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Power Weakly Mixing Infinite Transformations

Sarah L. Day, Brian R. Grivna, Earle P. McCartney,
and Cesar E. Silva

Abstract. We construct a rank one infinite measure preserving transforma-
tion T such that for all sequences of nonzero integers {k1, . . . , kr}, Tk1 × . . .×
Tkr is ergodic.
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1. Introduction

It is well known that for the case of finite measure preserving transformations,
if T is weakly mixing then T k1 × . . . × T kr is ergodic for any sequence of nonzero
integers {k1, . . . , kr}. Kakutani and Parry proved in [KP] that there exist infinite
(measure preserving) transformations such that T × · · · × T (r terms) is ergodic
but T × · · · × T (r+ 1 terms) is not; in this case the transformation is said to have
ergodic index r. T is said to have infinite ergodic index if T × · · · × T (r terms)
is ergodic for all r > 0. In [KP], they also constructed infinite Markov shifts of
infinite ergodic index. A finite or infinite measure preserving transformation T is
weakly mixing if for all finite measure preserving ergodic transformations S, the
product T × S is ergodic. For the case of infinite transformations T , it was shown
in [ALW] that ergodicity of T ×T implies weak mixing but that there exist infinite
weak mixing transformations with T × T not conservative, hence not ergodic. It
was shown in [AFS] that an infinite transformation T may be weakly mixing with
T × T conservative but still not ergodic, and that there exist rank one infinite
transformations of infinite ergodic index.
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In this paper we introduce a condition stronger than infinite ergodic index. De-
fine a transformation T to be power weakly mixing if for all finite sequences of
nonzero integers {k1, . . . , kr},

T k1 × . . .× T kr
is ergodic. Clearly, any power weakly mixing transformation has infinite ergodic
index. Also, T is weakly mixing, but it follows from [ALW] that there exists a
conservative ergodic infinite measure preserving transformation R such that T ×R
is not conservative, hence not ergodic. Finally, we mention that it has been shown
recently that infinite ergodic index does not imply power weak mixing [AFS2].

In Section 2 we prove some preliminaries on approximation and in Section 3
we construct a rank one infinite measure preserving transformation which is power
weakly mixing. We refer to [AFS] for terms not defined here.
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2. Approximation Properties

In this section we prove an approximation lemma for transformations defined by
cutting and stacking [F]. This idea has been used earlier in e.g., [AFS] to show that
a specific transformation has infinite ergodic index. However, here we present it in
greater generality that permits other applications such as in [AFS2]. Thus we first
describe cutting and stacking constructions [F].

Let X be a finite or infinite interval of real numbers and µ be Lebesgue measure.
A column C consists of a collection of pairwise disjoint intervals in X of the same
measure denoted by B(0), B(1), . . . , B(h−1), where h > 0. The elements of C are
called levels and h is the height of C. The column C partially defines a transfor-
mation T on levels B(i), i = 0, . . . , h − 2, by the (unique orientation preserving)
translation that takes interval B(i) to interval B(i+1). Thus we shall write B(i) as
T iB(0), i = 0, . . . , h− 1.

A cutting and stacking construction for a measure preserving transformation
T : X → X consists of a sequence of columns

Cn = {Bn, TBn, . . . , Thn−1Bn}
of height hn such that:

i) Cn+1 is obtained by cutting Cn into cn equal-measure subcolumns (or copies
of Cn), putting a number of spacers (new levels of the same measure as any of the
levels in the cn subcolumns) above each subcolumn, and stacking from left to right
(i.e., the top (or top spacer if it exists) of each subcolumn is mapped by translation
to the bottom subinterval of the adjacent column to its right). In this way Cn+1

consists of cn copies of Cn, possibly separated by spacers. We assume cn ≥ 2.
ii) Bn is a union of elements from {Bn+1, TBn+1, . . . , T

hn+1−hnBn+1}.
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iii)
⋃
n Cn generates the Borel sets, i.e., for all subsets A in X, µ(A) > 0, and

for all ε > 0, there exists C, a union of elements from Cn, for some n, such that
µ(A4 C) < ε.

Suppose I = T jB` is in C`, for j = 0, . . . , h` − 1. For any n > `, I is the union
of some elements in Cn = {Bn, TBn, . . . , Thn−1Bn}. We call the elements in this
union sublevels or copies of I.

Given a real number 0 < ε < 1, and a subset A of X with µ(A) > 0, we say that
a subset I of X is (1− ε)-full of A provided

µ(I ∩A) > (1− ε)µ(I).

A set I in the product space Πr
i=1X is a rectangle if I can be written as the

Cartesian product of levels in some column Ck. We let ν be the product measure
µr. Rectangles I are defined to be (1− ε)-full of a set A in a similar way as before.

Lemma 2.1 (Double Approximation Lemma). Suppose A is a subset of the prod-
uct space Πr

i=1X with ν(A) > 0. Let I = I1 × . . . × Ir be a rectangle in C` that
is (1 − ε)-full of A. For n > `, let Pn = c` · · · cn−1, let Vn index the Pn copies
of C` in Cn, and let V = V (n, r) = Vn × · · · × Vn (r times). Then for any δ,
0 < δ < 1, and for any τ , 0 < τ < 100(1 − ε), there exists an integer N such
that for all n > N , there is a set V ′′ of size at least τ percent of V such that
for all v = (v1, . . . , vr) ∈ V ′′, Iv is (1 − δ)-full of A and each Iv is of the form
Iv = I ′′1 × . . .× I ′′r where I ′′m is a sublevel of Im in the vm-copy of C`, m = 1, . . . , r.

Proof. For convenience, let A denote I ∩A and let t denote τ
100 . Then ν(I4A) <

εν(I). We have that Vn = {1, . . . , Pn} and V = {(v1, . . . , vr)|vi ∈ Vn}. Then
I = ∪v∈V Iv.

Choose c > δ+1
1−t−ε > 0. Next pick N > ` sufficiently large so that for any n ≥ N

there exists V ′ a subset of V such that I ′ = ∪v∈V ′Iv satisfies

ν(I ′ 4A) <
δ

c
ν(I).

Thus,

ν(I ′ 4 I) <
δ

c
ν(I) + εν(I)

= (
δ

c
+ ε)ν(I).

Now let V ′′ = {v ∈ V ′|ν(Iv \A) < δν(Iv)} and set I ′′ = ∪v∈V ′′Iv, the union of the
(1− δ)-full Iv subintervals. Then

δν(I ′ 4 I ′′) =
∑

v∈V ′4V ′′
δν(Iv)

≤
∑

v∈V ′4V ′′
ν(Iv \A)

≤ ν(I ′ 4A).
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So

ν(I ′′ 4 I) ≤ 1
δ
ν(I ′ 4A) + ν(I ′ 4 I)

<
1
c
ν(I) + (

δ

c
+ ε)ν(I)

< (1− t)ν(I).

Therefore, more than τ percent of the subrectangles contained in I are in I ′′ and
are thus (1− δ)-full of A. �

3. A Power Weakly Mixing T

In this section we construct a rank one infinite measure preserving transformation
T that is power weakly mixing; then we mention a family of such transformations
for which the same proof applies. We start by defining inductively a sequence of
columns {Cn}. Let C0 have base B0 = [0, 1) and height h0 = 1. Given a column
C` with base B` = [0, 1

4`−1 ) and height h`, C`+1 is formed by cutting C` vertically
three times so that B` is cut into the intervals B`,1 = [0, 1

4`
), B`,2 = [ 1

4`
, 1

2 ( 1
4`−1 )),

B`,3 = [1
2 ( 1

4`−1 ), 3
4 ( 1

4`−1 )), B`,4 = [3
4 ( 1

4`−1 ), 1
4`−1 ). We then add a column of spacers

h` high to the top of the subcolumn whose base is B`,2. Next we add one spacer
to the top of the subcolumn whose base is B`,4; this is called the staircase spacer
of C`. Then stack from left to right, i.e., the top level on the left is sent to the
bottom level on the right by the translation map. The resulting column C`+1 now
has base B`+1 = [0, 1

4`
) and height h`+1 = 5h` + 1. The union of the columns is

X = [0,∞). This defines a conservative ergodic rank one infinite measure preserving
transformation T .

Any column Cn = {Bn, . . . , Thn−1Bn} has four subcolumns

Cn,i = {Bn,i, . . . , Thn−1Bn,i}
for i = 1, . . . , 4. Using the new column of spacers that is added to Cn, and ignoring
the top level of Cn+1, we can think of Cn+1 as divided into five sections, numbered
from bottom to top. In this way each level of Cn has a sublevel in the first, second,
fourth and fifth section of Cn+1.

Lemma 3.1. Given subsets A and B of Πr
i=1X of positive measure there exist

rectangles I = I1 × · · · × Ir and J = J1 × · · · × Jr with I1, . . . , Ir, J1, . . . , Jr in a
column C` such that for all m = 1, . . . , r, Im may be chosen in the fifth section
and Jm in the second section of C`, or Im in the second section and Jm in the fifth
section of C`, and with I and J 3

4 -full of sets A and B respectively.

Proof. Choose rectangles I ′ = I ′1 × · · · × I ′r and J ′ = J ′1 × · · · × J ′r, with I ′m and
J ′m in column C`−1, such that I ′ and J ′ are (1− 1

4r+1 )-full of A and B respectively.
Now look at the copies of C`−1 in C` placed as second and fifth subcolumns in the
above order. To have Im above Jm, let Im be the top copy of I ′m in C` and let Jm
be the bottom copy of J ′m in C`. To have Im below Jm make an analogous choice.
Let I = I1 × · · · × Ir and J = J1 × · · · × Jr. One verifies that I and J are 3

4 -full of
A and B. �

Given a level I in Cn and an integer k > 0, we will be interested in studying
T khnI (a translation of I through Cn k times). The intersection of T khnI with
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Figure 1. A Cn column.

the levels of Cn is called the k-crescent of I in Cn. The part of T khnI that is in
Cn,i will be called the (k, i)-subcrescent of I in Cn, for i = 1, . . . , 4, or simply a k-
subcrescent. To simplify our estimates we will be mainly concerned with the (k, 1)-
and (k, 2)-subcrescents. Figure 1 illustrates the 1-crescent in Cn of the interval in
the top level of the fifth section of Cn.

Lemma 3.2. Let I be a level in the fifth section of column Cn, n > 0, let J be
any level in the second section of Cn, and let d be the distance that J is below I,
hn/5 < d < hn. If k = 0, 1, . . . , 4 then T khnI contains a copy of I in the fourth or
fifth section of Cn+1 that is at distance d from a copy of J in Cn+1. Furthermore,
for k = 1, 2, . . . , 4 we have

µ(T khnI ∩ J) >
1
8d
µ(J).

Proof. The statement of the lemma is clear when k = 0. Next we observe that
ThnI contains a copy of I in the fourth subcolumn of Cn that becomes a full level in
the fifth section of Cn+1; this will still be at distance d from a copy of J in the fifth
section of Cn+1. At the same time, the (1, 1)-subcrescent of I in Cn starts one level
below I (in Cn) and consists, on each level at distance j below I, 1 ≤ j < hn, of
two intervals, contained in T hnI, each of length ( 1

16 )j . Thus µ(ThnI∩J) > 1
8d
µ(J).

For T 2hnI we observe that there is a copy of I is in the third subcolumn of Cn
hence fourth section of Cn+1; in this case we choose a copy of J in the same section
thus at distance d. There is also a (2, 1)-subcrescent of I in the first subcolumn of
Cn. T 3hnI and T 4hnI also contain a copy of I in the fourth subcolumn of Cn. Also,
T 3hnI contains a (3, 2)-subcrescent in the second column of Cn that comes from
the (2, 1)-subcrescent mentioned above. T 4hnI also contains a (4, 1)-subcrescent in
the first subcolumn of Cn. �
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Lemma 3.3. Let I be a level in the fifth section of column Cn, let J be any level
in the second section of Cn, with d the distance that J is below I, hn/5 < d < hn.
Let k be any integer with 0 < k < d/25. Then

µ(T khnI ∩ J) >
1

8k+d
µ(J).

Proof. Write

k =
k′∑
j=0

kj5j

where kj = 0, 1, . . . , 4, and k′ is the largest positive integer such that kk′ 6= 0. Note
that k′ = blog5 kc.

Now

khn =
k′∑
j=0

kj5jhn.

Using that hn+1 = 5hn + 1 we obtain

5jhn = hn+j − 5
4

(5j − 1).

Thus

khn =
k′∑
j=0

(kjhn+j − 5
4
kj(5j − 1)).

Now
k′∑
j=0

5
4
kj(5j − 1) ≤ 5

4

k′∑
j=0

4(5j)

= 5(
5k
′+1 − 1

4
)

< 5 · 5k′+1

≤ 25k.

Now let

a0 = kk′hn+k′ ,

a1 =
k′−1∑
j=0

kjhn+j ,

a2 =
k′∑
j=0

5
4
kj(5j − 1).

Then T khnI = T (a0+a1−a2)I. We first consider T a1I. For each j = 0, . . . , k′ − 1,
apply the first part of Lemma 3.2 to finally obtain a full level in column Cn+k′ that
is contained in T a1I and at distance d above a copy of J in Cn+k′ . By the second
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part of Lemma 3.2, T a0(T a1I) contains a subcrescent of I that intersects the copy
of J . Thus

µ(T a0(T a1I) ∩ J) >
1

8k+d
µ(J).

Finally T−a2(T a0(T a1I)) moves the subcrescent down at most 25k levels. From
the choice of k we know that 25k < d, and therefore the subcrescent of I that has
been translated down at most 25k levels still intersects the copy of J , with a lower
bound for the intersection still valid as calculated above. �

Theorem 3.1. For any sequence of nonzero integers {k1, . . . , kr}, the transforma-
tion T k1 × · · · × T kr is ergodic.

Proof. LetK = max{|ki|}. Let A andB be in Πr
i=1X with ν(A) > 0 and ν(B) > 0.

Find rectangles I = I1 × · · · × Ir and J = J1 × · · · × Jr such that

ν(A ∩ I) >
3
4
ν(I),

ν(B ∩ J) >
3
4
ν(J),

and Im, Jm,m = 1, . . . , r are all in the same column C`, and if km is positive choose
Im and Jm in the fifth and second sections of C` respectively, and if km is negative
choose Im and Jm in the second and fifth sections of C` respectively. We may
further assume that 125K < h`. Let di be the distance between Ii and Ji for all i,
and put d = max{di}. Since d > h`/5 it follows that 25K < d.

Choose δ so that

0 < δ < (
1

8K+d
)r.

Apply the Double Approximation Lemma twice (with 1 − ε = 3
4 ) to find I ′ =

I ′1 × · · · × I ′r and J ′ = J ′1 × · · · × J ′r such that I ′ and J ′ are (1 − δ
2 )-full of A and

B respectively, I ′1, . . . , I
′
r, J
′
1, . . . , J

′
r are all in some column Cn, n > `, and for each

i, I ′i and J ′i are in the same C`-copy in Cn (this follows from the fact that for each
application of the lemma there are at least τ = 74(< 100 · 3

4 )-percent of the copies
satisfying the conditions and thus one can choose a common copy for A and B).
Thus the distance between I ′i and J ′i is still di.

Let H = hn. Then for all positive ki, by Lemma 3.3,

µ(T kiHI ′i ∩ J ′i) ≥
1

8ki+di
µ(I ′i) ≥

1
8K+d

µ(I ′i).

By an analogous argument to Lemma 3.3, for all negative ki,

µ(T kiHI ′i ∩ J ′i) = µ(I ′i ∩ T |ki|HJ ′i) ≥
1

8ki+di
µ(J ′i) ≥

1
8K+d

µ(I ′i).

Therefore,

ν[(T k1 × · · · × T kr )HI ′ ∩ J ′] ≥ (
1

8K+d
)rν(I ′).



24 Sarah Day, Brian Grivna, Earle McCartney, and Cesar Silva

Thus,

ν((T k1 × · · · × T kr )HA ∩B)

≥ ν([(T k1 × · · · × T kr )HI ′ ∩ J ′] \ [(T k1 × · · · × T kr )HA ∩B])

≥ ν((T k1 × · · · × T kr )HI ′ ∩ J ′)− ν((T k1 × · · · × T kr )H(I \A))− ν(J \B)

≥ (
1

8K+d
)rν(J ′)− δ

2
ν(I ′)− δ

2
ν(J ′) > 0.

Therefore T k1 × · · · × T kr is ergodic. �
Remark. 1. The same proof will apply to a transformation where at the `th

stage column C` is cut into c > 1 equally-spaced subcolumns C`,1, . . . , C`,c, a single
(staircase) spacer is put on top of column C`,c and a stack of h` spacers is put on
top of any of the middle subcolumns.

2. There exists a rank one infinite measure preserving transformation S such
that S has infinite ergodic index but S × S2 is not conservative, hence S is not
power weakly mixing [AFS2].
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