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The Normal Symbol on Riemannian Manifolds

Markus J. Pflaum

ABSTRACT. For an arbitrary Riemannian manifold X and Hermitian vector
bundles E and F' over X we define the notion of the normal symbol of a pseu-
dodifferential operator P from E to F. The normal symbol of P is a certain
smooth function from the cotangent bundle 7% X to the homomorphism bun-
dle Hom(FE, F') and depends on the metric structures, resp. the corresponding
connections on X, E and F. It is shown that by a natural integral formula the
pseudodifferential operator P can be recovered from its symbol. Thus, mod-
ulo smoothing operators, resp. smoothing symbols, we receive a linear bijective
correspondence between the space of symbols and the space of pseudodifferen-
tial operators on X. This correspondence comprises a natural transformation
between appropriate functors. A formula for the asymptotic expansion of the
product symbol of two pseudodifferential operators in terms of the symbols of
its factors is given. Furthermore an expression for the symbol of the adjoint is
derived. Finally the question of invertibility of pseudodifferential operators is
considered. For that we use the normal symbol to establish a new and general
notion of elliptic pseudodifferential operators on manifolds.
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1. Introduction

It is a well-known fact that on Euclidean space one can construct a canonical
linear isomorphisms between symbol spaces and corresponding spaces of pseudo-
differential operators. Furthermore one has natural formulas which represent a
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pseudodifferential operator in terms of its symbol, resp. which give an expression
for the symbol of a pseudodifferential operator. By using symbols one gets much
insight in the structure of pseudodifferential operators on Euclidean space. In par-
ticular they give the means to construct a (pseudo) inverse of an elliptic differential
operator on R%.

Compared to the symbol calculus for pseudodifferential operators on R" it seems
that the symbol calculus for pseudodifferential operators on manifolds is not that
well-established. But as the pure consideration of symbols and operators in local co-
ordinates does not reveal the geometry and topology of the manifold one is working
on, it is very desirable to build up a general theory of symbols for pseudodifferential
operators on manifolds. In his articles [13, 14] Widom gave a proposal for a symbol
calculus on manifolds. By using a rather general notion of a phasefunction, Widom
constructs a map from the space of pseudodifferential operators on manifolds to
the space of symbols and shows by an abstract argument for the case of scalar
symbols that this map is bijective modulo smoothing operators, resp. symbols. In
our paper we introduce a symbol calculus for pseudodifferential operators between
vector bundles having the feature that both the symbol map and its inverse have a
concrete representation. In particular we thus succeed in giving an integral repre-
sentation for the inverse of our symbol map or in other words for the operator map.
Essential for our approach is an appropriate notion of a phasefunction. Because of
our special choice of a phasefunction the resulting symbol calculus is natural in a
category theoretical sense.

Using the integral representation for the operator map, it is possible to write
down a formula for the symbol of the adjoint of a pseudodifferential operator and
for the symbol of the product of two pseudodifferential operators.

The normal symbol calculus will furthermore give us the means to build up a nat-
ural notion of elliptic symbols, respectively elliptic pseudodifferential operators on
manifolds. It generalizes the classical notion of ellipticity as defined for example in
Hoérmander [7] and also the concept of ellipticity introduced by Douglis, Nirenberg
[2]. Our framework of ellipticity allows the construction of parametrices of nonclas-
sical, respectively nonhomogeneous, elliptic pseudodifferential operators. Moreover
we do not need principal symbols for defining ellipticity. Instead we define elliptic
operators in terms of their normal symbol, as the globally defined normal symbol
of a pseudodifferential operator carries more information than its principal symbol.
Moreover, the normal symbol of a pseudodifferential operator shows immediately
whether the corresponding operator is invertible modulo smoothing operators or
not.

Let us also mention that another application of the normal symbol calculus on
manifolds lies in quantization theory. There one is interested in a quantization map
associating pseudodifferential operators to certain functions on a cotangent bundle
in a way that Dirac’s quantization condition is fulfilled. But the inverse of a symbol
map does exactly this, so it is a quantization map. See Pflaum [8, 9] for details.

Note that our work is also related to the recent papers of Yu. Safarov [11, 10].
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2. Symbols

First we will define the notion of a symbol on a Riemannian vector bundle. Let
us assume once and for all in this article that u, p,d € R are real numbers such that
0<d<p<landl<p+J. The same shall hold for triples ﬁ,ﬁ,g c R.

We sometimes use properties of symbols on R? x RV, As these are well-described
in the mathematics literature we only refer the interested reader to Hormander
[6, 7], Shubin [12] or Grigis, Sjostrand [5] for a general introduction to symbol
theory on R? x RY and for proofs.

Definition 2.1. Let ¥ — X be a Riemannian or Hermitian vector bundle over
the smooth manifold X, o : TX — X its tangent bundle and 7w : T*X — X its
cotangent bundle. Then an element a € C*>(7*(E|y)) with U C X open is called
a symbol over U C X with values in E of order u and type (p,d) if for every
trivialization (z,¢) : T*X|y — R?¢ and every trivialization ¥ : E|V — V x RY
with V' C U open the following condition is satisfied:

(Sy) For every a, 8 € N? and every K C V compact there exists C = Cx o5 > 0
such that for every £ € T* X |k the inequality

olel glal
1) e

oz JC
is valid.

The space of these symbols is denoted by S%(U7 T*X, E) or shortly SZ(;(U, E). Tt
gives rise to the sheaf S‘;,é(', T*X, E) of symbols on X with values in E of order pu
and type (p,9).

By defining S, 5°(U, E) = ,en S, 5(U, E) and S5%(U, E) = U, oy S} 5(U, E) we
get the sheaf S;§°(~, E) of smoothing symbols resp. the sheaf SZ%(', E) of symbols
of type (p, 9).

In case F is the trivial bundle X x C of a Riemannian manifold X we write S"; 5
with p € RU {00, —oo} for the corresponding symbol sheaves S/ ;(-, X x C).

The space of symbols S/ (U, TX, E) consists of functions a € C*(¢*(E|rr)) such
that a fulfills condition (Sy). It gives rise to sheaves Sﬁ’é(-,TX7 E), S5%(TX, E)
and S;go(~,TX, E).

It is possible to extend this definition to one of symbols over conic manifolds but

we do not need a definition in this generality and refer the reader to Duistermaat
[3] and Pflaum [8].

‘If(a(f))H < C (1 + |[g]|yrHolel=rlal

We want to give the symbol spaces Sg s(U, E) a topological structure. So first

choose a compact set K C U, a (not necessarily disjunct) partition K = |J K, of K
vedJ

into compact subsets together with local trivializations (z,,(,) : T*X|y, — R?¢ and
trivializations ¥, : E|V, — V, x RY such that K, C V, C U and V, open. Then we
can attach for any «, 3 € R? a seminorm p = p(x, (z,.¢,)),0,8 : Sh5(U, E) — RTU{0}
to the symbol spaces S;L’é(U, E) by

|22 25w, (a(9))||
oz, ™ 8¢,P Tt
(2) pla) = sup (1 + [€])rHals=15lp

: fET*X|KL



100 Markus J. Pflaum

The system of these seminorms gives Sﬁi 5(U, E) the structure of a Fréchet space
such that the restriction morphisms S/ 5(U, E) — S} ;(V, E) for V. C U open are
continuous. Additionally we have natural and continuous inclusions S; sWUE) C
SZ,S(U’ E)for i >p, p<pand 6 > 8. Like in the case of symbols on R% x RN
one can show that pointwise multiplication of symbols is continuous with respect
to the Fréchet topology on S/ 5(U, E).

Proposition 2.2. Let a € C®(n*(E|y)). If there exists an open covering of U
by patches V, with local trivializations (z,,¢,) : T*X|y, — R2? and trivializations
U, : BV, = V, x RN such that for every (x,,(,) the above condition (Sy) holds,
then a is a symbol of order p and type (p,0).

Proof. Let (z,¢) : T*X|v — R2? V C U open be a trivialization. Then we can
write on V, NV

olal glAl o 0% 9lB+a|
(3) &?W = Z (faar80m) ¢ @W,

a+ta’/<a
L

where fa o p € C°(V,NV). As p+ 0 > 1 holds and (Sy) is true for (x,,(,), the
claim now follows. U

Example 2.3. (i) Let X be a Riemannian manifold. Then every smooth func-
tion a : T*U — C which is a polynomial function of order < p on every
fiber lies in Sy ((U). In particular we have an embedding Dy — S5%, where
Dy is the sheaf of polynomial symbols on X, i.e., for every U C X open
Dy(U) ={f:T*U — C: fl|rsx is a polynomial for every z € U}.

(i7) Again let X be Riemannian. Then the mapping [ : T*X — C, £ — |[€]|? is
a symbol of order 2 and type (1,0) on X, but not one of order pu < 2. Next
regard the function ¢ : T*X — C, £ — w This function is a symbol of
order —2 and type (1,0) on X, but not one of order u < —2.

(i7) Assume ¢ : X — R to be smooth and bounded. Then a, : T*X — R,
€ (14/¢]|?)#(™(€) comprises a symbol of order = sup,¢ x ¢(z) and type
(1,9), where 0 < 0 < 1 is arbitrary.

The following theorem is an essential tool for the use of symbols in the theory
of partial differential equations and extends a well-known result for the case of
E =R% x R" to arbitrary Riemannian vector bundles.

Theorem 2.4. Let a; € SZS(U, E), j € N be symbols such that (1;);en is a de-
creasing sequence with lim p; = —oo. Then there exists a symbol a € SZ%(U7 E)
J—o0 ’

unique up to smoothing symbols, such that a — Z?:o a; € Sgﬁ;(U, E) for every

k € N. This induces a locally conver Hausdorff topology on the quotient vector
space S;f’é/S*OO(U, E), which is called the topology of asymptotic convergence.

Proof. It is a well-known fact that the claim holds for U ¢ R? and E = R? x RV

(see [7, 12, 5]). Covering U by trivializations (z,,¢,) : T*X|y, — R2? and ¥, :

E|V, — V,xR¥ we can find a partition (¢,) of unity subordinate to the covering (V,)
k

and for every index ¢ a symbol b, ;, € Sgé(VMRN) such that b, , = > ¥, oa,
; =

v, €
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SER(V., RY). Now define a = Y>(p, om) ¥ 0 b, ), and check that this a satisfies

L
the claim. Uniqueness of a up to smoothing symbols is clear again from a local
consideration. O

Polynomial symbols are not affected by smoothing symbols. The following propo-
sition gives the precise statement.

Proposition 2.5. Let X be a smooth manifold, and Dy the sheaf of polynomial
symbols on X. Then by composition with the projection S;f(; — Sg‘f&/S*OO the
canonical embedding

(o)
DO — S,U,6

(4) Do(U)3 f — FeSKU), UCX open
gives rise to a monomorphism § : Dy — Sg’o(;/S*Oo of sheaves of algebras.

Proof. If f,g € Dy(U) are polynomial symbols such that f — g € S™°(U), then
f — g is a bounded polynomial function on each fiber of T*U. Therefore f — g is
constant on each fiber, hence f —g =0 by f —g € S™>(U). O

3. Pseudodifferential operators on manifolds

Let a be a polynomial symbol defined on the (trivial) cotangent bundle T*U =
U x R? of an open set U C R? of Euclidean space. Then one can write a =
>, (aq o )¢, where ¢ : T*U — R? is the projection on the “cotangent vectors”
and the a, are smooth functions on U. According to standard results of partial
differential equations one knows that the symbol a defines the differential operator
A =0p(a):

(5) CoU) 3 [ an (—i)

Sometimes A is called the quantization of a. In case f € D(U), the Fourier trans-
form of f is well-defined and provides the following integral representation for Af:

(6) Af = Op(a)(f) = / <6 a(€) f(€) de.

Rd
It would be very helpful for structural and calculational considerations to extend
this formula to Riemannian manifolds. To achieve this it is necessary to have
an appropriate notion of Fourier transform on manifolds. In the following we are
going to define such a Fourier transform and will later get back to the problem of an
integral representation for the “quantization map” Op on Riemannian manifolds.

Assume X to be Riemannian of dimension d and consider the exponential func-
tion exp with respect to the Levi-Civita connection on X. Furthermore let £ — X
be a Riemannian or Hermitian vector bundle. Choose an open neighborhood
W C TX of the zero section in TX such that (g,exp) : W — X x X maps
W diffeomorphically onto an open neighborhood of the diagonal A of X x X. Then
there exists a smooth function 9 : TX — [0,1] called a cut-off function such that
Yl = 1 and suppy C W for an open neighborhood W C W of the zero section in
TX. Next let us consider the unique torsionfree metric connection on E. It defines
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a parallel transport 7, : E, ) — E. 1) for every smooth path v : [0,1] — X. For
every v € TX denote by Texpw O just 7, with y = expv and « = p(v) the parallel
transport along [0,1] 3 ¢t — exptv € X. Now the following microlocal lift M., is
well-defined:

My = C=(U, B) — S™>(U,TX, B),
g fifY, = { V() Toap o (flexpv))  forve W

0 else.

My is a linear but not multiplicative map between function spaces.
Over the tangent bundle T'X we can define the Fourier transform as the following
sheaf morphism:

F: S (U,TX,E) — S =(U,TX, E),
) aw—a(§) = 1 / e <8V g (v) do.
T

We also have a reverse Fourier transform:
F1. U, T*X,E) — S™™(U,TX,E),
1

®) bH6w>(%WW2LW)Xé“”>M0d¢

It is easy to check that 7! and F are well-defined and inverse to each other.
Composing M, and F gives rise to the Fourier transform F,; = F o My, on the
Riemannian manifold X. F,, has the left inverse

(10) S™(U,T*X,E) — C*(U,E), aw F '(a)lo,,

where o, means the restriction to the natural embedding of U into T*X as zero
section.

By definition My, and F, do depend on the smooth cut-off function v, but
this arbitrariness will only have minor effects on the study of pseudodifferential
operators defined through F,. We will get back to this point later on in this
section.

The exponential function exp gives rise to normal coordinates z, : V, — R%,
where z € V,, C X, V,, open and

(11) exp, () = Y 2E() - exy)

k=1

for all y € V,, and an orthonormal frame (e, ..., eq) of TV,.. Furthermore we receive
bundle coordinates (z,,¢.) : T*V, — R?? and (z,,v,) : TV, — R??. Note that for
fixed x € X the map

(12) Ve x T"Vy 2 (,€) = (2(m(€)), ¢ (6)) € R*
is smooth and that by the Gaul Lemma
(13) Z(y) = =2 (x)

for every y € V.
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Now let a be a smooth function defined on T*U and polynomial in the fibers.
Then locally a = ) (az,q ©7T) (; with respect to a normal coordinate system at
x € U and functions a, o € C*°(U). Define the operator A : D(U) — C>*(U) by

(14) fr Af = Op,(a) (f) = (an G [, € e e <c>
and check that

o Hled
(15) Af (x) :%: g0 () (—4)1* Jua

||
= tnale) () o @)

for every x € U. Therefore Af is a differential operator independent of the choice
of .

However, if a is an arbitrary element of the symbol space S5%(U, Hom(FE, F')),
Eq. (14) still defines a continuous operator Ay = Op,(a) : D(U, E) — C*(U, F),
which is a pseudodifferential operator but independent of the cut-off function v
only up to smoothing operators. Let us show this in more detail for the scalar case,
i.e., where E = F = X x C. The general case is proven analogously.

First choose p1 € R such that a € SZ’ s(U), and consider the kernel distribution
DUxU) = C, (fog) —<Apf.g>= [y 9(x)Aypf(z)dr of Ay. It can be
written in the following way:

(16)
— L < —i<E,v>
<g,Ayf> = (2m)™ /X/;X /TX P(v) g(x) flexpuv)e a(§) dv d§ dx

[t (f cexp)] (0x)

- ﬁ /X /T o Y@ (@) flexpo) e IS8 (&) dE du da;

where the first integral is an iterated one, the second one an oscillatory integral. To
check that Eq. (16) is true use a density argument or in other words approximate
the symbol a by elements a; € S™°°(U) (in the topology of Sg’é(U) with 1 > p)
and prove the statement for the aj. The claim then follows from continuity of both
sides of Eq. (16) with respect to a. Let ¢ : TX — [0,1] be another cut-off function
such that qﬁ\é = 1 on a neighborhood W’ C W of the zero section of T*X. We can
assume W’ = W and claim the operator Ay — A& to be smoothing. For the proof
it suffices to show that the oscillatory integral

(A1) Kaay@) = g [ (00) = d) e < a(g)ds, 01U
X

@r)"

which gives an integral representation for the kernel of A, — Az?z defines a smooth
function Ka,—4; € C*°(TU). The phase function 777 )X 5 £ — —{(v) € R has
only critical points for v = 0. Hence for v # 0 there exists a (—1)-homogeneous
vertical vector field L on T*X such that Le™?<"v> = ¢~<"*>  The adjoint L of

L satisfies (LT)]~C a€ S}’;’gpk(U)7 where k € N. As the amplitude
(v,€) = ((v) = (v)) a(§)
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vanishes on W’ xy T*U, the equation

(18) KAw—A;(U) = ! - / e i<Ev> (LT)ka@) dg

! (2m) T X
holds for any integer k fulfilling p + pk < —dimX. Note that the integral in
Eq. (18) unlike the one in Eq. (17) is to be understood in the sense of Lebesgue.
Hence K,-a, € C>(TU) and Ay, — Aj is smoothing.

Let us now prove that A, lies in the space \I";, 5(U) of pseudodifferential operators
of order u and type (p,0) over U. We have to check that Ay is pseudolocal and
with respect to some local coordinates looks like a pseudodifferential operator on
an open set of R%.

(i) Ay is pseudolocal: Let u,v € D(U) and suppunsuppv = @. Then the integral
kernel K of C*(U) > f — v Ay(uf) € C°(U) has the form

19 K@ = G [ b()al€) vno) ulexpu) e de
(2m)" Tr X
There exists an open neighborhood W’ C W of the zero section in T'X such that
the amplitude ¢ (v o 7) (u 0 exp ) a vanishes on W’ xy T*X. As for all nonzero
v € TX the phase function £ — — < £, v > is noncritical, an argument similar to
the one above for KAw*AJ, shows that K is a smooth function on TU, so C*°(U) 3
fr—vAy(uf) € C*(U) is smoothing.

(79) Ay is a pseudodifferential operator in appropriate coordinates: Choose for
x € U an open neighborhood U, C U so small that any two points in U, can be
connected by a unique geodesic. In particular we assume that U, x U, lies in the
range of (m,exp): W — X x X. Furthermore let us suppose that ¢ o z,(g) = 1 for
all y, g € U,. Then we have for f € D(U,):

= oy, a( T o0 (©) [ detds )] (o ex0) (0 () e

[ a(d:)©) |detdatw| (£ oexp, ) o) <00 O o g
T,

(
- 271r)n /T*X/TX @(dx(y) (E)) ‘detdx(y)‘ det (T(zyoz,;l)(v)‘
: —"

(F 0 22 1) (v) e~ <) (205 (> gy ge

Now the phase function (v, &) — — < d(y)(£), 2 © z; *(v) > vanishes for £ # 0 if
and only if v = z,(y). Hence after possibly shrinking U, the Kuranishi trick gives
a smooth function G, : U, x T, X — Iso (T;X, T;X) C Lin (T;X, T;X) such that
< dyp(y)(§), 2y 0 251 (v) >=< Gy(y,v)(€),v — 2, (y) > for all (y,v) € U, x T, X and
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& € TrX. A change of variables in Eq. (20) then implies:

— 1 -1
@) 4u50) = e | " /| ol[t062 0] ©) [derde )] 2 o)

| det G (y,0)| ( 0 2271) () €7 <502 0> du dg
1 .
= [ [ A (om0 v
(2m) =X JT, X

where a,(y,v,€) = a({dx(y) G;l(y,v)} (5)) ’det dz(y)’ ‘Zym(v)‘ ‘det G, (y,v)| is
a symbol lying in Sg’é(Uw XUy xTpX),as p+86 >1and p > 6. Hence A is a
pseudodifferential operator with respect to normal coordinates over U, of order u
and type (p,9).

Our considerations now lead us to

Theorem 3.1. Let X be Riemannian, E, F' Riemannian or Hermitian vector bun-
dles over X and exp the exponential function corresponding to the Levi-Civita
connection on X. Then any smooth cut-off function i : TX — [0,1] gives rise to
a linear sheaf morphism Opy, : S5% (-, Hom(E, F)) — ¥5%(+, E, F), a — Ay defined
by

(22) Al (@) = s [ al©) F€)ae

where a € ngé(U,Hom(E,F)), f € DUE), 2 € Uand U C X open. This
morphism preserves the natural filtrations of S5% (-, Hom(E, F)) and W55%(-, E, F').
In particular it maps the subsheaf S™°°(-, Hom(E, F)) of smoothing symbols to the
subsheaf ¥=°°(-, Hom(E, F)) C V2% (-, Hom(E, F)) of smoothing pseudodifferential
operators.

The quotient morphism Op : ( 5%/S7°) (-, Hom(E, F)) — (W5%/U=°)(, E, F)

is an isomorphism and independent of the choice of the cut-off function 1.

Proof. The first part of the theorem has been shown above. So it remains to
prove that Op : (S5s/S™>°)(U, Hom(E, F)) — (V5% /W~>°)(U, E, F) is bijective for
all open U C X. Let us postpone this till Theorem 4.2, where we will show that
an explicit inverse of Op is given by the complete symbol map introduced in the
following section. O

By the above Theorem the effect of ¢ for the operator Op,, is only a minor one,
so from now on we will write Op instead of Op,,.
4. The symbol map

In the sequel denote by ¢ : X x T*X|o — C the smooth phase function defined
by

(23) X x T*X|O = (x7€) =< §7exp;(1§) (.’1?) >=< g? Z7‘r(§)(m> > € (Ca
where O is the range of (g,exp) : W — X x X.

Theorem and Definition 4.1. Let A € \II‘;(S(U, E, F) be a pseudodifferential op-
erator on a Riemannian manifold X and ¢ : T*X — [0,1] a cut-off function. Then
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the -cut symbol of A with respect to the Levi-Civita connection on X is the section

oyp(A) =0y .a: T"U — " (Hom(E, F)),

24 £ [E = A (%(f)(') e'#t:8) T(»ﬂsﬁﬂ (7(£)),

where for every x € X 1, = oexp ' =1oz,. ou(A) is an element 0f8ﬁ75(U,X).
The corresponding element 5(A) in the quotient (S}, 5/S™°°)(U, Hom(E, F")) is called
the normal symbol of A. It is independent of the choice of 1.

Proof. Let us first check that oy 4 lies in SZ(;(U, Hom(E, F)). It suffices to as-
sume that F and F' are trivial bundles, hence that A is a scalar pseudodifferential
operator. We can find a sequence (z,),en of points in U and coordinate patches
U, C U with x, € U, such that there exist normal coordinates z, = 25, : U, — T, X
on the U,. We can even assume that the operator A, : D(U,) — C>(U,), u — Auly,
induces a pseudodifferential operator on T,, X. In other words there exist symbols
a, € 8, 50, x 0,,T; X) with O, = z,(U,) such that A, is given by the following

oscillatory integral:

(25)  Auly) = [ [ atawe9 o eye a0 du.

Now let (¢,) be a partition of unity subordinate to the covering (U,) of U and for
every index ¢ let ¢, 1, ¢, 2 € C*°(U) such that supp,,1 C U,, supp ¢, Nsupp ¢, 2 = 0
and ¢, 1 + ¢,,2 = 1. Then the symbol oy 4 can be written in the following form:

70.4(0) = [A(tn( () €709 | ((6))
1

(26) =@ (600 A (6.0) ¥ai0)() €909 | (r(0))

+ K (n(o () €709 (r(C)),

(27) K:DWU)—=C®U) f—Y ¢2Alof), (€TX,

is a smoothing pseudodifferential operator. By the Kuranishi trick we can assume
that there exists a smooth function G : O, x O, — Lin (T;LX, T;X) such that
G(v,w) is invertible for every v,w € O, and

(28) <G (a®),T(zo2, )W) (§)v>=<E&z 0z, (v) - aly) >
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for y € U,, v € T, X appropriate and § € T; X. Several changes of variables then
give the following chain of oscillatory integrals for { € T*U,:

(29)

A (6D () €#09) | )

1

~ 2o / /‘i’ul(y)%(zb’l(y),v,ﬁ) b (27 () (2 0 25 (v))

Ty X Ty X

£i<Czyoz H(0)> —i<€u—z.(¥)> g, d¢

1

= 2o)r / /¢L,1(y)aL(z:1(y),zLoz,;l(u),g) (2, (v) P(v)
Ty X TyX

ei<(,v> e—i<£,zboz;1(v)—zt(y)> dv dg

:(271)71 / /¢L,1(y)ab(z;1(y),zbozy—l(v),g) (2, (v)) Y (v)

Ty X T, X

I<E> o =i<G (2 (y) T (2002, NE)0> gy ge

:(1 / /<Z5L,1(y)aL(ZZl(y),zLoz;l(fu),G*1 (2.(4), Tz, 0 2, ) (0)) (€))

2m)n
THX Ty X

6,(7 1 (0) ¥(v) [ det G (2, (), Tz 0 7, 1)(v)

= / / by (20 (1), 0, €) e~ <ET" (0= DO w—20)> gy e,
(2m)"
Ty X Ty, X

6i<§,v> e—i<£,v> dv df

where the smooth function b, on O, x O, x T;; X is defined by

(30)
b.(2.(y),v,§) =

= gu1W)a, (57 W) 702 0 Tz 057 (0),G7 (aly),v) o (T (20 27 (9)
0,( (T 0 27) () (T (2 0 27) () | det G (2,(y),0)

and lies in Sﬁ,(s(OL x 0, Ty X). Let B, € \I/;(;(OL,T%X) be the pseudodifferen-
tial operator on O, corresponding to the symbol b,. The symbol o, defined by
0. (v,§) = e <5v> B, (€/<¢>), where v € O, and £ € T} X, now is an element of
SZ’ 5(0., Ty X) as one knows by the general theory of pseudodifferential operators

on real vector spaces (see [7, 12, 5]). But we have

(81) [6u1 A, (000) Yai (V) (1(0) = o (2(7(Q). T (2 0 271) (€))

hence Eq. (26) shows oy 4 € S";(;(U,X) if we can prove that oy x € S™°°(U, X) for
ok (C) = K(zz;ﬁ(o(.) ew<w<>)(w(g)). Solet k: U x U — C be the kernel function
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of K and write oy x as an integral:

(32) oux(0) = / E(r(C), 1) oo () €@ dy.

U

Let further =4, ..., Z; be differential forms over U and V4, ..., V) the vertical vector
fields on T*U corresponding to =1, ..., 2. Differentiating Eq. (32) under the integral
sign and using an adjointness relation then gives

(33)
|C|2m Vl LN 'Vk Oy K (C) =

= / E(m(€),y) Yry(y) <E1,2r)(y) > oo < Eky Zrio)(y) >
U
ann .
@2mntk O =<6 (> (y) dy

(2m,...,2m)
972(0)

82mn f
:/ 5, @me2m) (k((Q): ) ¥r(0)(1) <Ens2ai)() > o < Eizn(o)(1) >) ()
Zr(0)
i2mn+ke—i<C,Zw(<)(y)> dy

Therefore [C|*™ V; - ...- Vi 0y i (¢) is uniformly bounded as long as 7(¢) varies in a
compact subset of U. A similar argument for horizontal derivatives of oy x finally
proves oy x € S™°(U, X).

Next we have ~to show that oy 4 — Ojoalsa smoothing symbol for any second
cut-off function ¢ : T*X — [0, 1]. It suffices to prove that &, with

(34) &L(C) = A, (Qj)L ('(/J - ’(/;) 0 Zr(¢) 6_i¢("<))

is smoothing for every ¢, € D(U,). We can find a (—1)-homogeneous first order
differential operator L on the vector bundle T} X x T, X — T}, X such that for all
v # z,(m(¢)) and £ € T;; X the equation

(35) Lemi<nv=a(m(O)> (g) = mi<tv—z(m(0)>

holds (see for example Grigis, Sjéstrand [5] Lemma 1.12 for a proof). Because
() —1p) 0 zz(¢y 02, * vanishes on a neighborhood of z,(7(¢)), the following equational
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chain of iterated integrals is also true:
(36)
5.(¢) =
1 -
~ay | [ 09 6l 0) (9-9) Gro 05 0)
Ti X Tu, X

ei<CEn(0m | (v)> gmi<Eu—2.(n())> gy g¢

- (2m)m / / aL(ZL_l(y)’v’g) ¢u(z, " (v)) (1/) - 1/1) (2r(¢) © 21 (v))

Ty X Ty, X

e1<Czn (002, (0)> [k o=i<€u=z(m(O)> gy, g¢

~a | [ (@) @) @) 0 w) (0= (g 0 5 0)

Ty X Ty, X

¢1<CAn(0r0n (0> (mi<E=2(W(O)> gy .

Note that the last integral of this chain is to be understood in the sense of Lebesgue
if £ € N is large enough. The same argument which was used for proving that the
symbol oy i from Eq. (32) is smoothing now shows o, € S™°(U,, X). O

After having defined the notion of a symbol, we will now give its essential prop-
erties in the following theorem.
Theorem 4.2. Let A € \I/Z(S(U,E,F) be a pseudodifferential operator on a Rie-
mannian manifold X and a = oy 4 € S} (U, Hom(E, I")) be its 1-cut symbol with
respect to the Levi-Civita connection. Then A and the pseudodifferential opera-
tor Op,(a) defined by Eq. (22) coincide modulo smoothing operators. Moreover
the sheaf morphisms & : (V5% /U~>°)(-, B, F) — (S;%/S™>°)(-, Hom(E, F)) and
Op: ( s/S7°) (- Hom(E, F)) — (V55 /¥™°)(-, E, F) are inverse to each other.

Before proving the theorem let us first state a lemma.

Lemma 4.3. The operator

(87)  K:DW,E)—C*UF), fr (Uszm Al(l-,)f)(z) € F)

is smoothing for any cut-off function ¢ : TX — C.

Proof. For simplicity we assume that £ = F = X x C. The general case follows
analogously. Consider the operators K,, : D(U) — C*®(U) where K, ,f (z) =
d.(2)A[(1 — o) fl(z) for x € U, a € U,. The open covering (U,) of U and a
subordinate partition of unity (¢,) are chosen such that for every point a € U,
there exist normal coordinates z, on U,. We can even assume that ¢(z,(y)) = 1 for

all a,y € U,. Hence supp (1 — v,) Nsupp ¢, = 0, and K, , is smoothing, because A
is pseudolocal. This yields a family of smooth functions k, : U x U — C such that

(38) Koo f (z) = / k() (1 — da(y)) £(y) dy.
U

Now the smooth function k € C*(U x U) with k(z,y) = >, k.(z,y) (1 — ¥z(y))
is the kernel function of K. O
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Proof of Theorem 4.2. Check that for an arbitrary cut-off function 1& :TX - C
one can find a cut-off function ¥ : T X — C such that the equation

(39) ) [0) = Gy [ Va0 £ de
TrX

holds for x,y € U. Approximating the integral in Eq. (39) by Riemann sums, we
can find a sequence (i )ren of natural numbers, a family (€x,,)ken,1<.<.,, Of elements
&k, € TxX and a sequence (ex)ken of positive numbers such that

lim € = 0,
k—o0

G ) =

k'

T 2 e =07 £,

1<i<ig

By an appropriate choice of the &, one can even assume that the series on the right
hand side of the last equation converges as a function of y € U in the topology of
D(U). As A is continuous on ’D(U) we now have

4y A = Jim s 3 Ay =02 0) fifee,
= g D o) f(6)
- | a(© £9(0) e
= Az, T;X

On the other hand Lemma 4.3 provides a smoothing operator K such that for
feDU) and z € U:
(42) Af () = Al(Wa)f](x) + Kf (x) = Ay f (z) + Kf (2).

Thus the first part of the theorem follows.

Now let a € Sﬁj’é(U, Hom(E, F')) be a symbol, and consider the corresponding
pseudodifferential operator A = A, € \II"; s(U,E,F). After possibly altering 1 we
can assume that there exists a second cut-off function 1[) : T*X — C such that
@Z|Supp¢, = 1. Then we have for ( € 7)) X and = € E,

(48)  0au(OF = o / a(f)f((¢x(~)6i“"("<)fx,(-)5)i)(§)d£

[1]

@)
TrX
1 )
= G | OF (40069092) (e
TrxX
EZ e i<EV> Li<Cu> g de,
TxX T, X

where the last integral is an iterated one. Next choose a smooth function ¢ : R —
[0, 1] such that supp¢ C [~2,2] and ¢|;_11) = 1 and define ax € ST (U, Hom(E, F))
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by ar(§) = ¢ (%) Then obviously ay — a in 85’5(UHom(E,F),) for i > p. We
can now write:

(44)
oAy ()= = lim L / /ak(ﬁ)aw(u)e—i<f—<>3”> dv d¢

k—oo (27‘1’)”
TEX TLX
1

= dim an(O)= - G / (1= () [Fag] (v) <> dv

x

= 0(Q) = Jim oo [ (v [F7 ()" )@ < o

= Q(C) + kli)n;o Km((a ak)a

where m € N, L is a smooth (—1)-homogeneous first order differential operator on
the vector bundle T*X xy TU — TU such that Le'<?> (£) = ¢!<&> and

45) KonlCo) =~ [ (= 00) [F7 ((E)" ae) (=) 6

Note that TU consists of all nonzero vectors v € TU and that (LT)m a € Sggpm

for every i > p. Now fixing i > p and choosing m large enough that pm >
i+ 2(dimX — 1) yields

(46)
Kn(a) = klln;oKm(C,ak)
. 1 m —i<E—C,u>
=g~ [ () ) © 0= v e dea

T, XTrX

<27lr)n / / ()™ a) (1 = wlw)e' <> i< dg o

T, X TrX

in the sense of Lebesgue integrals. As the phase function £ — — < v > is
noncritical for every nonzero v and 1 — ¢ (v) vanishes in an open neighborhood of
the zero section of TU, a standard consideration already carried out in preceeding
proofs entails that K,,(-,a) is a smoothing symbol. Henceforth o a4 and a differ
by the smoothing symbol K,,(-,a). This gives the second part of the theorem. O

In the following let us show that the normal symbol calculus gives rise to a natural
transformation between the functor of pseudodifferential operators and the functor
of symbols on the category of Riemannian manifolds and isometric embeddings.

First we have to define these two functors. Associate to any Riemannian manifold
X the algebra A(X) = ¥5% /W ~>°(X) of pseudodifferential operators on X modulo
smoothing ones, and the space S(X) = S5%/S7°°(X) of symbols on X modulo
smoothing ones. AsY is Riemannian, we have for any isometric embedding f : X —
Y a natural embedding f, : T*X — T*Y. So we can define S(f) : S(Y) — S(X)
to be the pull-back f* of smooth functions on T*Y via f.. The morphism A(f) :
A(Y) — A(X) is constructed by the following procedure. If f is submersive, i.e., a
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diffeomorphism onto its image, A(f) is just the pull-back of a pseudodifferential
operator on Y to X via f. So we now assume that f is not submersive. Choose
an open tubular neighborhood U of f(X) in YV and a smooth cut-off function
¢ : U — [0,1] with compact support and ¢|yy = 1 on a neighborhood V C U
of f(X). As U is tubular there is a canonical projection II : U — X such that
ITo f =idx. Now let the pseudodifferential operator P represent an element of
A(Y). We then define A(f)(P) to be the equivalence class of the pseudodifferential
operator

(47) & sur fr[P(¢(IT"u))] € £,

where £’ denotes distributions with compact support. Note that modulo smoothing
operators f* [P (¢(IT*u))] does not depend on the choice of ¢. With these definitions
A and S obviously form contravariant functors from the category of Riemannian
manifolds with isometric embeddings as morphisms to the category of complex
vector spaces and linear mappings.

The following proposition now holds.

Proposition 4.4. The symbol map o forms a natural transformation from the
functor A to the functor S.

Proof. As f is isometric, the relation
(48) foexp = expoTlf
is true. But then the phasefunctions on X and Y are related by

(49) ey (Y, £+(8) = ox((y),$),

where y € Y and £ € T*X with y and f(w(§)) sufficiently close. Hence for a
pseudodifferential operator P on Y

(50) (fov(P) (&) = [P (Vsaien () e F-9)] (£(m(€)))

and

(51) (ox /" (P)) (€) = [P (¥10() () #xTO9)] (m(6)).

Eq. (49) now implies

(52) [roy(P) = ox [*(P)

which gives the claim. O

5. The symbol of the adjoint

In the sequel we want to derive an expression for the normal symbol o4« of the
adjoint of a pseudodifferential operator A in terms of the symbol g 4.

Let E, F be Hermitian (Riemannian) vector bundles over the Riemannian man-
ifold X, and let <, >, resp. <, >, be the metric on E, resp. F. Denote by D¥,
resp. DT the unique torsionfree metric connection on FE, resp. F, and by D the
induced metric connection on Hom(E, F'), resp. 7*(Hom(E, F')). Next define the
function p : O — R* by

(53) plz,y) ve =v(y)o(T,exp, x -+ x Tyexp,), x,y€0, v=exp; (y),



The Normal Symbol on Riemannian Manifolds 113

where v is the canonical volume density on T, X and v, its restriction to a volume
density on T, X. Now we claim that the operator Op*(a) : D(U, F) — C>=(U, E)
defined by the iterated integral

(54)
* 1 —1i v - * * — 7
Op (a)g(l’) :771/ / € %> Texll)v [a’ (Tv eXle(g)) g(eXp ’U)} ’(/}(’U)
(2m) =X JT, X
pt(exp, (v),x) dvdé
is the (formal) adjoint of Op (a), where a € S} ;(U, Hom(E, FF)), U C X open and Y

is the cut-off function TX 3 v — ¢ (exp;}pw v(x)) € [0,1]. Assuming f € D(V, E),

g € D(U,F) with V.C U open, V x V C O and p to be sufficiently small the
following chain of (proper) integrals holds:

(55)
/ < f(x),0p"(a)g (x) >p dv(x) =

X

= (2;—)77,/ / e8> < (@), Texpw [0 (T expy 1 (€)) glexpv)] >
X T.XXTrX

9(0) ™ 5D, (0), 2) de (v, €)d(2)
[ [ esromemte©> <o pia).at(€) oln() >

X TV

o 1
- (2

blexpyley (@) p~ (m(€), 2) du™ (€) dv ()

o i<EexD (g (8)> Tr(e),af (), a*(§) g(m(§)) >

Il
w

o
i —

3
e

Plexpy sy (2)) p~H (m(€), 2) dv(x) dw™(€)
_4 (271)” / / e—i<§7w> < a(f) Tgéwf(exp w)’g(m) > w(w) dw dw”(f)

TV Trie) X
- (gi)n / / IO < a(€) Topwf (expw), g(a) > P(w) dw d€ dv(z)
X Ty XXTrX

In explanation of the above equalities, we have

1. wy,w canonical symplectic forms on T, X x T X, resp. T*X

2. by T*exp, : T*V — T, X x T} X symplectic, z € V

3. Gaufl Lemma and Fubini’s Theorem

4. coordinate transformation V 3 x +— w = exp;(lg) (z) € TreyX.

Recall that S™°°(U, Hom(E, F")) is dense in any S/ 5(U, Hom(E, F)), u € R with
respect to the Fréchet topology of Sﬁ s(U,Hom(E, F)) if 4 < fi. By using a partition
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of unit}f and the continuity of Sg’é(U7 Hom(E,F)) 3 a — Op(a)f € C*(U,F),
resp. S ;(U,Hom(E, F)) > a ~ Op*(a)g € C*(U, E), for any f € D(U, E) and
g € D(U, F), Eq. (55) now implies that

o) [ < @05 @) >5 dvla) = [ <Op(@f(a).gle) >r dvla)
X X

holds for every f € D(U,E), g € D(U,F) and a € S 5(U) with ¢ € R. Thus
Op*(a) is the formal adjoint of Op (a) indeed.
The normal symbol o4+ of A* = Op*(a) now is given by

(57)

74O ~ [49(.£5) (7)) = G / / emi<c-gw>
T, X TrX

Te:c%) v [CL* (T:)k exp.;l(g)) Texp UE] QZJ(U) ’(/)(’U) pil(expx (1))7 l‘) dv d<7
where £ € T* X, z = 7(£), 2 € F,, and
. —1
(58) 95,6, 5) =¥ (expye () <SP0 r o)

with y € X. Thus by Theorem 3.4 of Grigis, Sjostrand [5] the following asymptotic
expansion holds:

(—i)lel gled glel

O Ax* ~ _ _

a- () % ol Gun |,y 90,
(59) ([ o0 (T3 exp3(0)) 0 Texpu] p™ (ex, (), ) )

_i)la+8l | plal+isl la|
- Z ( ;)'B' 8 58 o2 a* |:6az [e% p_l(.>'7"):| )
a,BeENd e Zx Cx ¢ T |

where

Dlal+18] o8l olel ’ )
60 Bl & T o8¢ ara Te; v 0 a T,j‘ex ;1 O Texpuv| »
©) G|t o, g e o (T e Q) o)

are symmetrized covariant derivatives of a € S*®°(X,Hom(E, F)) with respect to
the apriorily chosen normal coordinates (2, (z)-
Next we will search for an expansion of p and its derivatives. For that first write

x

0
(61) % = Z@é(l‘, ) €,
k,l

where (e1,...,eq) is the orthonormal frame of Eq. (11), and the 6} are smooth
functions on an open neighborhood of the diagonal of X x X. Then we have the
following relation (see for example Berline, Getzler, Vergne [1], p. 36):

(62) ) = 0F — £ 37 Rin9) 2 (0) 22 (9) + O2e ),
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where RF,.;.(y), resp. their “lowered” versions Rpmin(y), are given by the co-
efficients of the curvature tensor with respect to normal coordinates at y € X,

e, R (55) = 5 Rbmin(y) 3 @ dz) @ d=j. But this implies
30,

p(x,y) = |det (92(33 y))|

_z k " o )P
(63 - %Z;R mien (@) 2 (4) 2 (0) + Ol ()

—1- %ZRicmn(w) 2 () 25 () + O (|2 (v)[) -

Using Eq. (13) 2¥(y) = —2¥(z) for z and y close enough we now get

(64) 8; p (e z) = fZRlckl ) +0 (=w)?) .
02 = 1.
(65) ko | P (o) = gRlel(x) + O (Jzz(y)]) -

The above results are summarized by the following theorem.

Theorem 5.1. The formal adjoint A* € \I/Z(;(U7 F, E) of a pseudodifferential oper-
ator A € W (U, E, F) between Hermitian (Riemannian) vector bundles E, F' over
an open subset U of a Riemannian manifold X is given by

A =0p' @) = oz [ [ e

Tewpw 0% (Ty exp; ' (€)) g(exp )] %(v) p~" (exp, (v), z) dvdE

where x € X, g € D(U,F) and a = o4 is the symbol of A. The symbol o4~ of A*
has asymptotic expansion

(66)
D2\a| .
oa-(§) ~ Z 82 3Ca a
aeNd
la>1
D2lal+2
- Z a” | Ricg(m(£)) +
0 e 023 (6) 9316 Orie) Xne) |,
j)la+pl | p2lal+isl [ glel
+ Z pl('ax)]
| | a a+8
wpey O | 9% 96 e On (@ lnie)
D? 1 D*

at —

ACEE)Y

k k k 1 k l
azﬂs) x| 7 O7n(e) 0%r(e) 9 () Wome) |

a”| Ricg(m(€)) + r(§)

8{’“ 8§l

k,l
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with € € T*X and r € Sz7;2(p_6)(U, Hom(E, F)).

6. Product expansions

Most considerations of elliptic partial differential operators as well as applications
of our normal symbol to quantization theory (see Pflaum [8]) require an expression
for the product of two pseudodifferential operators A, B in terms of the symbols
of its components. In the flat case on R? it is a well known fact that 045 has an
asymptotic expansion of the form

_plal glal la
(67) oap(z,§) ~ Z( a)! gFUA(x 5)2 ~oB(2,8).

Note that strictly speaking, the product AB of pseudodifferential operators is only
well-defined, if at least one of them is properly supported. But this is only a
minor set-back, as any pseudodifferential operator is properly supported modulo a
smoothing operator and the above asymptotic expansion also describes a symbol
only up to smoothing symbols.

In the following we want to derive a similar but more complicated formula for
the case of pseudodifferential operators on manifolds.

Proposition 6.1. Let A € \Ifﬁ_’(;(U,E,F) be a pseudodifferential operator between
Hermitian (Riemannian) vector bundles E, F over a Riemannian manifold X and
a = o(A) its symbol. Then for any f € C=(U, E) the function

(68) oag i TU—F, € [A(Yaef 09| (x(€)
is a symbol of order v and type (p,d) and has an asymptotic expansion of the form
1 Dlel Dlel
(69) oar®~ Y et | ] @ Jit
za: ivlal | 0" | | | 92 e

Proof. Let z = 7(§), N € Nand ¢ : T*X — C a cut-off function. Then the
following chain of equations holds:

(70)
oay(€) = [A <¢w<5>f6i‘p("§))] ()
:ﬁ / a(¢) [F (f* <)) (¢) d
o oy € A g o fexp o) wlo) do g
e eI (g 4 ¢) ik, Flexpw) () dv d
e c;lv (€)C° T o f(exp ) h(v) dv dC
+TN(§‘) .
_ Ia% . [<9DCIQ| ] {5' zf] +rae).
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Note that in this equation all integrals are iterated ones and check that with Taylor’s
formula ry is given by

()
O = G 2 N“/*/ -0

|B]=N+1

Fa(€ + Q) dt ¢ [F (f¥)](¢) dC.

Choosing N large enough, the Schwarz inequality and Plancherel’s formula now
entail

1 N+1
IOl £ s & St ‘

(72) lﬁl_NHW\
oz

1 18l
/O (1 t)Nﬁ,é Fa(§ +t())dt

xT

L2(Tr X)

L2(T,X) .
But for K C U compact and t € [0,1] there exist constants Dy g, DN,K > 0 such
that

(73) +t<)H < Dy (14 [|€]] + |[¢|[)r—PV+D

|57
and

(74)
1 8l
‘/0(175)’“;2 Fa(§ +t())dt

for all 2 € K, &,¢ € T X and all indices 8 € N? with |3| = N + 1. Inserting this
in (72) we can find a Cn g > 0 such that for all x € K and £ € T X

< Dvic || (1 11gl] 4+ 11 [y
LTy X)

= D, (1+ [[g[yrHrmrtv+D

L2(Tr X)

(75)  lrn (Il <

n+p—p(N+1) D|’Y|
Cve (1+ 16l > s {|| 2] e s}
Iv[<N+1
Because of Nlim dimX + o+ p(N + 1) = —oco and a similar consideration for the
derivatives of o4, ¢ the claim now follows. O

Next let us consider two pseudodifferential operators A € V5% (U, F, G) and B €

Py V% (U, E, F') between vector bundles E, F, G over X. Modulo smoothmg operators
we can assume one of them to be properly supported, so that AB € ‘Il;f’é(U, E.G)
exists. Defining the extended symbol v*** = ¢ : U x T*U — Hom(E, F) of B by

(76)
bz, €)= =

Yr(e) (x) e P ®H) [B (%(g)(') ew("g)T(A),w(g)E)} (), xzeU, ({E) e (Ely)
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the symbol 45 of the composition AB is now given modulo S™°(U, Hom(FE, Q))
by

0ap(§)Z = [AB (¥re?I70) x0)F) | (x(6))
= [A (¥rie 09 o5 (. OF) | (v ).

By Proposition 6.1 this entails that 045 has an asymptotic expansion of the form

1 Dlel Dlel
oAl | m——
¢ zn(e)®

(77)

(78)  oap(&)~ Y

O-eBmt('v 5)] :

.7‘ a- «a
o dolal | ae) (©)
As we want to find an even more detailed expansion for o4, let us calculate the
derivatives azD I(:a © o%*(-,€) in the following proposition.
E (€

Proposition 6.2. Let B € \Ilij’(;(U7 E,F) be a pseudodifferential operator between
Hermitian (Riemannian) vector bundles over the Riemannian manifold X and b =
o(B) its symbol. Then for any f € C=(U, E) the smooth function

(79) 0% UXTU—F, (2,8 tre(x) e~ (@) {B (ww(g)feiw(ni))} (z)

is a symbol of order u and type (p,0) on U x T*U and has an asymptotic expansion
of the form

ik—18] DBl
ext ?
O—B,f(xag) NZ Z 7¢W(E)(x) [ ‘|
keN B.8on BkEN’L k'ﬂo' et ﬁk' aCmB dmtp( 75)
(80) (RN e
D Bol o1l !Bkl
[521,60 wwﬂ(i)f} {3%51 w%’(vf)] [W w@(',f)] :

Furthermore the derivative T*U 3 € — [ai:w"%ﬁ"("f)} (m(€)) € F with a € N*

is a symbol with values in F of order u + || and type (p,d) on T*U and has an
asymptotic expansion of the form

[ Dlel
en——
Dzr(e)™

k=18l

~ X > Klalag! - oo - ! Bo! - ... - Br)

keEN &,aq,...,ap, €N 3,Bq,...,B; EN"
dtagt..tag=a Bot..+0=p
[B1ls-s By =2
[ DIl f]}
0 | %" o2y | _,
a|a1| a\ﬁﬂ a‘ﬁk\
0 a1’ Dz, P M‘ o O| ¥
Zr(©) Ine) [ 9% &) L2*" o
|

Dol
b { ol
Zre)®
d_ye( ,8) © 4
Note 6.3. The differential operators of the form azD :)Q act on the variables de-

plél plsl

Ozr(e)®

Hlekl
(7)90( 75)]} { 8271—(5)0”‘

noted by (—), the differential operators of the form % on the variables (-).
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Proof of Proposition 6.2. Let n € C*°(U x U x T*U) be a smooth function such
that

(81) 77(%%5) = (p(yag) - (,D(il?,g)— < dz‘ﬁ( 75)7zz(y) >

for z,y € supp ¥r(¢) and such that T*U > § ~ n(z,y,§) € C is linear for all
x,y € U. Furthermore denote by F' € C>*°(U x U x T*U, E) the function (z,y,&) —
wﬂ(g)(y)f(y)em(fﬁy’g). By the Leibniz rule and the definition of 1 we then have

i D!Bol
= 2 > k!ﬂol....-ﬂk![azmﬁo

DA
82’ B F(.’I/‘,,f)
r ly Bl Bg,--- By ENT
OSkST Bo+-..+Br=8

(82) [B1lseees [BE 122
1ol !Bkl

n(z, ~7§)], 0 < j < k is smooth and linear with respect to
y

Vre)f 1 :
Y

77(557 B 5) ein(w,y,ﬁ) .

Y

5185
As (z,y,6) — |:gﬁ

&, the preceeding equation entails that (z,y,§) — [gﬁ;

F(z,-,£)| is absolutely
Y |
bounded by a function (z,y,§) — Cs(z,y) |§|%, where Cg € C>®(U x U) and
Cpg > 0. On the other hand we have
(83)  0F4@.6) = Unoe) [B (1ro(1F ()00 i<l 9:5:07)] (z)

and by the proof of Proposition 6.1

(84)
181 | plal D8l
ext (2
o (4,8) = Une)(x) Z - [B b] {‘ F(x,.,g)} (€
1BI<N B 108 e 0 02,71,
ik—18] L
= Yr(e)(2) Z Z Z KBl Bl [6@55 ) ] .
IBI<N o<k< 18l gfiéff.’i’%iib = ( Q)
[B115---s 1B |>2
Dol ol 1]
|:62$60 wiﬁw(f)f] : [6%& 190(,5):| C |:6zxﬁk w(p(,é‘):| +TN(1',§),
where

l17a(@, )l < Cnre (L + [dop( €))7 PN

ol
(85) 2 sup{ [a

[YISN+1
< Dy x(1+ ||§||)n+uf(p*1/2)(N+1)

holds for compact K C U, x € K, £ € T*X|, and constants Cn x, Dy x > 0.
Because p > 1, we have limy_.o dimX + pt— (p — 3)(N + 1) = —oo. By Eqs. (84)

F(ﬂﬂ,-,f)] H : yesuppwm}
Yy

and (85) and similar relations for the derivatives of 0§} we therefore conclude that
Eq. (80) is true. The rest of the claim easily follows from Leibniz rule. O

The last proposition and Eq. (78) imply the next theorem.
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Theorem 6.4. Let A,B € ¥ 5(U,E,F) be two pseudodifferential operators be-
tween Hermitian (Rzemanman) vector bundles E, F over a Riemannian manifold
X. Assume that one of the operators A and B is properly supported. Then the
symbol o op of the product AB has the following asymptotic expansion.

(86)

1
oap (§) ~ o | ac .| A a‘ 7B+
% o [3@@“5 Hf’%@ (@
k—lal—|B|
1
+> ) > :
al-al- a3 3
1 cnonagemn gy e B alal !Bl ]
&+ayt+...tap=a p1+...+8=8
18115518122
[ plal 1 plal D!Bl
o ol 0A & a9 B 9B
()" |, 02" lne) | 96" | o )

glaal Bl ’ Hlekl OBk
o ()O(a§> Tt YR ‘ ()0(75) .
{52”@ G laz(ﬂﬁl (=) Ozn(e)™ Lniey | 927 1

A somewhat more explicit expansion up to second order is given by

Corollary 6.5. If 04 is a symbol of order pu and op a symbol of order i the
coefficients in the asymptotic expansion of o ap are given up to second order by the
following formula:

caB(§) =04(&) -oB(§) —

DUA DO’B DQJB
(87) -1 Z agw(g) z Z7T Z 8C7r kacﬂ (5) Dk (5)32 €39}
Do DZO'B i
- R min T
12 k%;n Torerm &) Bere ey &) Brmin(m(E)) a4 (6) + 7(E)

where £ € T*U, x = mw(€), r € S“+” 3(U) and the R™11(y) are the coefficients of
the curvature tensor with respect to normal coordinates aty € X, i.e., R (azm) =

Z R* mln(y)m X dZy [029] dzy .
k,l,n Y

Proof. First define the order of a summand s = s77%F in Eq. (86) by ord(s) =

QA . O
| — &+ B —k|. Then it is obvious that s € S“+“+Ord( o) (o= 5)(U). Therefore we have
to calculate only the summands s with ord(s ) < 2. To achieve this let us calculate
some coordinate changes and their derivatives. Recall the matrix-valued function
(6F) of Eq. (61) and construct its inverse (6). In other words

(88) > Oh(z,y) O (y) = 6,
k
holds for every I,m =1, ...,d. We can now write
0 . 0
(89) =il %; 0. (v, 2) 07" (x, 2) 5o |
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and receive the following formulas:

82]; k 1 k m n
Yy m,n
(90) L
+ 6; R in(2) 25 (2) 23 (2) + O (|2a(2) + 2 (2)°) ,
o 1 &
1 1 n
(91) + o (B (@) + Reuim(2)) 22(2)
+ O (|2a(2) + 2y (2) ) .
0 022k 1, & &
(92) 9z . 32532;" (y) = 6 (R min(T) + R nlm(m)) + O(‘Zz(z)l)
Next consider the functions
lev] 18l (.
6Z7r(§) y=m(¢) 8 Zy
which appear in the summands s of Eq. (86). One can write the ¢qp in the form
glel APIZE o
(93) ©ap(€) = D Crie)k(8) - 5 ()
Xk: ( 02n(©)” lyer(ey 92"
Thus by Eq. (91)
(94) pop(§) =0
holds for every 3 € N? with |3| > 2. Furthermore check that
(95) dyo(+,§) = ZCw(g),k(ﬁ) dzl e .
k

is true.
Now we are ready to calculate the summands s of order ord(s) < 2 by considering
the following cases.

(7) ord(s) =0:

(96) 5(&) = oa(§)on(§).
(#3) ord(s) =1, la] =1, k=0,a= o
(97) s(6) = — i3 204 () 2B ()

(#i) ord(s) =1, |o| =0, k =1, | 5| = 2: In this case s = 0 because of Eq. (94).
(iv) ord(s) =2, |la|=2,k=0,a=«

1 D2(7A DQUB
(98) s€) = — 5 (©)-

2 4 Or(e) 1 OCnie)a T 025020 )

s
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(v) ord(s) =2, |a| =1, k=1, |3| = 2: In this case @ = 0 by Eq. (94). Hence by
Eq. (92)

09) 5O =-5 3 3
k,l,m,n

Summing up these summands we receive the expansion of 045 up to second order.
This proves the claim. O

Doy © D?op
Creyn . OCr(6),19Cr(e),m

(&) RF in(m(£)) Cre) 1 (6)-

The product expansion of Theorem 6.4 gives rise to a a bilinear map # on the
sheaf S5%/S7°°(-, Hom(F, G)) x S5%/S™°°(-, Hom(E, I)) by
SZ?(;(U, Hom(F,G)) x Szf’é(U, Hom(E, F)) — S;f’(;/S_OO(U, Hom(E,Q)),
(a,b) = a#tb = Top(a) Op(h)
for all U C X open and vector bundles E, F,G over X. The #-product is an
important tool in a deformation theoretical approach to quantization (cf. Pflaum

[8]). In the sequel it will be used to study ellipticity of pseudodifferential operators
on manifolds.

(100)

7. Ellipticity and normal symbol calculus

The global symbol calculus introduced in the preceding paragraphs enables us
to investigate the invertibility of pseudodifferential operators on Riemannian man-
ifolds. In particular we are now able define a notion of elliptic pseudodifferential
operators which is more general than the usual notion by Hérmander [7] or Douglis,
Nirenberg [2].

Definition 7.1. A symbol a € S5%(X, Hom(E, F)) on a Riemannian manifold X
is called elliptic if there exists by € Sp%(X, Hom(F, E))) such that

(101) a#tbo —1 €S 5(X) and bo#a—1€S 5(X)

for an € > 0. A symbol a € S7'5(X, Hom(F, F')) is called elliptic of order m if it is
elliptic and one can find a symbol by € S5 (X, Hom(F, E)) fulfilling Eq.(101).

An operator A € \Il;f’(;(X, E, F) is called elliptic resp. elliptic of order m, if its
symbol o4 is elliptic resp. elliptic of order m.

Let us give some examples of elliptic symbols resp. operators.

Example 7.2. (i) Let a € S7'(X, Hom(FE, F')) be a classical symbol, i.e., assume
that a has an expansion of the form a ~ .\ am—; with ay,,—; € ST&j(X)
homogeneous of order m — j. Further assume that a is elliptic in the classical
sense, i.e., that the principal symbol a,, is invertible outside the zero section.
By the homogeneity of a,, this just means that a,, is elliptic of order m. But
then a and Op(a) must be elliptic of order m as well.

(ii) Consider the symbols [ : T*X — C, £ — |[¢]|? and a : T*X — C, £ — W
of Example 2.3 (ii). Then the pseudodifferential operator corresponding to [
is minus the Laplacian: Op(l) = —A. Furthermore the symbols [ and 141 are
elliptic of order 2, and the relation a#(1+1) — 1, (1 +D#Ha —1 € Si(l)(X) is
satisfied. In case X is a flat Riemannian manifold, one can calculate directly
that modulo smoothing symbols a#l = l#a = 1, hence Op(a) is a parametrix
for the differential operator Op(1 +1) =1 — A.
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(ii7) Let ay(&) = (1 + [|¢]|2)?"(€) be the symbol defined in Example 2.3 (iii),
where ¢ : X — R is supposed to be smooth and bounded. Then a is elliptic
and b(&) = (1 4 |[€]]?)~#™(€) fulfills the relations (101). In case ¢ is not
locally constant, we thus receive an example of a symbol which is not elliptic
in the sense of Hormander [7] but elliptic in the sense of the above definition.

Let us now show that for any elliptic symbol a € SE%(X ,Hom(E, F')) one can
find a symbol b € S5%(X, Hom(F, E)) such that even

(102) a#b—1€ S™°(X,Hom(F,F)) and b#a—1€ S (X, Hom(E,E)).

Choose by according to Definition 7.1 and let » = 1—a#tbg, I = 1 —bo#a € S™°(X).
Then the symbols

br=bo(L+r+r#r+r#rdr+...) and b= (14+1+I# +HI#H#+...) b

are well-defined and fulfill a#b, = 1 and b;#a = 1 modulo smoothing symbols.
Hence b, — b; € S™>°(X,Hom(F, E)), and b = b, is the symbol we were looking for.
Thus we have shown the essential part for the proof of the following theorem.

Theorem 7.3. Let A € \Il;’)?&(X,E,F) be an elliptic pseudodifferential operator.
Then there exists a parametric B € \Il;f’é(X, F,E) for A, i.e., the relations

(103) AB—1€ U ®(X,F,F) and BA-1€VU ~(X,E,E)

hold. If A is elliptic of order m, B can be chosen of order —m. On the other hand,
if A is an operator invertible in \Ilgf(;(X) modulo smoothing operators, then A is
elliptic. In case X is compact an elliptic operator A € \IJ;O(S(X) 18 Fredholm.

Proof. Let a = 04. As a is elliptic one can choose b such that (102) holds. If a
is elliptic of order m, the above consideration shows that b is of order —m. The
operator B = Op(b) then is the parametrix for A. If on the other hand A = Op(a)
has a parametrix B = Op(b), then a#b — 1 and b#a — 1 are smoothing, hence A is
elliptic. Now recall that a pseudodifferential operator induces continuous mappings
between appropriate Sobolev-completions of C*(X, E), resp. C*(X, F'), and that
with respect to these Sobolev-completions any smoothing pseudodifferential oper-
ator is compact. Hence the claim that for compact X an elliptic A is Fredholm
follows from (103). O

Let us give in the following propositions a rather simple criterion for ellipticity
of order m in the case of scalar symbols.

Proposition 7.4. A scalar symbol a € SZZ;(X) is elliptic of order m, if and only
if for every compact set K C X there exists Cx > 0 such that

1 m
(104) 1Ol = &II¢ll
for all§ € T*X with n(§) € K and ||€|] > Ck.

Proof. Let us first show that the condition is sufficient. By assumption there exists
a function b € C*°(T*X) such that for every compact K C X there is Cx > 0 with

(105) a(§)-b(§) =1 and |p(E)[| < Ckll]I™™
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for £ € T*X with n(§) € K and |[¢]| > Ck. Hence a-b—1 € S™°(X). After
differentiating the relation » = a-b—1 in local coordinates (x, ) of T* X we receive

(106)

ms2 ol bl
sup | (1+ [1¢]2)™

LeT*X |k Oz aé-ﬁb(g)‘ <C sup |a(§)

EeT*X |k

Hled 3|ﬁ\b
— = <
dx> 9P ’ -

leal glsal Plezl glB2l ’

<
<C sup r(€)] + Z dzor 9ep S Graz e

EeT*X |k

a1 tas=a
B1+B2=0
a1 +B11>0

hence by induction b € S;g”(X ) follows. By the product expansion Eq. (87) this
implies

(107) a#b—1=r+t; and b#a—1=1r+19,

where t1/5 € S 5(X) with ¢ = min{(p — §),2p — 1} > 0. Hence a is an elliptic
symbol.

Now we will show the converse and assume the symbol a to be elliptic of order m.
According to Theorem 7.3 there exists b € S i (X) such that Op(b) is a parametrix
for Op(a). But this implies by Eq. (87) that ab—1 € S;f; for some € > 0, hence
[a(€)b(€) — 1| < & for all £ € T* X |, with |[¢]| > Ck , where K C X compact and
Ck > 0. But then

1 *
(108) 3 <1a(ObO)] < Cxla(ONIEN™, &€ T"X]x, €Il > Cx,
which gives the claim. O

In the work of Douglis, Nirenberg [2] a concept of elliptic systems of pseudodif-
ferential operators has been introduced. We want to show in the following that this
concept fits well into our framework of ellipticity. Let us first recall the definition
by Douglis and Nirenberg. Let E = FE1 & ... ® Ex and F = F} @ ... ® F[, be direct
sums of Riemannian (Hermitian) vector bundles over X, and Ay; € \I/’f}(’;‘ (X, Ey, F)
with my; € R be classical pseudodifferential operators. Denote the principal symbol
of Ay by pr € ST(’)”(X, Ex, F). Douglis, Nirenberg [2] now call the system (Ag;)

—Mgy

elliptic, if there exist homogeneous symbols by € Sy g (X, Ey, F;) such that

(109)
Z Pri - b — Okrr € ST(X, Eg, Fy)  and Z bik - prir — 6w € S1.0(X, Ex, Fy)
I K

for all k,k’,1,I'. The following proposition shows that A = (Ag;) is an elliptic
pseudodifferential operator, hence according to Theorem 7.3 possesses a parametrix.

Proposition 7.5. Let E = F1 ® ... ® Ex and FF = F} @ ... ® F, be direct sums
of Riemannian (Hermitian) vector bundles over X. Assume that A = (Ag) with
A € ST'§" (X, E, F) comprises an elliptic system of pseudodifferential operators
in the sense of Douglis, Nirenberg [2]. Then the pseudodifferential operator A is
elliptic.
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Proof. Write ay; = 04,, = pri + rr with ag € 717}(’)” (X,Hom(Ey, F;) and ry; €
;’f{;‘*l(X,Hom(Ek,Fl). Furthermore let a = (ar) € S5 (X, Hom(E, F)), b =

(br1) € S5 (X, Hom(E, F)) and r = (ry;) € S75(X, Hom(E, F)). By Eq. (109) and

the expansion Eq. (87) it now follows

a#b — 1 = (p#b — 1) + r#b € ST §(X, Hom(E, F)),

b#a —1 = (b#p — 1) + b#r € ST 5(X, Hom(E, F)).

But this proves the ellipticity of A. O

(110)

So with the help of the calculus of normal symbols one can directly construct
inverses to elliptic operators in the algebra of pseudodifferential operators on a
Riemannian manifold. In particular after having once established a global symbol
calculus it is possible to avoid lengthy considerations in local coordinates. Thus
one receives a practical and natural geometric tool for handling pseudodifferential
operators on manifolds.
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