sup
nk<n≤nk+1

|fnk(x)− fn(x)|2
) 1

2
.

For any % > 2, we define the %-variational operator for martingales by

VM,%f(x) = sup
n1<n2<...

( ∞∑
k=1

|fnk(x)− fnk+1(x)|%
) 1
%

,

where the supremum is taken over all increasing sequences of positive integers.
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It is easy to see that ‖OMf‖2 ≤ c‖f‖2. Just note that∫
sup

nk<n≤nk+1

|fnk(x)− fn(x)|2dx ≤ c
∫
|fnk(x)− fnk+1(x)|2dx,

which follows from the maximal inequality applied to the martingale that starts at
nk. The strong (p,p) result for VM,%f is a result of Lepingle [55]. See also [60] and
[43] for further discussion of the operator VM,%. (If % ≤ 2 the operator can diverge.
That is why we restrict our attention to % > 2. See Monroe’s paper [58]. If we use
an exponent % < 2, then even the analog of the simple square function can diverge.
See [5].)

It is also useful to note another square function that has played an important
role in analysis. That is, the Littlewood Paley g-function. Let Pt(x) = 2

π
t

|x|2+t2

denote the Poisson kernel on R. Define u(x, t) = f ? Pt(x), and let

gf(x) =
(∫ ∞

0

t|∇u(x, t)|2 dt
) 1

2
.

A closely related (and slightly easier) operator is

g1f(x) =
(∫ ∞

0

t| ∂
∂t
f ? Pt(x)|2dt

) 1
2
.

If we were look at a discrete version of the operator g1, we might try to break
up the region of integration, estimate ∂

∂tf ? Pt(x) on each piece, and add up the
results in the appropriate way. Consider the following heuristic1 argument.

g1f(x) =
(∫ ∞

0

t| ∂
∂t
Pt(x) ? f |2dt

) 1
2

=
( ∞∑
k=−∞

∫ 2k+1

2k
t| ∂
∂t
Pt(x) ? f |2dt

) 1
2

≈
( ∞∑
k=−∞

∫ 2k+1

2k
2k
∣∣∣P2k+1 ? f(x)− P2k ? f(x)

2k

∣∣∣2dt) 1
2

=
( ∞∑
k=−∞

|P2k+1 ? f(x)− P2k ? f(x)|2
∫ 2k+1

2k

1
2k
dt
) 1

2

=
( ∞∑
k=−∞

|P2k+1 ? f(x)− P2k ? f(x)|2
) 1

2
.

1Actually one direction of this heuristic argument can be made precise. Write

(∑
k

|P2k+1 ? f(x)− P2k ? f(x)|2) 1
2 =

(∑
k

|
∫ 2k+1

2k

∂

∂t
Pt ? f(x) dt|2) 1

2

≤ (∑
k

2k
∫ 2k+1

2k
| ∂
∂t
Pt ? f(x)|2 dt) 1

2

≤ ( ∫ ∞
0

t| ∂
∂t
Pt ? f(x)|2 dt) 1

2 = g1f(x).
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With the above martingale square function, and the Littlewood-Paley g function
as motivation, we define the ergodic analogs, and see to what extent they behave
like the previously studied square functions.

Fix a sequence n1 < n2 < . . . . We define the ergodic square function associated
with this sequence by

Sf(x) =
( ∞∑
k=1

|Ankf(x)−Ank+1f(x)|2
) 1

2
.

The theory for this operator developed as follows:

(1) The first special case was nk = k, which was shown to be a bounded operator
on Lp for p > 1, and weak type (1,1) in 1974. (See [40] and [41].)

(2) The second special case was nk = 2k considered by de la Torre in 1975 [31].
(3) The general case was studied in a paper that appeared in 1996 in joint

work with Ostrovskii and Rosenblatt [47]. We showed that in particular the
operators are bounded on Lp, 1 < p ≤ 2 and are weak (1,1). Later, in joint
work with Kaufmann, Rosenblatt and Wierdl, we showed that they map L∞

into BMO and hence by interpolation, are bounded on all Lp, 1 < p <∞.

To prove these square function inequalities, we argue as follows. First, using the
Calderón transfer principle, as usual, we transfer the problem to Z. To prove the L2

result, we use a Fourier transform argument. After writing things in terms of Fourier
transforms, we make two different types of estimates, depending on the growth from
nk to nk+1. In particular, for fixed θ, we look at those k so |nkθ − nk+1θ| ≤ 1 and
those where |nkθ − nk+1θ| > 1. It is then a matter of adding up the resulting
estimates. This takes some work, but is not too unpleasant.

For the weak (1,1) result, we continue to work on Z, and do a Calderón-Zygmund
decomposition of f . (Recall Theorem 4.12.) Following the standard technique, as in
the proof of Theorem 4.10, write f = g+ b. Use the L2 estimate on g, and then try
to use an L1 estimate on b, staying far away from the support of b. Unfortunately,
even in some simple cases, (say nk = k and b = δ0−δ1) the square function will not
be in `1(B̃c), that is, even if we only sum far away from the support of b, we can
still diverge. Consequently, the standard technique fails, and we need to modify
the method.

We avoid the above difficulty by using the following result:

Theorem 6.1. Let S be a sublinear operator, and assume that S has the following
properties

(1) |{x : Sf > λ}| ≤ c
λ2 ‖f‖22.

(2) For some % ≥ 1, we have

a) |S(
∑
j bj)(x)| ≤ c

(∑
j |S(bj)(x)|%

) 1
%

for x /∈ B̃.

b) 1
λ%

∑
x∈B̃cj |S(bj)|% ≤ c|Bj |.

Then S is weak (1, 1).

Proof. First, using the decomposition, we can write

m{x : Sf(x) > 2λ} ≤ m{x : Sg(x) > λ}+m{x : Sb(x) > λ}.
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For the “good function”, g, the argument is easy, as before. We have

|{x : Sg(x) > λ}| < c

λ2
‖g‖22

=
c

λ2

∫
|g(x)|2 dx

≤ c

λ2

∫
|g(x)|λ dx

≤ c

λ

∫
|f(x)| dx =

c

λ
‖f‖1,

as required.
For the “bad function”, b, we have the following estimate

|{x : Sb(x) > λ}| ≤ |{x ∈ B̃c : Sb(x) > λ}|+ |B̃|
≤ 1
λ%

∑
x∈B̃c

|S(
∑
j

bj)(x)|% + |B̃|

≤ c

λ%

∑
x∈B̃

∑
j

|S(bj)(x)|% + |B̃|

≤
∑
j

1
λ%

∑
x∈B̃cj

|S(bj)(x)|% + |B̃|

≤ c
∑
j

|Bj |+ 5
∑
j

|Bj |

≤ c

λ
‖f‖1.

�
To prove S(f) is weak type (1,1) it will be enough to show that our square

function satisfies the properties in Theorem 6.1.
The required weak (2,2) result is just a consequence of the strong (2,2) result.

For the second condition we use % = 2, and note that for fixed x and k, at most
two of the terms in the squared part of the expression are non-zero, and that
(a+ b)2 ≤ 2(a2 + b2).

The third condition requires some work to estimate, but is just a computation.
It turns out that these square functions map `∞ into BMO, and consequently,

we can interpolate, and get strong type (p,p) for 1 < p <∞.

Remark 6.2. There are some sequences, such as nk = 2k for which a different
argument will work. When nk increases fast enough, a condition sometimes referred
to as the Hörmander condition is satisfied. In this case, the more standard argument
will work. However, in general the Hörmander condition is not satisfied, and the
above argument is required.

To give a flavor of the kind of computations necessary to prove the square func-
tion is bounded on L2, we illustrate the technique with a very special case.

Let nk = k, that is we are looking at the square function

Sf(x) =
( ∞∑
k=1

|Akf(x)−Ak+1f(x)|2
) 1

2
.
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Rewriting the problem on Z, we have

Ânf(θ) =
1
n

n−1∑
k=0

e2πikθ =
1− e2πinθ

n(1− e2πiθ)
.

Using Fourier transforms, we have

‖Sf‖2`2 =
∫
Z
|Sf(x)|2 dx

=
∫ 1

2

− 1
2

|Ŝf(θ)|2 dθ

=
∫ 1

2

− 1
2

∞∑
k=1

|Âkf(θ)− Âk+1f(θ)|2 dθ

≤ ‖
∞∑
k=1

|Âk − Âk+1|2‖∞
∫ 1

2

− 1
2

|f̂(θ)|2 dθ

≤ |
∞∑
k=1

|Âk − Âk+1|2‖∞‖f‖2`2 .

Hence it is enough to show that

‖
∞∑
k=1

|Âk − Âk+1|2‖∞ ≤ c.

We have

‖
∞∑
k=1

|Âk − Âk+1|2‖∞ =
∥∥∥ ∞∑
k=1

|( 1
k

)− (
1

k + 1
)
k−1∑
j=0

e2πijθ − 1
k + 1

e2πikθ|2
∥∥∥
∞

=
∥∥∥ ∞∑
k=1

1
(k + 1)2

|1
k

k−1∑
j=0

e2πijθ − e2πikθ|2
∥∥∥
∞

≤
∥∥∥ ∞∑
k=1

1
(k + 1)2

(
2|Âk(θ)|2 + 2

)∥∥∥
∞

Because of the term 1
(k+1)2 , we will have a bounded sum if

|Âk(θ)| ≤ c
for some constant c, independent of θ. The required estimate is trivial. Just
estimate each term in the sum defining Âk by 1. Thus, the average is no more
than 1.

Remark 6.3. In the case special case considered above, i.e., the case nk = k, a
different argument can be used. Following the argument above, but working directly
with the ergodic average, we can dominate the square function by a constant times
the maximal function, plus the operator

S̃f(x) =
( ∞∑
k=1

(f(τkx)
k

)2) 1
2
.
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It is easy to see that this last operator is bounded in L2. A variant of this operator,
when we look at f(τnkx) instead of f(τkx), is studied in [50].

We now consider the oscillation operator

Of(x) =
( ∞∑
k=1

sup
nk<n≤nk+1

|Ankf(x)−Anf(x)|2
) 1

2
.

(1) In 1977, Gaposhkin [36] showed that ‖Of‖2 ≤ c‖f‖2 in the case where
we have 1 < α ≤ nk+1

nk
≤ β < ∞ for some constants α and β. Also see

Gaposhkin’s later paper [37].
(2) In 1989 Homer White showed that there was in L2 inequality in case there

are constants α > 0 and β > 1 such that nk+1 > αnβk . (See [6].)
(3) In joint work with R. Kaufman, J. Rosenblatt and M. Wierdl, [43] we showed

that ‖Of‖2 ≤ c‖f‖2, with no restriction on the increasing sequence (nk), and
in fact we showed, ‖Of‖p ≤ cp‖f‖p for 1 < p <∞, and the operator is weak
type (1,1). Further, the constant cp depends only on p, and does not depend
on the sequence (nk).

We will now show how to prove a weaker version of this last result. We will show
how to get the L2 boundedness without the restriction imposed by Gaposhkin,
that nk+1

nk
≤ β < ∞. (However, the argument will still require the restriction that

1 < α < nk+1
nk

.) To do this we need one more result that is also contained in the joint
paper with Kaufman, Rosenblatt and Wierdl. On Z we can consider the reverse
martingale given by Enf(x) = 1

2n

∑(r+1)2n−1
j=r2n f(j) where r2n ≤ x < (r + 1)2n.

(This reverse martingale satisfies the same results as the standard martingale, in
particular we have ‖OMf‖2 ≤ c‖f‖2.) We can also define the square function

SDf(x) =
( ∞∑
k=1

|A2kf(x)− Ekf(x)|2
) 1

2
.

This operator, which gives us a way to transfer martingale results to the ergodic
theory setting, is strong (p,p) for 1 < p <∞, and is weak (1,1).

We can now estimate as follows. For fixed nk < n, let 2`k denote the largest
dyadic that is to the left of nk, and let 2` denote the largest dyadic that is to the
left of n. Let fn = Anf(x). We have

|fnk − fn|
= |fnk + (f2`k − f2`k ) + (E`kf − E`kf) + (E`f − E`f)) + (f2` − f2`)− fn|
= |(fnk − f2`k ) + (f2`k − E`kf) + (E`kf − E`f) + (E`f − f2`) + (f2` − fn)|
≤ |fnk − f2`k |+ |f2`k − E`kf |+ |E`kf − E`f |+ |E`f − f2` |+ |f2` − fn|.

Using this observation, we can estimate (
∑∞
k=1 |fnk(x)−fn(x)|2)1/2 by first using

the triangle inequality. From the resulting expressions, the first one we can estimate
by using Sf , the second by SDf , the third by OMf , the fourth by SDf again, and
for the last expression, use Gaposhkin’s result, since 2` < n ≤ 2`+1.

We can also define an analog of the operator V %Mf , by

V%f(x) = sup
n1<n2<...

( ∞∑
k=1

|Ankf(x)−Ank+1f(x)|%
) 1
%

.
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The proof is much in the same spirit, but we need to use Lepingle’s result in
place of the result for OMf .

This result gives us information about “jumps” of the ergodic averages. Define
the operator

N(f, λ, x) = max{n| there exists s1 < t1 ≤ s2 < t2 · · · ≤ sn < tn,

such that |Atkf(x)−Askf | > λ for each 1 ≤ k ≤ n}.
We can now show that

|{x : N(f, λ, x) > n}| ≤ c

λn
1
%

‖f‖1.

We just note that

λ
(
N(f, λ, x)

) 1
% ≤ V%f(x).

Hence

|{x : N(f, λ, x) > n}| ≤ |{x :
(V%f(x)

λ

)%
> n}|

≤ |{x : V%f(x) > λn
1
% }|

≤ c

λn
1
%

‖f‖1.

With a little more work we can in fact replace the exponent 1
% by 1

2 (see [43])
and we can show that this is sharp (see [50]).

There are also higher dimensional results. For example we can use squares,
rectangles, etc. See [51].

7. Concluding Remarks

There are many interesting and important areas that are related to the above
discussion, but that we have mentioned only briefly, or in some cases, not at all.
For example we did not discuss the extensive work on good subsequences for the
pointwise ergodic theorem. This started with the block sequences of Bellow and
Losert [16], followed by the important and difficult work of Bourgain ([19], [20]),
and Wierdl ([76], [75]). For an excellent (and very readable) exposition of this work,
the reader should see the article by Rosenblatt and Wierdl [69].

There is an important open problem associated with subsequences. At this
time, there is no known example of a subsequence that is good for a.e. convergence
for all f ∈ L1, and has successive gaps increasing to infinity. In particular, the
question of a.e. convergence for f ∈ L1 along the sequence of squares is open, and
probably very difficult. The techniques used in Section 4 and Section 6, including
the Calderón-Zygmund decomposition, do not seem to apply.

We have not discussed the ergodic Hilbert transform, which has many of the same
properties as the ordinary Hilbert transform. Petersen’s book, “Ergodic Theory”
[62] contains a good introduction to this operator. It turns out that the moving
ergodic averages studied in [15], have an analog for the ergodic Hilbert transform.
See [35].

We could consider oscillation inequalities and variational inequalities for several
operators other than those discussed above. For example we could consider os-
cillation and variational inequalities for averages along subsequences, convolution
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powers, or other weighted averages. (Some results on oscillation and variational
norms for convolution powers are contained in [48], but there is more work to do.)

While as mentioned above, Bellow and Calderón have shown a.e. convergence of
µnf for f ∈ L1, if µ has mean value zero and finite second moment However, there
are many examples of µ for which we know a.e. convergence for f ∈ Lp, p > 1,
but which do not satisfy the conditions necessary to apply Bellow and Calderón’s
result. Do the convolution powers of these measures converge a.e. for f ∈ L1?
Again, this problem seems difficult.

It is clear that there are many interesting questions that remain in this area, and
it seems that the more we discover, the more questions arise.
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