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A Simple Functional Operator

Ice B. Risteski, Kostadin G. Trenčevski,
and Valéry C. Covachev

Abstract. In this paper a new linear operator Ψ is defined such that Ψ◦Ψ =
0. The general analytic solution of the vector functional equation Ψf = 0 is
given.
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1. Main Results

Definition 1.1. Let V and V ′ be complex vector spaces. For an arbitrary mapping
f : Vn−1 7→ V ′ (n > 1) we define a mapping Ψf : Vn 7→ V ′ by

(Ψf)(Z1, . . . ,Zn) = (−1)n−1f(Z1, . . . ,Zn−1)− f(Z2, . . . ,Zn)(1)

+
n−1∑
i=1

(−1)i+1f(Z1, . . . ,Zi + Zi+1, . . . ,Zn).

If n = 1, we define Ψf = 0.

Remark 1.2. The definition of the operator Ψ is a variation on the formula giving
the differential of the bar construction.

Lemma 1.3. For an arbitrary mapping f : Vn−1 7→ V ′ we have

(Ψ ◦Ψ)f(Z1, . . . ,Zn+1) = 0.(2)

Proof. This follows by a straightforward calculation similar to that giving the
identity d2 = 0, where d is the differential in the bar construction (see [7, Chapter
IV, formula (5.8)]). �
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This lemma shows that the kernel of the operator Ψ contains all mappings of the
form Ψf . The next theorem provides a complete description of this kernel.

Theorem 1.4. The general solution of the operator equation

(Ψf)(Z1, . . . ,Zn+1) = 0(3)

in the set of analytic functions f : Vn 7→ V ′ (n ≥ 1) is given by

f(Z1, . . . ,Zn) = (ΨF )(Z1, . . . ,Zn) + L(Z1, . . . ,Zn),(4)

where F : Vn−1 7→ V ′ is an arbitrary analytic function and L is an arbitrary linear
mapping: Vn 7→ V ′ (n ≥ 1).

Proof. First note that if n = 1, the equation (Ψf)(Z1,Z2) = 0 is the Cauchy
functional equation

f(Z1 + Z2)− f(Z1)− f(Z2) = 0.

The general analytic solution of this equation is f(Z) = AZ, where A is an (s× r)
matrix with arbitrary complex constant entries (r = dimV and s = dimV ′). About
the solution of the Cauchy matrix functional equation see [2] and [6].

Now let n ≥ 2. The operator equation (3) is equivalent to

(5) (−1)nf(Z1, . . . ,Zn)− f(Z2, . . . ,Zn+1)

+
n∑
i=1

(−1)i+1f(Z1, . . . ,Zi + Zi+1, . . . ,Zn+1) = 0.

Note that it is sufficient to prove the theorem if dimV ′ = 1 and the general case is
just a consequence. So let us assume that dimV ′ = 1. Note also that f given by
(4) is a solution of (3), but we want to prove that each solution is included in (4).

Let dimV = r and let Zi = (zi1, · · · , zir)T (1 ≤ i ≤ n+1). By differentiating the
equation (5) partially with respect to zn+1,ν (1 ≤ ν ≤ r) at Zn+1 = 0, we obtain
the following system of r equations

∂

∂znν
f(Z1, . . . ,Zn) = −pν(Z2, . . . ,Zn)

+
n−1∑
i=1

(−1)i+1pν(Z1, . . . ,Zi + Zi+1, . . . ,Zn),

(1 ≤ ν ≤ r), where

∂

∂tν
f(Z1, . . . ,Zn−1,Z)

∣∣∣∣
Z=0

= (−1)npν(Z1, . . . ,Zn−1) for Z = (t1, . . . , tr)T .

After integration of this system we obtain

f(Z1, . . . ,Zn) = R(Z1, . . . ,Zn−1)− P (Z2, . . . ,Zn)(6)

+
n−1∑
i=1

(−1)i+1P (Z1, . . . ,Zi + Zi+1, . . . ,Zn),

where
∂

∂zn−1,ν
P (Z1, . . . ,Zn−1) = pν(Z1, . . . ,Zn−1) (1 ≤ ν ≤ r),
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and R is an arbitrary analytic function with respect to Z1, . . . ,Zn−1. We write

R(Z1, . . . ,Zn−1) = (−1)n−1P (Z1, . . . ,Zn−1) +Q(Z1, . . . ,Zn−1),

so that equality (6) becomes

f(Z1, . . . ,Zn) = (ΨP )(Z1, . . . ,Zn) +Q(Z1, . . . ,Zn−1),(7)

with Q analytic in Z1, . . . ,Zn−1.
If f(Z1, . . . ,Zn) is a solution of (3), then

(ΨQ)(Z1, . . . ,Zn) = 0,

because (Ψ◦Ψ)P = 0. Thus Q satisfies an equation of the form (3) with n replaced
by n − 1. If n = 2, then Q(Z) = AZ. Otherwise we may assume that Q is given
by an equality of the form (7) (n replaced by n − 1) and complete the proof by
induction. �

In other words, the general analytic solution of the functional equation (5) is
given by

f(Z1, . . . ,Zn) = (−1)n−1F (Z1, . . . ,Zn−1)− F (Z2, . . . ,Zn)(8)

+
n−1∑
i=1

(−1)i+1F (Z1, . . . ,Zi + Zi+1, . . . ,Zn)

+ L(Z1, . . . ,Zn),

where F is an arbitrary analytic function and L is a linear mapping.

Remark 1.5. The equality Ψ ◦ Ψ = 0 permits the construction of a cohomology
theory, which we intend to develop in a subsequent paper. Theorem 1.4 plays a
role analogous to the Poincaré Lemma for differential forms.

2. Some Particular Cases

As particular cases of operator equation (3), we consider the following functional
equations given in [5, 8, pp. 230–231].
1o. If n = 2, then the functional equation (5) becomes

f(Z1,Z2)− f(Z2,Z3) + f(Z1 + Z2,Z3)− f(Z1,Z2 + Z3) = 0.

According to (8), the general analytic solution of this functional equation is given
by

f(Z1,Z2) = F (Z1 + Z2)− F (Z1)− F (Z2) + L(Z1,Z2).

2o. If n = 3, the functional equation (5) is

− f(Z1,Z2,Z3)− f(Z2,Z3,Z4) + f(Z1 + Z2,Z3,Z4)

− f(Z1,Z2 + Z3,Z4) + f(Z1,Z2,Z3 + Z4) = 0.

The general analytic solution of this equation is given by

f(Z1,Z2,Z3) = F (Z1 + Z2,Z3) + F (Z1,Z2)− F (Z1,Z2 + Z3)

− F (Z2,Z3) + L(Z1,Z2,Z3).
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3o. If n = 4, the functional equation (5) takes on the form

f(Z1,Z2,Z3,Z4)− f(Z2,Z3,Z4,Z5) + f(Z1 + Z2,Z3,Z4,Z5)−
f(Z1,Z2 + Z3,Z4,Z5) + f(Z1,Z2,Z3 + Z4,Z5)− f(Z1,Z2,Z3,Z4 + Z5) = 0.

According to (8), the general analytic solution of this functional equation is given
by

f(Z1,Z2,Z3,Z4) = F (Z1 + Z2,Z3,Z4) + F (Z1,Z2,Z3 + Z4)− F (Z2,Z3,Z4)

− F (Z1,Z2 + Z3,Z4)− F (Z1,Z2,Z3) + L(Z1,Z2,Z3,Z4).

In the above examples F is an arbitrary analytic function, and L is an arbitrary
linear mapping.

This method for solving functional equations does not appear in the other ref-
erences [1, 3, 4, 9]. In [5, 8] the solutions of the above functional equations are
obtained in a very complicated way. In the literature there is no generalization
about the respective functional equations with general n. Moreover, we consider
functional equations in a vector form.

The authors are grateful to the anonymous referee whose valuable suggestions
and good-intentioned remarks helped them considerably improve the quality of the
paper omitting some of the heaviest calculations. Special thanks are also due to
Mark Steinberger.
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