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Characterizing Mildly Mixing Actions by Orbit
Equivalence of Products

Jane Hawkins and Cesar E. Silva

Abstract. We characterize mildly mixing group actions of a noncompact,
locally compact, second countable group G using orbit equivalence. We show
an amenable action Φ of G is mildly mixing if and only if G is amenable and
for any nonsingular ergodic G-action Ψ, the product G-action Φ × Ψ is orbit
equivalent to Ψ. We extend the result to the case of finite measure preserving
noninvertible endomorphisms, i.e., when G = N, and show that the theorem
cannot be extended to include nonsingular mildly mixing endomorphisms.
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1. Introduction.

The main purpose of this paper is to present a new characterization of mildly
mixing group actions. Mild mixing was introduced by Furstenberg and Weiss in [11]
and characterized in terms of Cartesian products with an ergodic infinite measure
preserving transformation. It was later discussed in the context of nonsingular
transformations by Aaronson, Lin and Weiss in [2], and generalized to nonsingular
actions of locally compact groups by Schmidt and Walters in [22]. The related
notion of rigid factors and their absence was discussed under a different name
by Walters in [26]. For the case of amenable group actions, we characterize the
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property of mild mixing in terms of orbit equivalence. If the action is not amenable,
or in the case of finite measure preserving endomorphisms, we characterize the
property of mild mixing in terms of the ratio sets only. We also show that the
characterization in terms of orbit equivalence does not extend to mildly mixing
nonsingular endomorphisms.

The motivation for this characterization of mildly mixing, in fact for the paper,
is to provide a definitive answer to a question that has arisen in the literature about
determining the ratio set of a product transformation when the ratio set of each
factor in the product is known. A discussion about the difficulties of defining ratio
sets for nonivertible maps and of product transformations appears in Section 4.
In particular, we illustrate an obstruction to testing for a ratio set value only on
a dense subalgebra (like rectangles in a product space). Using a mildly mixing
multiplier allows one to avoid this problem.

We assume throughout this paper that all groups are noncompact, locally com-
pact, second countable, and that spaces are nonatomic standard Borel spaces; some-
times for convenience we complete the measure and work with nonatomic Lebesgue
probability spaces. A nonsingular action Φ of a group G on a space (X,B, µ) con-
sists of an action of G on X such that the map Φ : G × X → X is measurable
and for each g ∈ G the map φg(x) = Φ(g, x) is a nonsingular automorphism of X,
i.e., φg is an invertible measurable transformation and for any B ∈ B, µ(B) = 0 if
and only if µ(φ−1

g B) = µ(φg−1B) = 0. An action is ergodic if whenever φg(A) = A
for all g ∈ G then µ(A) = 0 or 1. If an action is ergodic and µ is not concen-
trated on a single orbit {φgx : g ∈ G}) we say it is properly ergodic. We will work
only with properly ergodic actions. When no confusion arises, we will often write
φg(x) ≡ g(x) for simplicity of notation and G(x) will be used (instead of Φ(x)) to
denote the entire orbit of the point x under the action of G. All group actions are
assumed to be free.

A G-action Φ is defined to be mildly mixing if, for every B ∈ B with 0 < µ(B) <
1,

lim inf
g→∞µ(B 4 gB) > 0.

We also say that the G-action has no rigid factors in this case. We recall the
following theorem which was first proved by Furstenberg and Weiss [11] and in the
generality we use here, by Schmidt and Walters [22].

Theorem 1.1. [22] A nonsingular properly ergodic G-action Φ is mildly mixing if
and only if for every nonsingular properly ergodic action Ψ of G on a space (Y,F , ν),
the product action Φ×Ψ on (X×Y,B × F , µ×ν) given by g(x, y) = (φg(x), ψg(y))
is µ× ν ergodic.

Let G1 and G2 be two groups with actions Φ1 on (X1,B1, µ1) and Φ2 on
(X2,B2, µ2) respectively. We say that Φ1 is orbit equivalent (or Dye equivalent)
to Φ2 if there exists a bimeasurable, nonsingular invertible map ζ : (X1,B1, µ1)→
(X2,B2, µ2) such that ζ(G1(x)) = G2(ζx) for µ1 a.e. x ∈ X1. We will define the
notion of ratio set in Section 3. Our main theorem is the following.

Main Theorem. Assume that G is a noncompact, locally compact, second count-
able group. If Φ is any amenable properly ergodic nonsingular action of G on a
standard Borel space (X,B, µ), then the following are equivalent:

1. Φ is mildly mixing (and hence preserves a finite measure ν ∼= µ [22]);
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2. For every nonsingular properly ergodic action Ψ of G on (Y,F , ν), the product
action Φ × Ψ on (X × Y,B × F , µ × ν) given by g(x, y) = (φg(x), ψg(y)) is
orbit equivalent to Ψ.

If G is countable (i.e., discrete), then 1 and 2 are equivalent to:
3. For every nonsingular properly ergodic action Ψ of G on (Y,F , ν) such the

product action Φ×Ψ on (X×Y,B × F , µ×ν) given by g(x, y) = (φg(x), ψg(y))
is ergodic, we have r(Φ × Ψ) = r(Ψ), where r(Ψ) denotes the Krieger ratio
set of the action Ψ.

We also prove versions of the Main Theorem for nonamenable groups and for
mildly mixing finite measure preserving endomorphisms, i.e., when G is the semi-
group N.

Section 2 reduces the theorem to the case of countable amenable groups, and
in Section 3 we present a proof of the theorem in this setting and its extension to
continuous groups.

In Section 4 we discuss ratio sets in more detail and present an example that
illustrates the difficulty of computing the ratio set of a Cartesian product and
correct some gaps in the literature on this point.

Finally, Section 5 is devoted to extending these results to the case of endomor-
phisms and proving a version of the main theorem for this case. We show that while
the main theorem holds for measure preserving mildly mixing endomorphisms, it
cannot be extended to include all nonsingular mildly mixing endomorphisms.

The authors thank the referees for useful suggestions and remarks which im-
proved an earlier version of this paper.

2. Definitions and Reduction to Countable Amenable
Groups.

In this section we reduce the statement of the main theorem by applying a
sequence of results about group actions from the literature. Many of the statements
below are well-known. However, since not all these results appear in print, we
provide complete statements of each result needed in this paper.

We first use the following theorem of Schmidt and Walters which allows us
to assume from now on that all mildly mixing group actions preserve the given
measure.

Theorem 2.1. [22] Let G be a locally compact second countable group, and let
Φ(g, x) = φg(x) be a nonsingular properly ergodic action of G on the standard
probability space (X,B, µ). If µ is not equivalent to any Φ-invariant probability
measure on (X,B), then the action of G is not mildly mixing.

In order to obtain the full strength of our main theorem, we use the fact that orbit
equivalence classes of group actions have a complete classification when the group
action is amenable. To avoid unnecessary technicalities about amenable actions of
nonamenable groups, we state our second simplifying theorem. We recall that a
group G is amenable if for every continuous action Φ of G on a compact metrizable
space Ω, there is a Φ-invariant measure on Ω.

Theorem 2.2. [27] If Φ is an amenable action of G on (X,B, µ) and Φ preserves
µ, then G is amenable.
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Corollary 2.1. If G has a mildly mixing amenable action on (X,B, µ), then G is
an amenable group.

Remark 2.1. In [5], Connes, Feldman, and Weiss united the concepts of amenability
and orbit equivalence by showing that a free properly ergodic action of a countable
group is amenable if and only if it is orbit equivalent to a Z-action, and a free
properly ergodic action of a continuous group is amenable if and only if it is orbit
equivalent to an R-action.

Assume that G is uncountable and locally compact, and has a nonsingular free
action on X. We use a countable cross section to reduce the classification problem
to that of a countable orbit structure, a procedure similar to finding a cross section
of a flow to represent it as a flow built under a function. Studying the orbits of
the base transformation gives information about the orbits of the flow. The ideas
outlined below have been written about in detail by Feldman [9].

Definition 2.1. If K is precompact with nonempty interior in G, and B is mea-
surable in X, then B is called a K-base if the map Φ|K×B is one-to-one and the set
KB has positive measure. The set KB is called a K-tower.

The existence of cross sections was shown by Forrest [10]; in particular if K is a
compact subset of G acting on (X,B, µ), and V is any open subset of G, then for
any measurable set S ⊂ X of positive measure, there is a K-base B ⊂ X such that
µ(V B ∩ S) > 0.

The usefulness of a K-base is to change a continuous G-orbit into a countable
orbit. We need a more general notion of orbit to accomplish this.

Definition 2.2. A discrete equivalence relation R on (X,B) is an equivalence re-
lation, which, as a subset of X × X is product measurable, and each equivalence
class R(x) is countable. Any measure on X gives rise to a natural measure for R,
and µ is said to be nonsingular for R if µ(A) = 0 ⇐⇒ µ(R(A)) = 0. Notions of
ergodic and properly ergodic carry over analogously to the relation R. We always
assume that R is nonsingular with respect to the given measure µ.

Definition 2.3. Two discrete equivalence relations R1 on (X1,B1, µ1) and R2 on
(X2,B2, µ2) are isomorphic if there is a one-to-one measurable map ψ : X1 → X2

with µ1 ◦ ψ−1 ∼ µ2, and for µ a.e. x ∈ X1, R2(ψx) = R1(x). We write R1
∼= R2.

Every example of a discrete equivalence relation is isomorphic to one obtained
by taking a countable group G (which, in our setting, is equivalent to a discrete
group G) with a nonsingular action on X and defining RG(x) = {Gx}: i.e., the
orbit relation (cf. [9]).

Given a K-base B for an uncountable action of G, we define a countable equiv-
alence relation on B which is isomorphic to the orbit equivalence relation of a
countable amenable group H. Define R = {(gx, x) : gx, x ∈ B, g ∈ G}. This is a
measurable subset of X ×X, and an equivalence class is: R(x) = {y ∈ B : y = gx
for some y ∈ B, g ∈ G}. One can show that R(x) is countable for each x ∈ B.
Also we have a measure for the relation R defined by µB(A) ≡ µ(KA) for each
measurable set A ⊂ B; with respect to this measure, R is nonsingular and ergodic
if and only if the original action Φ is nonsingular and ergodic with respect to µ.

We adapt these results to our setting by proving the following result.
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Proposition 2.1. Suppose that G is a continuous amenable group, and has the
following properly ergodic actions: a finite measure preserving action Φ on (X,B, µ),
and a nonsingular action Ψ on (Y,F , ν). Then the product action Φ×Ψ on (X ×
Y,B × F , µ × ν) given by g(x, y) = (φg(x), ψg(y)) is orbit equivalent to Ψ if and
only if there exists a countable group H acting on a standard space (Z,D, ρ), and
K-bases B ⊂ Y for Ψ, and C ⊂ X × Y for Φ × Ψ such that RB ∼= RC ∼= RH .
Furthermore, given a compact K ⊂ G, and K-bases B1 ⊂ X for Φ and B2 ⊂ Y for
Ψ, the set C = B1 ×B2 is a K- base for Φ×Ψ.

Proof. (⇐=) This implication follows from the fact that if Gi, i = 1, 2 are un-
countable groups, and each Gi action on (Xi,Bi, µi) is almost free and properly
ergodic, then the two actions are orbit equivalent if and only if they have they have
bases (Bi, µBi) on which the corresponding Ri are isomorphic; equivalently, if and
only if for any bases (Bi, µBi), either R1 is isomorphic to some restriction of R2 to
a subset C2 ⊂ B2, or vice versa (cf. [9]).

(=⇒) If Ψ is orbit equivalent to Φ×Ψ, then if Ψ preserves a measure equivalent
to ν, we can choose any type II relation R for the RH (cf. Definition 3.2). If Ψ is
type III, then every R obtained will be in the same isomorphism class and again
we can find a single RH in that isomorphism class.

The last statement follows since the set K(B1×B2) has positive µ× ν measure,
and the map (g, x, y) 7−→ (φg(x), ψg(y)) from K×B1×B2 to K(B1×B2) ⊂ X×Y
is one-to-one. Suppose that (φg(x), ψg(y)) = (φh(w), ψh(v)). Then g = h, x = w,
and y = v, by our assumptions. This concludes the proof. �

3. The Orbit Equivalent Multiplier Theorem for Countable
Amenable Groups.

We now let G denote an arbitrary countable group. In this section we charac-
terize mildly mixing actions of countable amenable groups G. At the end of this
section we extend the characterization to continuous groups by applying the results
from the previous section. We assume that Φ denotes a properly ergodic almost
free action of G on (X,B, µ).

3.1. Orbit equivalence theory for countable amenable groups. The notion
of ratio set for a countable group of ergodic automorphisms was introduced by
Krieger as an invariant under orbit equivalence of nonsingular automorphisms [18,
19]. In this section it is convenient to assume that (X,B, µ) is a Lebesgue probability
space. Since Φ is a nonsingular action, for each g ∈ G the measure µφg(A) ≡ µ(φgA)
is equivalent to µ and the Radon-Nikodym derivative dµφg

dµ exists and is positive
a.e.

Definition 3.1. We denote by rµ(Φ) the set of nonnegative numbers λ satisfying:
for any ε > 0 and any set A with µ(A) > 0, there exists a φg such that:

µ(A ∩ φ−gA ∩ {x : |dµφg
dµ

(x)− λ| < ε}) > 0.

Many properties of rµ(Φ) are proved in [19] and [13]. In particular, rµ(Φ) de-
pends only on the measure class of µ; we will therefore denote rµ(Φ) by r(Φ), and
call it the ratio set of Φ. It is an invariant of orbit equivalence, but not a complete
invariant unless r(Φ) = {λn : n ∈ Z} for some λ ∈ (0, 1) or r(Φ) = R+ ∪ {0}.
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Definition 3.2. The action Φ is defined to be of type II if r(Φ) = {1}; this case
occurs if and only if Φ admits a σ-finite invariant measure ν ∼ µ. If ν(X) = 1,
then we say Φ is type II1; if ν(X) = ∞, then we say Φ is of type II∞. Otherwise,
0 ∈ r(Φ), and we say Φ is of type III.

All ergodic type II1 countable amenable G-actions are orbit equivalent; this was
proved for abelian groups by H. Dye [7], and extended to this generality in [5]. Also,
all type II∞ form a single (distinct) orbit equivalence class as well [7, 5]. It was
over a decade later that the rich structure of orbit equivalence classes of hyperfinite
type III group actions was discovered by Krieger [19] and extended to include all
amenable actions in [5].

Poincaré flows for G-actions. For each g ∈ G , we consider the automor-
phism φg given by the action Φ, and we define a related automorphism φ∗g on the
product space (X×R,B × BR, µ× etdt) by φ∗g(x, t) = (φgx, t− log(dµφgdµ (x))) for all
(x, t) ∈ X×R. We denote by Φ∗ the action of all φ∗g, g ∈ G. Let ζ(Φ) denote a mea-
surable partition of X×R which generates all Φ∗- invariant sets, and let πΦ denote
the natural surjection from X×R onto the Lebesgue space (Z,S, ρ) ∼= X×R/ζ(Φ);
that is, πΦ is a factor map with respect to the ergodic decomposition of Φ∗. We
define a flow on X ×R by Fs(x, t) = (x, t+ s), s ∈ R. Since Φ∗ commutes with Fs,
the image under πΦ of Fs is a flow defined by

Us(πΦ(x, t)) = πΦ(Fs(x, t)).

Using this procedure we obtain a measurable decomposition of µ × etdt into mea-
sures {qz : z ∈ Z} such that for ρ-a.e. z ∈ Z, qz is an ergodic invariant measure
(infinite but σ-finite) for the G-action given by Φ∗. Krieger proved that orbit equiv-
alent ergodic actions give rise to isomorphic flows, and every ergodic, nonsingular
aperiodic flow arises in this way. We will call the flow Us on Z the Poincaré flow
of Φ.

Theorem 3.1. [19] Let G1 and G2 be two countable amenable groups with ergodic
type III actions Φ1 on (X1,B1, µ1) and Φ2 on (X2,B2, µ2) respectively. Then Φ1

and Φ2 are orbit equivalent if and only if their Poincaré flows are isomorphic.

When T denotes a nonsingular automorphism of (X,B, µ), we write (X∗, µ∗, T ∗)
for the infinite measure preserving skew product defined above. This is called the
Maharam skew product [20].

3.2. Using orbit equivalence to characterize mildly mixing actions. We
first prove the main theorem for countable groups G and then extend the result to
continuous groups. Our assumptions on G imply that G is countable if and only if
G is discrete.

Theorem 3.2 (Countable Orbit Equivalence Multiplier Theorem). Let Φ be any
amenable, nonsingular, properly ergodic action of a countable group G on (X,B, µ).
Then the following are equivalent:

1. Φ is mildly mixing (and therefore of type II1);
2. G is amenable and for every nonsingular properly ergodic action Ψ of G on

(Y,F , ν), the product G-action Φ × Ψ on (X × Y,B × F , µ × ν) given by
g(x, y) = (φg(x), ψg(y)) is orbit equivalent to Ψ;
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3. For every nonsingular properly ergodic action Ψ of G on (Y,F , ν) , the product
action Φ×Ψ on (X × Y,B × F , µ× ν) is ergodic and r(Ψ) = r(Φ×Ψ).

Proof. By Theorem 1.1 it is clear that 2 =⇒ 1 since the property of ergodicity is
invariant under orbit equivalence.

It is also clear that 2 =⇒ 3, since the ratio set is invariant under orbit equivalence.
It is trivial that 3 =⇒ 1.
Now we show that 1 =⇒ 2. By Theorem 2.1 we can assume that the action

given by Φ preserves µ (by replacing µ by an equivalent probability measure if
necessary.) We assume first that Ψ is of type III, and denote by Us its Poincaré
flow on (Z,S, ρ) ∼= Y × R /ζ(Ψ). Therefore, Ψ∗ is an ergodic type II∞ trans-
formation with respect to the measure qz for ρ-a.e. z ∈ Z. (Note that if Ψ is of
type III1, then Ψ∗ is an ergodic type II∞ transformation with respect to the mea-
sure ν × etdt and Z is a single point.) We now use the G action given by Ψ∗ on
(Y × R,S ×BR, ν × etdt) as the multiplier, and our hypothesis and Theorem 1.1
imply that Φ×Ψ∗ is ergodic with respect to µ× qz for ρ-a.e. z ∈ Z. So we obtain
an ergodic decomposition of Φ × Ψ∗ with respect to the measure µ × ν which is
indexed by points in Z with the measure ρ. By the uniqueness of ergodic decompo-
sitions, we have shown that the ergodic decomposition of Φ×Ψ∗ with respect to the
measure µ× ν is isomorphic to that of Ψ∗ with respect to ν. We now consider the
Maharam skew product G action on (X × Y × R,B × S ×BR, µ× ν × etdt) given
by (Φ×Ψ)∗. Since (Φ×Ψ)∗ (x, y, s) = Φ × Ψ∗(x, y, s), these two actions clearly
have the same ergodic decomposition. Therefore applying the above result, the
ergodic decompositions of (Φ×Ψ)∗ and Ψ∗ are the same, so the resulting Poincaré
flows are isomorphic. By Theorem 3.1, this implies that Φ × Ψ is orbit equivalent
to Ψ.

It remains to show that if Ψ is a type II1 action then so is Φ×Ψ, and if Ψ is type
II∞ then so is Φ×Ψ. This follows immediately since Φ preserves µ, so Φ×Ψ will
be ergodic finite measure preserving as well. By the results of [7] and [5] discussed
in 3.1, we have that all type II1 actions of a countable amenable group are orbit
equivalent. The type II∞ case follows for the same reason. �

Example 3.1. Suppose that T is a type III ergodic automorphism of a Lebesgue
probability space (X,B, µ), and let Rα denote rotation by α on the circle. Then
for a generic value of α, the product automorphism (T,Rα) is orbit equivalent to
T [4]. However since Rα is not mildly mixing, the theorem shows that for each α
there will always be some ergodic automorphism T for which the product cannot
be orbit equivalent to T .

Using the idea of the proof in Theorem 3.2, we obtain the following corollary for
countable nonamenable groups G. In this generality we cannot draw conclusions
about the oribt equivalence of mildly mixing actions, only about their ratio sets
and Poincaré flows.

Corollary 3.1. If G is any countable group, and Φ is any nonsingular, properly
ergodic action of G on (X,B, µ), Then the following are equivalent:

1. Φ is mildly mixing (and therefore of type II1);
2. For every nonsingular properly ergodic action Ψ of G on (Y,F , ν), the product
G-action Φ×Ψ on (X × Y,B × F , µ× ν) is ergodic and r(Ψ) = r(Φ×Ψ);
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3. For every nonsingular properly ergodic action Ψ of G on (Y,F , ν) with Poincaré
flow Us, the product action Φ×Ψ on (X×Y,B × F , µ×ν) is ergodic and has
Poincaré flow isomorphic to Us.

Proof. 3 =⇒ 2 and 2 =⇒ 1 are obvious (using Theorem 1.1). To show that 1 =⇒
2, we consider any nonsingular properly ergodic action Ψ, and we use the proof
from Theorem 3.2, 1 =⇒ 2, verbatim to conclude that the Poincaré flows of Ψ and
Φ×Ψ are isomorphic; this concludes the proof. �

We now prove the main theorem for continuous groups.

Theorem 3.3 (Continuous Orbit Equivalence Multiplier Theorem). Assume G is
a noncompact, continuous, locally compact, second countable group and Φ is any
properly ergodic nonsingular amenable action of G on (X,B, µ), then the following
are equivalent:

1. Φ is mildly mixing (and hence of type II1);
2. For every nonsingular properly ergodic action Ψ of G on (Y,F , ν), the product

action Φ × Ψ on (X × Y,B × F , µ × ν) given by g(x, y) = (φg(x), ψg(y)) is
orbit equivalent to Ψ.

Proof. We have that 2 =⇒ 1 since ergodicity is invariant under orbit equivalence,
so the ergodicity of Ψ will force the ergodicity of Φ×Ψ, which, in turn implies mild
mixing of Φ, using Theorem 1.1.

To show that 1 =⇒ 2, we assume that Φ is mild mixing. Then we can fix a
compact set K of G and obtain a K-base B1 and a countable amenable group H,
whose orbits generate RΦ. We can assume by by Remark 2.1 that H = Z, so is
generated by a single automorphism T . By Proposition 2.1 the action generated by
T is mildly mixing if and only if the original G-action is. Given the action Ψ, we
similarly obtain a K-base B2 with a nonsingular ergodic automorphism S (i.e., a
Z-action) generating RΨ. Since C = B1×B2 is a K-base, the ergodicity of RΨ, RΦ,
and RΦ×Ψ will follow since T is mildly mixing, and will give the result. �

4. Ratio Sets for Group Actions and Endomorphisms.

This paper was motivated by the question of when a finite measure preserving
endomorphism T preserves the ratio set of its multiplier S in the product T × S.
More generally, when can one compute the ratio set of a transformation by testing
the defining condition (only) on a dense sub-σ-algebra of sets? A partial answer to
this question appears in [21].

In order to correct some incomplete proofs in the literature on ratio sets of
Cartesian products of transformations ([3, Lemma 3.2 and Theorem 3.3] and [15,
Theorem 3.6]), we include a short discussion here showing that the proofs are
incomplete since only rectangles were checked in the product spaces. The results
in the last section of this paper complete those results.

4.1. Ratio sets of countable group actions. In general it is important to de-
termine whether or not a particular value λ is in the ratio set of a given action Φ of
a countable group G. Simplifications of the defining condition are usually necessary
in order to calculate the ratio set of a countable group of automorphisms. One such
result, using the full group of an invertible action, appears in [21].



Characterizing Mildly Mixing Actions 107

The following example, similar to one given in [4], shows that in order to guar-
antee that the value λ be in the ratio set of a transformation it is not sufficient
to check the defining condition on a countable dense subalgebra. In particular,
when computing a value in the ratio set of a Cartesian product it is not enough
to verify the property on product sets. We write r(G) for the ratio set throughout
this section because the action of G will not vary.

Example 4.1. We fix X =
∏∞
j=1{0, 1}j , and we give this compact space the σ-

algebra B of Borel sets. We define Γ to be the group of transformations on X
generated by δk(x) = xj + 1 (mod 2) if j = k, and xk if j 6= k. If we put any
nonsingular measure for Γ on X, it is well-known that the orbits of the Γ-action are
identical to the orbits of the usual adding machine or odometer (add 1 and carry).
In fact, every countable amenable group action is orbit equivalent to this action of
Γ with respect to some nonsingular µ [19]. We use the Γ notation in order to see
precisely which coordinates change under the group action.

We define a product measure µ =
∏∞
j=1 µj as follows. We fix λ ∈ (0, 1). For

each j = 2q, q ∈ N, we define µj(0) = 1
2 = µj(1). For each j = 4q − 1, q ∈ N, we

define
µj(0) = 1− 1

j2
= 1− 1

(4q − 1)2
, µj(1) =

1
j2

=
1

(4q − 1)2
;

for each j = 4q − 3, q ∈ N, we define

µj(0) = 1− λ

(4q − 1)2
;µj(1) =

λ

(4q − 1)2
.

In other words, for all even j, we have the ( 1
2 ,

1
2 ) measure, and for odd indices j we

have two measures which give a ratio of λ.
We can show that r(Γ) = {1}; to do this, it is enough to produce a measurable

set C, µ(C) > 0, satisfying the condition

µ(C ∩ γ−1C) > 0, γ ∈ Γ⇒ dµγ

dµ
(x) = 1

for all points x in C ∩ γ−1C. This will imply that β 6∈ r(Γ) for any β 6= 1. We
claim that the set C = {x : x2q+1 = 0; q ∈ N} has these properties. Clearly
whenever C gets mapped back onto itself, only even coordinates can change, so
the Radon-Nikodym derivative condition holds. It remains to show that µ(C) > 0.
This follows from the fact that

∏∞
q=1(1− 1

(4q−1)2 ) > 0.
If we now consider the countable dense subalgebra generated by: Bij = {x : xj =

i, j ∈ N, i ∈ {0, 1}}, then clearly we obtain the countable dense subalgebra of B,
call it Bo consisting of the usual cylinder sets. We claim that on cylinder sets we
appear to see the value λ in the ratio set, in the sense that the defining property
holds.

First we remark that

lim
q→∞

λ · (q2 − 1)
q2 − λ = λ;

we now consider any set of the form: Cp = {x : xj1 = i1, . . . , xjp = ip} ∈ Bo. Given

any ε > 0, we first find Q large enough so that |λ·(q2−1)
q2−λ − λ| < ε for all q > Q. We

now choose j = 4q−1 and such that j > max{jp+ 2, Q+ 2}. We define an element
γ ∈ Γ as follows:
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Consider the set

C01
j−2,j = {x ∈ Cp : xj = 0, xj−2 = x4q−3 = 1}.

Define γ = δj · δj−2. Then

γ(C01
j−2,j) = {x ∈ Cp : xj = 1, xj−2 = 0} = C10

j−2,j ⊂ Cp,
and

dµγ

dµ
(x) =

λ · (j2 − 1)
j2 − λ ,

which is within ε of λ.
Therefore,

µ(Cp ∩ γ−1Cp ∩ {x : |dµγ
dµ

(x)− λ| < ε}) > 0,

and this holds for any cylinder Cp, even though λ is not in the ratio set r(Γ).

4.2. Endomorphisms and ratio sets. A dichotomy occurs when one considers
a noninvertible, nonsingular, ergodic conservative endomorphism T of a standard
probability space (X,B, µ). We will denote by ωµ the Radon-Nikodym derivative
of T (which is not a priori uniquely defined), and consider only the unique T−1B
measurable function satisfying:∫

f ◦ T · ωµdµ =
∫
fdµ

for every nonnegative integrable function f . The Radon-Nikodym derivative deter-
mines an R+-valued cocycle for the N action given by: for all n > 0,

ωµ(n, x) =
n−1∏
i=0

ωµ(T ix).

With respect to the finite measure µ, either
∑∞
i=0 ωµ(i, x) =∞ for a.e. x, in which

case we say that µ is a recurrent measure for T , or
∑∞
i=0 ωµ(i, x) < ∞ for a.e.

x, in which case we say that µ is a nonrecurrent measure for T . This notion was
introduced in [23] and studied further in [24, 8, 14].

In [14] the authors defined the concept of ratio set for endomorphisms exactly as
in Definition 3.1 above and showed that rµ(T ) does depend on the representative
in the measure class of µ, and that rµ(T ) ∩ R+ is a closed subgroup of R+ if and
only if µ is recurrent. In [24] it was shown that if µ is a recurrent measure for T ,
then T admits a σ-finite measure ν ∼= µ if and only if ωµ is a coboundary; i.e.,

ωµ =
f ◦ T
f

for some positive measurable function f . It follows then that this is also equivalent
to saying rµ(T ) = {1} [15].

In the next section we extend our results to the case of endomorphisms, where
we must take into account the special nature of ratio sets for noninvertible maps.
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5. The Orbit Equivalent Multiplier Theorem for
Endomorphisms.

In this section we extend the orbit equivalence characterization theorem to finite
measure preserving endomorphisms. We also show that the main theorem does not
extend to arbitrary nonsingular mildly mixing endomorphisms.

The equivalent characterizations of mildly mixing group actions given in The-
orem 3.2 are no longer equivalent in the noninvertible setting. We generalize the
definition presented in our introduction and compare it to another generalization
that has been studied [1, 2]. Definition 5.1, a condition on sets, leads to simpler
proofs of our main results; in the measure preserving and invertible case Defini-
tions 5.1 and 5.2 are the same. We show most theorems hold for either definition
though it is not known if they are equivalent.

In this section we will always work with nonatomic Lebesgue probability spaces.
Let T : (X,B, µ)→ (X,B, µ) be a nonsingular endomorphism; i.e., T is measurable
and µ(A) = 0 if and only if µ(T−1(A)) = 0. We recall that T is ergodic if for
all A ∈ B with T−1A = A, µ(A) = 0 or 1. T is conservative if for every A with
0 < µ(A) ≤ 1 there is an integer n > 0 such that µ(A ∩ T−n(A)) > 0.

It follows then that T is conservative ergodic if and only if for all measurable
sets A and B with 0 < µ(A) ≤ 1, 0 < µ(B) ≤ 1 there is an integer n > 0 such that
µ(B ∩ T−n(A)) > 0. This is equivalent to the condition that for all measurable A
with 0 < µ(A) < 1 there is an integer n > 0 such that µ(Ac ∩ T−n(A)) > 0 (where
Ac denotes the complement of A).

When T−1B = B(µ mod 0), then T is called an automorphism and a measurable
inverse T−1 exists. If T−1B 6= B(µ mod 0), then we call T noninvertible.

Definition 5.1. A nonsingular endomorphism T is mildly mixing on sets if

lim inf
n→∞ µ(A4T−n(A)) > 0

for all sets A with 0 < µ(A) < 1.

It is obvious from the definition that mildly mixing on sets implies ergodic.

Definition 5.2. [1] A nonsingular endomorphism T is mildly mixing if for all f ∈
L∞, nk →∞, fnk = f ◦ Tnk → f weak-∗ in L∞ implies f is constant µ a.e.

Proposition 5.1. Let T be a nonsingular endomorphism on (X,B, µ).
1. If T is mildly mixing, then T is mildly mixing on sets.
2. If T is mildly mixing on sets, then for any f = χA ∈ L∞, nk → ∞, if
fnk = f ◦ Tnk → f weak-∗ in L∞ then f is constant a.e.

Proof. (1): If T it is not mildly mixing on sets, then there exists a measurable set
A, 0 < µ(A) < 1, and a subsequence nk such that nk →∞ as k →∞, and

lim
k→∞

||χA − χT−nkA||1 = 0.

It is straightforward to show that convergence of fnk to f , f ∈ L∞, in the L1

norm implies convergence weak-∗ in L∞. So χA → χT−nkA weak-∗ in L∞ which is a
contradiction, since the assumption implies that χA is constant a.e.; i.e., µ(A) = 0
or 1.

(2): Suppose T is mildly mixing on sets and there is a measurable function of
the form f = χA, and a subsequence nk such that f ◦ Tnk → f weak-∗ in L∞.
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Then for all g ∈ L1, ∫
g · χT−nkAdµ→

∫
g · χAdµ,

or,

|
∫
g · χT−nkAdµ−

∫
g · χAdµ| → 0,

or,

|
∫
g · (χT−nkA − χA)dµ| → 0.

Choosing g = χA, we have

|
∫
χA · (χT−nkAdµ− χA)dµ| → 0,

so ∫
(χA − χA∩T−nkA)dµ→ 0,

and we have
µ(A ∩ T−nkA)→ µ(A)

and therefore
µ(A \A ∩ T−nkA)→ 0.

Similarly, using g = χAc ,∫
χAc · (χT−nkA − χA)dµ→ 0,

which gives us that
µ(T−nkA \A)→ 0.

Therefore by our hypothesis, µ(A) = 0 or 1. �

Remark 5.1. 1. When T is type II1 or invertible the proof of Propositon 5.1 can
be extended to show that the two definitions coincide. This also follows from
the orbit equivalence characterization which is proved later in this section.

2. If T is exact (i.e., T−n ◦ Tn(A) = A a.e. for all n ∈ N implies µ(A) = 0 or 1),
then T is clearly mildly mixing on sets. This is true for mildly mixing as well
(Proposition 2.7.4, [1]).

3. There exist non-conservative endomorphisms which are mildly mixing on sets.
One can easily construct an exact non-conservative transformation and the
above remark implies this will be mildly mixing on sets.

In the next proposition, we show that the Countable Orbit Equivalence Multi-
plier Theorem (Theorem 3.2) cannot be extended to the case of nonsingular en-
domorphisms; however in Theorem 5.2 we prove it for finite measure preserving
ones.

Proposition 5.2. There exists an ergodic conservative nonsingular type III endo-
morphism T on (X,B, µ), with µ recurrent, such that:

1. T is mildly mixing (and hence mildly mixing on sets); and
2. for any finite measure preserving weak mixing automorphism S of (Y,F , ν),
T × S is ergodic but rµ×ν(T × S) 6= rν(S).
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Proof. Let TH be the type III conservative ergodic nonsingular automorphism with
an independent generator constructed by Hamachi in [12]. It is known that TH is
the natural extension of an exact conservative endomorphism T and that T is type
III with respect to a recurrent measure µ (see [6] or [25]). Since T is exact, by the
remark above T is mildly mixing. If S is any type II1 weak mixing automorphism
then by [2] and [15], T × S is ergodic and type III, thus has a different ratio set
from that of S. �

The next theorem was proved by Aaronson, Lin, and Weiss for nonsingular
mildly mixing endomorphisms (cf. [1, Theorem 2.7.6]). We include it as it holds
for mildly mixing on sets as well. By Remark 3 above, it cannot be strengthened
to include conservativity, but Proposition 5.4 below gives the related result which
yields conservative products.

Theorem 5.1. If T is a nonsingular endomorphism which is mildly mixing on sets,
then for any ergodic nonsingular automorphism S, T × S is ergodic.

Proof. We assume that A is an invariant set for T × S, and let f = χA. Then we
use the proof exactly as in [1], applying Proposition 5.1(2) above to conclude that
f must be constant a.e. �

For the remainder of this section we restrict to finite measure preserving mildly
mixing endomorphisms where the two definitions coincide. Therefore the terminol-
ogy mildly mixing is used unambiguously. We characterize mildly mixing in the
finite measure preserving case, again using a set condition.

Proposition 5.3. Let T be a nonsingular endomorphism. T is type II1 mildly
mixing if and only if

lim inf
n→∞ µ(Ac ∩ T−n(A)) > 0

for all sets A with 0 < µ(A) < 1.

Proof. (⇐=) We recall the well-known fact (cf. [17], p.143) that a nonsingu-
lar endomorphism T is type II1 if and only if for all sets A with µ(A) > 0,
infn>0 µ(T−n(A)) > 0. Now lim inf µ(T−n(A)) ≥ lim inf µ(Ac ∩ T−n(A)) > 0 for
all sets A with 1 > µ(A) > 0 and so T is type II1. Since

A4T−n(A) = [Ac ∩ T−nA] ∪ [A ∩ T−nAc],
it follows that T is mildy mixing.

(=⇒) Assume that T is a type II1 mildly mixing endomorphism and that µ is
the invariant measure. Assume that there exists a sequence {ni} tending to∞ such
that

lim
i→∞

µ(Ac ∩ T−niA) = 0.

Note that

µ(A) = µ(T−niA) = µ(Ac ∩ T−niA) + µ(A ∩ T−niA).

The assumption implies that

lim
i→∞

µ(A ∩ T−niA) = µ(A).
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But µ(A) = µ(A∩T−niA)+µ(A∩T−niAc), therefore limi→∞ µ(A∩T−niAc) = 0,
and so

lim
i→∞

µ(A4T−niA) = 0,

which is a contradiction. �

We use Proposition 5.3 to generalize the Furstenberg-Weiss result [11], Theo-
rem 1.1 for automorphisms, to our noninvertible setting. In addition we strengthen
it by proving it for any nonsingular noninvertible multiplier; a related result is
stated in [1].

Our proof is based on Definition 5.1 and an idea used by King [16, Theorem 4].

Proposition 5.4. Let T : (X,B, µ)→ (X,B, µ) be a mildly mixing finite measure
preserving endomorphism. If S : (Y,F , ν) → (Y,F , ν) is a conservative ergodic
nonsingular endomorphism then T × S is conservative ergodic.

Proof. Let A ∈ B × F with 0 < (µ × ν)(A) < 1. It is enough to show that there
exists an n > 0 such that:

µ× ν(Ac ∩ (T × S)−n(A)) > 0(1)

First suppose A is, up to a set of µ × ν measure 0, of the form A = X × A1.
Then since S is conservative ergodic, it is obvious that condition (1) holds.

Now suppose that A is not of the above form. We let Ay = {x ∈ X : (x, y) ∈ A}
denote the cross section of A over y. Using a vector-valued version of Lusin’s
Theorem, continuity of the map y 7→ χAy on arbitrarily large sets implies the
existence of a set B ∈ B with µ(B) > 0 so that for all δ > 0, if M(δ) = {y :
µ(B4Ay) < δ} then ν(M(δ)) > 0. Since B can be chosen to be Ay for ν a.e. y, we
can find B such that 0 < µ(B) < 1.

Now since T is mildly mixing we can find N > 0 and δ > 0 such that for all
n > N ,

µ(Bc ∩ T−nB) > 3δ.

Using that
(Ac ∩ (T × S)−nA)y = (Ac)y ∩ T−n(ASny),

that B4Ay = Bc4(Ay)c = Bc4(Ac)y and the definition of M(δ) we obtain,

µ× ν(Ac ∩ (T × S)−nA) =
∫
Y

µ((Ac)y ∩ T−n(ASny))dν(y)

≥
∫
M(δ)

(µ(Bc ∩ T−nASny)− δ)dν(y)

>

∫
M(δ)∩S−nM(δ)

(µ(Bc ∩ T−nB)− 2δ)dν(y),

since T preserves µ and Sny ∈M(δ) if and only if y ∈ S−nM(δ). Thus

µ× ν(Ac ∩ (T × S)−nA) ≥
∫
M(δ)∩S−nM(δ)

δdν(y).

Since ν(M(δ)∩S−nM(δ)) > 0 for infinitely many n (by the conservativity of S),
this last integral is positive for some n > N , and thus (1) is satsified and so T × S
is conservative ergodic. �
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Every finite measure preserving endomorphism admits an invertible natural ex-
tension, and the following well-known result allows us to apply group action results
obtained earlier. The authors include a short proof for completeness.

Proposition 5.5. Let T : (X,B, µ) → (X,B, µ) be a finite measure preserving
endomorphism and T̃ : (X̃, B̃, µ̃) → (X̃, B̃, µ̃) its natural extension. Then T is
mildly mixing if and only if T̃ is mildly mixing.

Proof. There is a measure preserving map φ : X̃ → X such that φ ◦ T̃ = T ◦ φ
a.e., and the sigma-algebra G = φ−1B is such that G ⊂ T̃−1G ⊂ T̃−2G ⊂ · · · and
∪n>0T̃

nG generates B̃ (this corresponds to the fact that the decomposition on X̃
that gives the endomorphism is exhaustive).

(=⇒): Suppose there exists a set A with 0 < µ̃(A) < 1 and

lim inf
n→∞ µ̃(A4T̃−n(A)) = 0.

Let ε > 0.
Since A is measurable there exists k and E ∈ T̃ kG such that µ̃(A4E) < ε. Given

k there exists n > k such that µ̃(A4T̃−nA) < ε. Since E is also in T̃nG, there
exists G ∈ G such that µ̃(A4T̃nG) < ε. Thus µ̃(T̃−nA4G) < ε, which implies
µ̃(A4G) < 2ε. Therefore A ∈ G, (µ̃ mod 0). Thus A = φ−1B for some B ∈ B.
Now µ̃(A4T̃−nA) = µ̃(φ−1B4T̃−nφ−1B) = µ̃ ◦ φ−1(B4T−nB) = µ(B4T−nB).
Therefore T cannot be mildly mixing, and the contradiction implies the theorem.

The converse is clear. �
The converse of Proposition 5.4 now follows easily from Theorem 1.1, and the

fact that T × S is ergodic if and only if T̃ × S is ergodic (cf. [25]).
We conclude with the main theorem of this section which extends the invertible

theorems to the noninvertible setting.

Theorem 5.2. (Orbit Equivalence Multiplier Theorem for Finite Measure Pre-
serving Endomorphisms) Let T be a finite measure preserving endomorphism. The
following statements are equivalent:

1. T is mildly mixing;
2. For every conservative ergodic nonsingular automorphism S, r(µ×ν)(T ×S) =
rν(S) (so T × S is ergodic);

3. For every conservative ergodic nonsingular automorphism S, T̃ × S is orbit
equivalent to S, where T̃ is the natural extension of T .

Proof. The implications 1 ⇐⇒ 3 and 2 =⇒ 1 follow immediately.
3 =⇒ 2: Given a conservative ergodic nonsingular automorphism S, let S∗ de-

note its Maharam skew product. Then (3) together with Theorem 3.2 imply that
r(µ×ν)(T̃ × S) = rν(S); more precisely, the ergodic decomposition of S∗ is isomor-
phic to the ergodic decomposition of (T̃×S)∗. However the hypothesis on T implies
that (T̃ × S)∗ = T̃ × S∗, and (T × S)∗ = T × S∗. Taking natural extensions, we
have:

˜(T × S)∗ = ˜(T × S∗) = T̃ × S∗.
We claim that the ergodic decompositions of T ×S∗ and ˜(T × S∗) (with respect to
the obvious measures) are isomorphic; we note that these are both infinite measure
preserving transformations. It is known that a measure for an infinite measure
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preserving endomorphism is ergodic if and only if the lifted measure is ergodic for
the natural extension. This and the uniqueness of ergodic decompositions proves
the claim.

It then follows immediately that the ergodic decomposition of (T × S)∗ is iso-
morphic to that of S∗, and this decomposition completely determines the ratio set,
so (2) follows immediately. �

We have the following corollary to the proof just given. For the definition and
proof of existence of the natural extension of T when T is a conservative nonsingular
endomorphism with a recurrent measure, see [23].

Corollary 5.1. If T is a conservative nonsingular endomorphism of (X,B, µ) and
µ is a recurrent measure for T , then rµ(T ) = r(T̃ ) where T̃ on (X̃, B̃, µ̃) is the
natural extension.

Proof. As above, we show that the ergodic decomposition of (T̃ )∗ is identical to
that of ˜(T ∗) from which the result follows immediately. �
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