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ABSTRACT. In this paper, study the module structure of
EXtOBP*BP(BP*v BP*/(p, vix}v Ugo))v

which is regarded as the chromatic F1-term converging to the second line of
the Adams-Novikov Ea-term for the Moore spectrum. The main difficulty here
is to construct elements x(sp”/j; k) from the Miller-Ravenel-Wilson elements
(zgm/vg)pk € H°M}. We achieve this by developing some inductive methods
of constructing z(sp”/j; k) on k.
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1. Introduction

Let BP be the Brown-Peterson spectrum for a fixed prime p. As is well known,
the pair of homotopy groups BP, and the BP,-homology BP,BP forms a Hopf-
algebroid

(BP*7 BP*BP) = (Z(p)[vl,vg,...] 5 BP*[tl,tg,...} )
The Adams-Novikov spectral sequence (ANSS) is one of the fundamental tools to

compute the p-component of the stable homotopy groups 75X (p) for a spectrum
X:

Ey" = Extpp pp(BP., BP.X) = X,

Here, for any BP,BP-comodule M, Extpp pp(BP,, M) is regarded as the right
derived functor of Hompp, pp(BP.,M). We abbreviate Extpzp pp(BPi, M) to
H?*M as usual.
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As an important example of finite spectra, we have the Smith-Toda spectrum
V(n) for each prime p with BP,V (n) = BP,/(p,v1,- -+ ,vy), although its existence
is verified only for 0 < n < 3 and 2n + 1 < p so far. (Recently, Lee S. Nave
has shown the non-existence of V((p + 3)/2) for p > 5.) Then the Es-term of the
ANSS for V(n) is H*BP,V(n). Miller, Ravenel and Wilson [2] have constructed
an algebraic spectral sequence converging to H*BP,V (n) as follows:

Denote the BP,BP-comodules BP,/(p,v1,"+ ,v,_1) by NY. Then, define N/
(m > 1) inductively on m by short exact sequences

0 — N — v, L N" — N™ — 0.

We also define M™ by M = v, 1 N™. Indeed, they can be described directly as

m-+n
N;n = BP*/(p7 ,Un_l,”UZC,"' 7U7Ozo+m—1)7
—1
MrT = Un+mBP*/(pa"' avnflvvzo"" >vro7,o+m71)'

Splicing the above short exact sequences, we get a long exact sequence:

)

called the chromatic resolution of NP. Applying H*(—) to the above long exact
sequence, we obtain a spectral sequence converging to H*N? with Ef’t = H'M;?
and d, : ESt — EsTi=r+L called the chromatic spectral sequence.

The simplest example in these Ei-terms is the 0-th cohomology of the n-th
Morava stabilizer group H°M?, which is isomorphic to Z/p [vF']. Moreover, H* M9
(1 <t < 2) has been computed by Ravenel [5]. In general the calculation of H*M3
becomes terribly difficult as s + ¢ increases, except for the following case:

Theorem (Morava’s vanishing theorem). If (p —1) {n and t > n?, then
H'M? = 0.

Many chromatic F;-terms are computed so far (cf. [12]), most of them are due
to Miller-Ravenel-Wilson [2], Ravenel [5] and Shimomura’s works. In particular,
H°M} is computed in [2, Theorem 5.10] and H'M?2 (n > 2,p > 2) is also done
in [10, Theorem 1.2]. The purpose of this paper is to prove the following theorem
about the k(1).-module structure of unknown HM? for p > 3.

Theorem. For each Miller-Ravenel-Wilson element xgﬂk/vg”k € H'M: (ptj
and pts) and 1/oJ" € HOML (p t m), there exists an element
w(sp”/j; k) € vg  BP./(p,v5°)
which is congruent to (a:§7r/vg)pk mod (v1), and
1/X3". € BP./(p,v3")
congruent to l/vgnpr mod (v1), so that as a k(1).-module
HOM? =
k(1) {x(sp’“/j;k)/v{v(s’r’j;k) ‘ k>0, r>0,pts€Z and ptj< a3’r}
® k(1) {1/v*" X3 | r>0and pfm>1},
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where the integers as, and as, are defined in 2.3.1 and 3.3.1, and the integers
N(s,r, j; k) are given as follows:

) PP+ —p =PI Y] forr=0andpf(s-1),
) " =1)/(p=1) forr=0,p|(s—1) and s &Ny,
3) (2% = D" Y+ [p*7?] forr=0and s € Ny,
) (P —1)/(p—1) = [p*7Y] foroddr>1,s¢& Ny and j = az, — 1,
) PPt =1 (=agy) foroddr>1,s¢ Ny and j < az, —2

or evenr > 2 and s € Ny,

(6) PP apf 1 (=agpyr) forr=1,s€Nyandj=p—1,
(1) 1@+ 0" —p ="+ 0] forr=1,5€No and j <p -2,
(8) [(p* +p—1)p" 2+ p* 2] for even r >2 and s € N,
) @+ =D+ P for odd =3 and j = a3,

and for oddr > 3, s € Ny and j < a3, — 1, we have

(10) [(0° +p* = D" ]+ p*%] forj=az, -1,

(11) same as the case (1) foras, —p <j<as,—2,

(12) 2h forj=ags—p—1,

(13) same as the case (7) for j=as, —p+2,
orpt(i+1)andj<as, —p—2,

(14) P =1/ -1) forp|(j+1)
and az, —p* < j < az, —2p,

(15) [(0* +p ="+ " forj=as, —p* —p,

orp| (G+1), P>t G+ DG +p+1)
and j < az, — p* — 3p,
(16) [(p* +p* —p* + D" *|+ 20" forj <as,—2p* —p and p* | (j +1),
(17) PP+t forj<as,—p*—2p
and p* | (j +p+1),

Here [x] is the greatest integer which does not exceed x, and
No = {ap-1]pta},
Ny = {(ap?—p—1)p"+1]|pta, r>1:0dd}. O

In Section 2 we shall review BP-theory and the Bockstein spectral sequence
and recall the structure of the chromatic Fi-term HYMj computed in [2]. Then we
change the F,-module basis of H°M, and state the method of getting the structure
of HYM? (originally due to Miller-Ravenel-Wilson). It is enough to read this section
for an idea of the theoretical part. In Section 3 we give the fundamental elements
Un. ks Wnk and X3 ., construct the new element 1/X5s ., and give the differentials
on these elements (some of them are introduced in [1] and [8]). In Section 4 we
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set up the elements Xo(vg,X?f,T) and X(v%,ng’T), each of which is congruent to
X3,/ v% mod (v1), and compute the differentials. We also introduce some inductive
methods of constructing x(k) for large k. This is the hardest part of this paper.
Using these results, we construct the series of elements z(sp”/j; k) and complete
the proof of the main theorem in Section 5.

We can deduce some applications to H2BP,V (0) from this result. These will
appear in the forthcoming paper [3].

Acknowledgment. I wish to thank Professor Katsumi Shimomura for leading
me to this field, and giving guidance and much helpful advice. I also would like to
thank Professor Mikiya Masuda and Professor Zen-ichi Yosimura for their carefully
reading the draft version, and for their encouragement. I could not have finished
these hard calculations without stimulation from them.

2. BP,-homology and Bockstein spectral sequence

In this section we review several basic facts in BP-theory and explain how to
determine the structure of HOM?.

2.1. Summary of BP,-homology and related maps. For a fixed prime p, there
is a spectrum BP called the Brown-Peterson spectrum, which is characterized by

BP* = Z(p)[vl’q}27...7rvn’...}’
BP*BP = BP*[tlvt%"'atn?'”]?

where |v,| = |t,] = 2(p" — 1). The pair (A,T') = (BP,, BP,BP) form a Hopf
algebroid with the following structure maps:

ng (resp.nr): A — T (left (resp. right) unit), c:I' =T (conjugation),
e:I' = A (augmentation), A:T—>T®sID (coproduct).

Given a BP, BP-comodule M and its B P, BP-comodule structure ¢ : M — M® 4T,
we use the following notation as usual:

H*M =Ext} (A, M) = H*(Q"M,d),
where the cobar complex (M, d) is the double graded Z,)-module with
Q"M =M®@sT®4s---®aT (n factors of T),
dp(m@M @) =d(M) @M@+ @7
Y (D)Pmen - @A) @ @m
+ (D" men e @1

In this paper we compute only the O-th differential dy = ng —np : M? — M2 ®4T.
By definition, d satisfies
do(zy) = do(2) y + nr(z) do(y)

for any z,y € A. This formula is frequently used for computations in this paper.
When dy(z) = z mod (p, J) for an element z € I' and an ideal J C A, we also have

do(zP) = 2P mod (p, J?).
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See also [2, Observation 5.8].
To compute dp, we summarize some known results about 7. Ravenel [4] has
shown the following congruence of formal group laws:

Z tinr(v Z sztp mod p.

4,520 4,520

n—1
In general ng(v,) = v, Jrvn,ltf — Ufl,lh mod I,,_; for the invariant prime ideal
I,—1 = (p,v1,--- ,vp—2). Then, for instance, direct calculation shows that

(2.1.1) nr(vd) = (va +01th)F — i vPoi 1y —i(i — 1) WP el 2P mod p, o2,
More precisely, ngr(vs) and ng(vy) satisfy the following congruences (cf. [6](4.3.21)):

2
(2.1.2) ng(vs) =wvs + vgt’f — bty + o1t — o2 mod p, v,

2.1.3) nr(vs Ev4+v3t — Pty -‘r’Ugtp —w tp+ mod p, vy, vE .
1 3 2 2

2.2. Bockstein spectral sequence. In this paper will deduce the k(1).-module
structure of H°M? from HYMJ}, which has already been computed in [2]. By
definitions of comodules M4 and MZ, we obtain the short exact sequence
0 — M} Yo L o2 o,
Applying H*(—) to this sequence, we get the long exact sequence
0 — HOM} YU oM U opon? S gl M

Regarding this long sequence as an exact couple, we get a Bockstein type spectral
sequence in the usual way, leading from H* M3 to H*MZ. But as in [2] we compute
HOM? directly by making use of the following lemma.

Lemma 2.2.1 (cf. [2], Remark 3.11). Assume that there exists a k(1).-submodule
Bt of H'M? for each t < N, such that the following sequence is exact:

O—>H0M21LU1>BOL>BO H'av v LUI)BN—lLBN—li>HNM217

where § : Bt — H'TYMJ} is the restriction of the coboundary map § : H'M? —
HYIMJ. Then the inclusion map i; : Bt — H'M? is an isomorphism between

k(1).-modules for each t < N.

Sketch of the proof. Because H!M? is a vi-torsion module, we can filter B! and
H'M? as
Pi(m)={z e B' | v"e =0} and Qi(m)={xec H'M} | v]"z = 0}.

Assume that the inclusion i is an isomorphism for £ < t — 1 (the ¢ = 0 case is
obvious), and consider the following commutative ladder diagram:

1/v1

=t 2 gt S Pm) S P(m—1) -5 HFMD
=i | Lt L |
gz S omg Y Qum) S Qum—1) - HUAML.

Using the Five Lemma, we can show that P;(m) = @Q:;(m) (m > 1) by induction
on m. 0
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We shall construct BY satisfying the above lemma to determine the k(1),.-module
structure of H°M?2. In order to construct a k(1).-module basis of B, it is natural
to push each element of HYMJ to HM? and to divide it by v; as many times as
possible. So we need to review the module structure of HOMJ.

2.3. H°M; and changing its basis. We first recall some notations defined in
[2] to write down a k(2).-module basis of H°Mj4. Hereafter we assume that p > 2.

Definition 2.3.1 ([2], (5.11) and (5.13)). Define integers as j by
azo=1, az1=p, az2 =paza—1, a32+1 =pazz+p—1 for t>1
and elements x5 5, € vy ' BP; by
3,0 = U3, z31 = vh — vhug oy, T30 = T8 041,

2t
_p ag,2t+1—p, (p—1)p~"+1
L3,2t+1 = T304 — Vg Us

for t > 1.

Using these notations, Miller-Ravenel-Wilson ([2, Theorem 5.10]) have shown
the following;:

Theorem 2.3.2. As a k(2).-module,
HMy = k(2), {a§/vs>" | k>0, ptmeZ} ®F,{1/v} | i>1}.

In this paper we will consider an analogue to Miller-Ravenel-Wilson construction

of the elements 273" € vy 'BP, ([2, Section 5]): The elements 23 5, have been defined
k
inductively on k with 230 = vs, and each of them has the relation z3; = v}

mod (p,vd) for a small enough integer N. Motivated by this, we shall construct
elements z(k) € vy 'BP,/(p,v5°) inductively on k with z(0) = z3,./v} so that
xz(k) = (xg,T/vg)pk mod (p,v1") for a small enough N. Keeping it in mind, we now
change the F,-basis of H'Mj to “a pF-power basis”.

Lemma 2.3.3. As a k(2).-module,

HOMY = By {(25, /o))" | k20,720, ptseZ, and ptj<as, )
eF, {1/vy | i>1}.

Proof. It is sufficient to prove that any F,-module base x?u/vé (1 <l<ag)
displayed in Theorem 2.3.2 can be written as a linear sum

(2.3.4) acg"u/vé = ZanA,
A

where ay € F,, and each z has a form (xg)r/vg)pk withpfseZand ptj<as,.
We shall show it by induction on mp". Notice that

af', /vl = vy'P " /vl + (elements with vs-exponents less than mp®).

When mp* = 1, the only such a base is vs/vg, so it is clear. Suppose that
each base x5, /v5 (1 < ap® < mp*) can be expressed as (2.3.4) and | = dp® with
ptd. Because | < a3, < p“!, we may assume that e < u. Define y = asgnu/vé —
(x5, _./vd)” € HOM}. Since the maximal vs-exponent in y is less than mp®, y
has a form (2.3.4) by inductive assumption, hence so does z3’, Jvb. O
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2.4. The construction of the module B°. Let z(sp”/j;k) and y(mp") be ele-
ments of vy ' BP,/(p,vs°) satisfying
. s j\p* r mp"
a(sp”/jsk)/vr = (25, /v3)" fvr  and  y(mp")/ve = 1/v1vy"
in HOM?, and N(s,r,j; k) (resp. N(m;r)) be the maximal integer such that each
x(sp”/j;k) /vt (vesp. y(mp")/vi) with 1 <i < N(s,r,j;k) (vesp. 1 <i < N(mj;r))
is a cycle of HOME.

Proposition 2.4.1. As a k(1).-module,
BY = k(1), {w(spT/j; k) /ol T | k> 0,r>0,ptseZ and ptj < ag,r}
@ k(D). {y(mp") /o | 20 and pfm=1}

is isomorphic to HOM? if it satisfies the following condition for the coboundary
map § : B® — H'MJ} in Lemma 2.2.1:

{5 (a:(spr/j; k)/viv(S’T’j;k)> }U {6 (y(mpr)/viv(m;T)) } is Fp-linearly independent.

1
Proof. All exactness of the sequence 0 — HYMJ [y go vopgo 9, H'M] is
obvious, but Ker § C Im v1. So we need to show only this inclusion. Separate the
F,-basis of B into two parts

A= {ater /32)/0} 7} O {ympr) oY}
B = {a(sp” /4 k) /oh | 1 <1< N(s,r,5:k)} U {y(mp")/o} | 1< 1< Nimir)}

Then it is obvious that 6(zy) # 0 € H'M] for z) € A, and that 6(y,) =0 € H' M,
for y,, € B. Thus for any element z = 37, axzx+3-, buy, of B (ax, by, € Z/p), we
have §(z) = 3, axd(zy). The condition implies that all ay are zero when §(z) = 0,
and so vy Zu buy,/v1 = z. This completes the proof. O

We will construct the element z(sp”/j; k) from (mgyr/v%)pk in Section 5, and the

element 1/X", from 1/vy™ " as a candidate for y(mp") in Section 3.

2.5. Fp-linear independence and Coker §. When we compute the coboundaries
§: B — H'M2 of a(sp”/j;: k) /vl %) and y(mp”) /vy ™) | we expect each of
these images to have an appropriate form so that we can judge whether the set
of §-images is F-linearly independent or not in H!Mj for use in Proposition 2.4.1.
Though the structure of H'MJ (p > 3) has already been computed by Shimomura
([9] and [11]), we don’t need the whole structure of H! Mg for our purpose. We
follow the same method as in the proof of [2, Theorem 6.1 (p. 500)].
Consider the long exact sequence

C o HOMY om0 Yo ol
Since the coboundaries on elements of HYMJ have already been computed in [2,
Proposition 5.17], we can obtain generators of Ker (’02 | H 1M21) An easy calcula-
tion shows that Coker(d : H'M] — H'MY) is isomorphic to the following direct
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sum as a [F,,-vector space:

(25.1) F, {ngrho | either s € Ny and even r > 0, or p s and odd r > 1}
®F, {vgprhl | either s ¢ Ny and odd r > 1, or p{ s and even r > O}
OF, (I} & F, {off 'hy | 1€ 2} & KB).{G),

where No={ s€Z | p|s+1 and p?ts+1}, and h; is the cohomology class of
'
v

Let S be the set of elements

{4 = Ué”“hak/vg’“ [0<k<n, 0<ar<2 ¢ > >cp, nghak € Cokerd },
and consider the following condition on S:
(2.5.2) (@i, bi,c;) # (aj,b5,¢;) for any two elements with ¢ # j.

For a linear sum A = >"/'_, Ay Ay, assume that A =0 in H'M3 and ¢; = ¢3 =
- = ¢, for some m < n. Because H1M21 is a we-torsion module, we can consider
the multiplication by v5' ™', so that v5'™'A = 37" Ak (V5 ha, Jv2) = 0 in Ker vy
(2 Cokerd). By the condition (2.5.2), the set {v5*h,, } is linearly independent in
Coker d and thus all A\, (1 < A < m) should be zero. Iterating this, we conclude
that all coefficients \j, are zero and S is linearly independent in H' M.

3. Definitions of some elements

In this section we introduce the elements wu, k, Wy x, X3, and 1/X5,. We will
use these to define many elements in Section 4.

3.1. Moreira’s element u, ; and Shimomura’s element w, .

Definition 3.1.1. As is done in [1, §6(4)] or [8, 2.8], we define the element u,, €

v, L BP, by the following recursive formula:

1 and Z vnﬂuij =0 fork>1.
i+j=k

Up,0 = U,

Remark 3.1.2. In [1] u,x is defined only for & < n and denoted as up4x. By
definition

_ —p—1
Up1 = — U, "7 Unga,
_ ,,—p’—p—1,p+1 -p°—1
Un2 = Uy Up+1 — Un Un+2,
3 2 2 3 2 2
— _ P —p —p—1,p +p+l —p°—p"—1¢,P P
Un,3 = — Uy Un+1 + v, (Vpg1Vnt2 + Ung1Vy o)

3
—pio1
— v, ? Ttu,ps mod (p),
and so on.

Computing the right unit ng on wy, ,, Moreira has shown that the K (n).-module
base ¢, of H'M? is homologous to (?:

Proposition 3.1.3 ([1], Theorem 6.2.1.1). nr(tnn)—NL(Unn) = (n—CE mod I,,.



The Chromatic E;-term H°M? for p > 3 29

We now recall the elements w, ; introduced by Shimomura [8]. Define elements

T; (j >0)by Ty = 1and ZZ;& tmR(U;’l_i) =57, viTJPZI mod (p) for j > 1, and an
element e, (x) € v, ' BP,BP/I, for x € v,;' BP, by the congruence ng(z) = e, ()

mod I,,.

Definition 3.1.4 (cf. [8], 2.10). Define elements wy, ; € v, 'BP.BP (n > 2) in-
ductively on k by

k pjfl pn—Z
Wn,0 = 0 and Wn,k = E en(u’ﬂ,kfj)Tj for k 2 1.
Jj=1
Remark 3.1.5. By definition,

o 1 pnfl
Wn,1 = Uy, tl ’

o 7p71 pnfl —p pnfl pn_"_pnfl 1 pn71+1 d pn72
Wnp == v, " opaty v Py — ) v, 1 mod p, vy

In general, as an element of M} ®4 T

(" =1)/(p—1),p
— )kt Y3 h ; (P*—1)/(p—1)~1
wa = (—1) Uépk_l)/(p_l) + (elements killed by vg ).

We note that wg o is similar to ¢o = — vy ? ™ wst? + vy P (th — t’l’2+p) + vy tty. In
fact wy , (n > 2) is related to ¢, by the following congruence (cf. [8, 4.8]):

n—i—1

p

j—i—1 k
Cn — Wy = Z up Z ti c(th_y) mod I,,.

1<i<j<n i<k<j
In particular we have (3 — we o = Uz_l(tg — t’f“) mod I for n = 2.

Using the notation w,, , Shimomura [8] has proved the following proposition,
which is a generalization of Moreira’s result:

Proposition 3.1.6 ([8], Proposition 2.2). Forn > 2,

NR(Un,x) = Z un,it;)l —wh = v awn k1nr(v, ') mod Iy + (0] ).

i+j=k
O
3.2. Shimomura’s element X3 ,. The elements z,, € v, 'BP, (n > 1 and
r > 0) have been defined in [2, (5.11)] to express a basis of H'M}_| (x5, was
listed in 2.3.1). As is shown in [2, Proposition 5.17], the differentials dg : v, ! BP, —

v, 'BP, ®4 T mod (p, vl,v%+a3””) are given by

2 s el ,po(

do(z3,0) = vat} and  do(s,) = vy> 2 Lt} for r>1,
where 6(r) = 0 for odd r and 1 for even r. However, we need to calculate do(zs,)
mod (p,v1,v5) with ¢ > 1+ a3, for our computation. So we use the following
elements X3 , defined by Shimomura [8] instead of x3 ..
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Definition 3.2.1. cf. [8, (3.3)]] Define elements X3 ,. € v; ' BP, by
X3,0 = vs, X31 = X3 +vivhuz 1, X3 = X5, —vh +po1 u3,2,
X33 =X5,+ vy T SXE  ug + vy )Xp P g,
Xga =Xy — b X7 (12 — ug g),
X3r=X5, |+ vy T TX?;T (U271 — ’UQ(T)X “!(ugo —uz3) for odd r > 5,
Xz, =X5,_ 1—v2(r)X§r "(2 ugg —uz3) for even r > 6.
with 5(0) = 1, b(1) = p+1and b(r) = ag, +az,—1+1= (p>+p+1)p" 2 for r > 2.

Remark 3.2.2. By definition, it is obvious that X3, = 3, mod (v, 1tas, ™). In
addition, they satisfy the congruences
X371 =05 mod v, X392 =X}, mod vy +p

as,2i+1—P b(2i+2)—p>—p—1

_ 4 — 4
X32i+1 = X35, mod v, ) X32it2 = X59,417 mod vy
for ¢ > 1.

Then do(X3,,) is computed as follows. Let s be an integer with p ¢t s.

Proposition 3.2.3. Mod (p, vy, UZ(T)H), do(X3,,.) may be expressed as follows. For
small values of r,
2
svpviwsy (= svgvgfltp ), forr=0
do(X3,.) = § svhvs’™ Yy — s ub TSP 1wg 2, forr=1
sU5> 2X§p1 1tp - svb(Q) Sp p_l(ulotg —wsg3), forr=2.
Forr =3,
a3,3 ysp—1 b(3) y-sp?—p—1 p?
d (X3 r) = SUqy X3 2 tl S Uy X371 {’LU272 + U270t2 — W33 + U370(t1 tQ — tg)}.
For r > 4 and even,
r b -
do(X3,) = svy™ X35 it — s 2(T)X5p P (G +ug ot — G ).
Forr > 5 and odd,
do(X3,) = sy TXj'r‘ 1t1 - SUQ(T)XSP ra 1( G2+ w22 — (3 )
Proof. Originally, this is proved in [8, Proposition 3.1]. Notice that it is sufficient
to prove the s = 1 case because do(X3,) = SX;;ld()(Xg,r).

Forr =0, do(X3,) = vgt]f mod p, v1,v3 by (2.1.2). For r = 1, Proposition 3.1.6
shows that

p—1

DD — P pp° p+1
do(vhvius 1) = v5vh 21

ty — vbt — ook w372

mod (p, v, v5"?). Summing this with do(X? 0) = vgtzf gives do(X3,1). For r = 2,
we have

p +p — p -I—p p —-p p vy —1
do(—vy "Pv] “Puzg) = —vf TPuf TP (ugat] +us oty — wh 5 — vavg ws3)
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2
mod (p, vy, v§ +p’”). On the other hand, using the congruence v§ 7 = Xg;l
vgvg Pus1 we have
2
do(X,) = v§ X5+ 0] TP P (ugath —wh ).
Again, summing the terms gives dO(X372).
For r = 3, we have

p+p yp—1 1+as,3 yp—
do(vy X5 uz,1) = vy X3

5 (ug0ty — wh )

2
- vg(g)Xp TP (ea(ua, )t} + uzots + ug off 2 — wsg),

do(vy® X TP us 5) = op® XE TP Zusz i — Wh3)-

3 2— -1

mod (p, vl,v2( )+ ). On the other hand, by the congruences X%, ” = XV," —

2 3 2 2 2

p’>+p yp°—p— p°—p“—p _ yp —p—1 Py p —p—1
vy T X5q ’U,3,2 and vg = X351 + vy X5, u3,1, we have

3 2 2 2 i

p° yp—1,p b(3) yp®=p—1/ D 4p P 4P
vy Xgo'ty —ug ' X5y (up oty — wy 5 + § uz ity ;).

i=1

do(X3 5)

Using a congruence for ws o of Remark 3.1.5, we obtain do(X3 3).
For r = 4, we have

27 —_
do(—vy V XE P g 5) =
b(4 2 _p—
- 'U2( )Xg,z b 1(_C§

j—i—1 i 24
uboth +2G —wss— > uba; (Lic(t )P )
1<i<j<3

and do(v) 4)Xp P lugs) = vb(4) p P — §3) mod (p,vl,vg(4)+1). On the
other hand, by the congruencesX p = X33 1+vp +”X:,])”;*p*lull and ngfpkp =

pfp 1 p>+p P’ —p°—p—1
X, —vy X3, U3,2, dO(X3’3) is congruent to

asa yp—lyp _, b(4) p —p—1 p p’ p P P p (40 4p
Vg X3,3 1y =0, X {—u2 1ty +us oty +w272—|—u270t2—w373—|—u370(t1 ty—t5)}

b(4)+ -
mod (p,v1,v ( )+ ) Moreover, noticing the congruences
2 .
p’L
- E uz,its_;,
i=0
3 J—i—1 i+1 2—i
P p P’ p p (4P p
—(us,1ty + us,ots) + ug oty o = — E Uz 3 [tiv1 C(tjfifl)} )
1<i<j<3
—7—1 42 2—q
P 4P = _ v’ L oo(tP P
uz otz = E uh 5 g [tive - c(t_, o))"
1<i<j<3
we have

b 4 2 _p—
dO(X§,3) = Uza 4Xp31tp ( )Xg,z . (*UZ,ltp + wgz + ug,otzz))

XN G- Y WY e ).

1<i<j<3 i+1<k<j
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We obtain do(X3 4) in the desired expression by summing the terms and using the
congruences

p p P _
—uzty) + w2 23— G = —C+uzpots,
7 i—1 p2—i
Z u33 —Jj Z teoc(ti_p )" ) = (G —wss.
1<i<5<3 i<k<j

The r > 5 cases are proved by induction on r. By Proposition 3.1.3, we have
congruences

2 b(r 2 _p—
do(vy " X8 T usn) = o VXD TN G — ),

kY
r N r _
do(vy " XY B ) = o XE BTG - ).
We also have the congruences X; (p l)p =xr! 31 and

1+as,» -1 _ 14asz»
do(vy " XE T  Jun ) = 0y 0T XETL (un ot — wh ) — vp " XE TH TN - en(uz)
for odd r, and X?()pr Ur = Xy Loy e 1Xp 2" lugy,, for even r. Basy calculation
shows the desired results for = > 5. O

Moreover, we can obtain the following result in the same way as the proof of
Proposition 3.2.3.

Proposition 3.2.4. Mod (p,v?,v b(r ) do(X3,) is expressed as follows. For
small values of v, we get

svy™? X5h b r=2;
suy™* Xghy Yty — vywas) — svy b= 1X8p P gl — vith (wap + vy M)}, T =3,
3“23 4X3p 1751) 5“3(4) X?f,p2 ! {v2G2 — vi(w23 + t1C2)} ) r=4.
Forr > 5 and odd, we get
" b
sv5% X;’; 11(251 — V1Wa2) — SUy (r)= 1X3 - {2 v9Co — v1(wa,3 + thwa2)}.
For r > 6 and even, we get
” b(r)—
s vyt X5 — s vpl) 1X§Z; " {valy — 2 v1wa 3}

3.3. The element 1/X2’r. Here we modify x5, into X3, in the analogous way
of modifying x5, into X3 ,, and introduce new elements 1/ngr.

Definition 3.3.1. Define integers as, by a2 = 1 and ag, = p" +p"~' — 1 for
r > 1, and elements X5, € v;lBP* by
1+
Xoo=wvs, Xo1=X5,+vivhug, Xoo=X5,+v e X5 1(U1,1 — u2,2),
1 r
X27T = X2 =1 + v taz, X§7_1(2 u171 — ug,g) fOI‘ T Z 3
Then we have:
Proposition 3.3.2. Mod (p,v; “*"),
mowy Y+ (vt T3P forr =0
do(X3") = mvagwfl(tl — viwa,2) forr=1
r—1
v‘ll2’rvémp71)p (2t —v1C2) forr > 2.
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Proof. It is sufficient to prove the s = 1 case because do(X3?,) = mol™ P dy(Xy.,).
The r = 0 case is given by (2.1.1). For r = 1, we have

v { do(uz2,1)v8 + nr(uz1)do(vh) }

vivydo(uz,1)

do (U?l)vqu,l)

2
D (P11 P p+1, p—1
v (Vs Tt — 1] ) — 0T vl T Twa o

mod p,v?*?. Summing this with do(X3 ) gives do(X2,1) = v]v

(See also [2, Proposition 5.4].) For r = 2, we have

pil(tl — ’0171)2)2).
1 - — 2 _ _
do(vy ™" X5 (ury — u2)) = o XPTH (200 — ) + o (wh, — () }

+

mod p, ’Uf “22 - Again, summing this with do(ngl) gives

2_
do(X272) = v?“vg p(2t1 — U1C2).
For r > 3, we have
1+as,, vp— ot e _
do(vy " X5 (2ur g — uzp)) = v TPUXE L {2000 — ) + (¢ - ) }

mod p, vf—m”. This gives do(Xa2,) inductively on r. O

Shimomura [7] has replaced 1/vy™ with 1/27"; in computing HYMg for p = 2.
Analogously, we construct elements 1/X7". as a substitute for 1/ vy ". Notice that
our 1/X7". should be different from X, ™ because there is no inverse element of
Xy, (r>1)in vy 'BP,.

Definition 3.3.3. Define elements 1/X2. € vy 'BP, (r > 0 and p{m > 1) by
/X5 =1/v5" and 1/X7% =2 (1/X7 ) — X2 (1/X507)  for r> 1
For example, easy calculation shows the congruence

/X34 =1/ +m vag/vémﬂ)p-’_l mod (vfp).

Although our 1/XJ". is not equal to (X3%)~' = 312 (1 — X5%)*, the above
definition is justified by the congruences (X34 —vy™)? = 0 mod (p, v??) and (X3 —
X537 1)? = 0 mod (p, vf(a2”“7p)) for 7 > 2. Hereafter we denote Y'(1/XJ".) by

Y/X5 and (1/X3%) /vl by 1/v] X3". for simplicity.
Proposition 3.3.4. Mod (p, vf*““),

—m oot} Jol T 4 (mg'l)v%t?p/v;”JrQ forr=0
do(1/X35%) = —m vy (ty — vlwg’g)/vgw'Irl forr=1

r—1
—moy? (2t — U1C2)/U£mp+1)p forr > 2.

Proof. We prove that the all above differentials have the form — do(X3",.)/ vimr"
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The case r = 0 is easy. For r > 1, it is shown by induction on r. In fact, we have
do(1/X5%) =2 do(1/ X3P 1) — do(X3")/XTTP ) — (X5 )do(1/ X377 )
=2do(1/X7] r—l) —do(XJ] r)/”zmp - mp dO(l/X2 r— )f
—2 do(XF,_ )P 05" — do(X3) 03" + do(X3T_ )P fus™
= —do(X,) /3™ + {do(XZ0_1) — 205" do(XP, ) Y7 /o3

mod p, v} . By the congruence do(X3".) = muS™ VP dy(Xs,,), the second term

is trivial. O

2+az,r

Then we directly obtain the v;-divisibilities of 1/1)1X§’fr (= 1/v105™") in HOM?Z.

Corollary 3.3.5. 1/v1X3",. can be divided by vy Yin HOME, and the image of
1/vy* " X3, under the coboundary map ¢ : HOM2 — HM} is

—m hy foytt forr=20
§(1/vi* X5 ) =< —mh ooy P! forr=1
—2m ho/vémp—‘_l)pril forr > 2.

O

This corollary asserts that N(m;r) = ag,, when we choose 1/X3". to be y(mp")
in Proposition 2.4.1.
Using 2.5, we casily see that {§(1/vy*" X2".)} is linearly independent.

4. Preliminary calculations

In Section 5 we shall construct elements 2(sp”/j; k) € v3 ' BP./(p,v$°) and com-
pute the differentials on them. For the sake of this, we define some elements and
compute differentials in Subsection 4.1. Based on these results, we describe some
inductive methods of constructing the elements x(sp”/j; k) in Subsection 4.2. This
is the hardest part in this paper.

Hereafter we assume that p > 3, and that all elements are either in v3 ' BP, /(p)
or in vy ' BP,/(p,vs°). We shall compute the differential dy for positive integers e,
and e in two ways:

do : vz 'BP./(p) — vz 'BP./(p)®@aT mod v, vs?,
do : v3 ' BP./(p,v$°) — vy 'BP./(p,v5°) @4 T mod vy

4.1. Some lemmas.
Lemma 4.1.1. Assume that an element X satisfies
do(X) = v X3, rtp/vez""1 mod v61+1

wherer >1,e; > 1 and1<ey <az, —2. ThenY = XP — vfelngég,’;/véeﬁl)pH
satisfies

do(Y) = vfengf;(tl — 1}1’(U2’2)/’l)§€2+1 mod UPEIH



The Chromatic E;-term H°M? for p > 3 35

Proof. We observe that
do<v3X§f;/v£€2+”p“> = do (/5P 03 X524 np(1 /08P dy (v X50)
— ’Ul’U3X tp/ (e2+1)p+2
+ (1/v<”+”p“ — 0at] /oS TIP) dg (0s X5T)

mod p,v7. Since (ez + 1)p + 2 < pag,, it is sufficient to compute do(v3X3".) mod

v?,v5"*". Using (2.1.2) and Proposition 3.2.3, we have

do(v3X3h) = do(vs) X35 +nr(vs) do(X3h) = do(vs) X3,

= (’Ugtp — 1}2t1 + ’Ultp)ngz;

Observing the congruence wy s = — vsth /vb+h + (th — t’f“’)/vg + 271 Juy (Re-
mark 3.1.5), we obtain
2
do(va X3", (62+1)p+1) Xzhth /Uéez+1)p — X3hty/vh peatl + v1 X3h wo, o /vBe T,
Now the result follows easy calculation. O

Given a positive integer j = ¢p — b < az, (0 < b < p), it is convenient to work
with the element v5 X3, /X§ | instead of X3, /v3. Define the integer a by a = ¢
(p) with 0 < a < p.

Lemma 4.1.2. Assume that ¢ <p forr =2, that c < ag,—1 —2 for odd r > 3, or
that ¢ < ag 1 —p— 1 for even v > 4. Then do(v5X3"h._, /X5 ) is expressed as

iibl{ZE (b, 9)

P +1
U1X3,7‘71 vgth th
_ W{(a—i—b)tl—vl[awg,g—i—ab T —bla+b—-1) 2L o 1}
2 2
mod vP*?, where E(m,n) = (Moy " (uit])™. In particular,
do(X5P_1/X5,) = — a ! X350 (t — viwa2) /o3 mod (o] *?).

Proof. Notice that
dO(UIQ)X;,prq/Xg,l) = dO(US) X;,pr71/X2CA,1 + WR(US) dO(Xéq,prq/ch,l)a
and that nz(v}) is given in (2.1.1). By the assumption on ¢, we have
do(X3, 1/v5) = —avi X3, 1t /v5Th mod (vf).
Then, Lemma 4.1.1 gives do(X3'._;/X5 ;) mod (v P2y, O

Similarly to the r > 2 case, we may consider the element X3 ,/Xs; instead of
X3, /v for = 1.

Lemma 4.1.3.

do (X5 ,/X2,1)

(s —1) WP X35 1 /o8 + (;) PP MY vy mod (vFFY).
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Proof. Notice that do(X3,/X21) = do (1/X2.1) X351 +nr(1/X21) do(X3 1), and
that do (1/X21) X5, = — v} X5 ,t1/v5" mod (v}™") by Proposition 3.3.4. On the
other hand, we have

nr(1/X21) = 1/v§+vl(v3—v2t1)/v2p+1 mod vP*,
do(X3,) = s vag_ll tp — tf nr(vy 11}4)} mod v? T P,
= subX3y tl —do(vg 1)4)} + (5)vaPvsP 2 mod vy, w3t

Using these congruences, (2.1.2) and (2.1.3), we obtain
nr (1/X21)do (X5,) = sofX3 it /o8 + (5)vhos? 2 fuy mod v+
Collecting terms gives the result. (I

For an integer n with p | n 4+ 1, we denote the integer (n + 1)/p by n’, and the
set of integers {s € Z | s = s'p—1 with p{s’'} by No. Then we introduce two
elements Xo(v3, X3 ,) and X (v}, X3 ) for s € Ny, each of which is congruent to

X§7T/v% mod (v1).
Definition 4.1.4. When s = s'p — 1 € Ny, we define Xo(v%,Xg ») by
j+1+as,
X (UQ’XS r) = XS r/v2 +.7 U1X3 T+1/8/ 2 o o

Then we have:

Lemma 4.1.5. For odd r and p t j < as.., do(Xo (v}, X3 ,)) is expressed as
(17])1}1}31" J (ép Dp™™ <2 modv%

forr >3 and as, —p < j < as,, and is expressed as
J+1

2
forr=1and j <p—2; or forr >3 and either j = a3z, —p+2orj<az,—p—1,

where €(1,7) = 0 and e(r,j) = va;hﬂ ngf;__ll a(r)j waz +b(r,j) t1¢a } for
r > 3 with integers a(3) =1, a(r) =2 forr > 5 and b(r,j) = j2+ (2 —a(r))j — 1.

—Jj(+1) U1X3 r+1tp/3/ jretan ( )U%X3 r p/UjJr2 +e(r,5) mod v}

Proof. Here we prove only for r > 3 case (the r = 1 case is easier). We com-
pute the differential on each term of Xo(v}, X3 ,). For the first term, notice that

do (X§7T/v§) = do(l/vg)ng’, + nR(l/vg)do(X§7,). Easy calculation shows that
do(X3,) = —vs™ X507, (t1 — viwa o + vivy 'tHwa ) mod v, vy T

Using this and Proposition 3.3.4, we see that do (X3 T/v%) is congruent to

—j v X5, {20 = G+ 1) et} /20 o NG G (o = (G4 1) ]}

mod (v?). On the other hand, using Proposmons 3.2.4 and 3.3.4, we observe that

do(j 1 X3 ,,H/s’ v} T84 is congruent to

— J(G + DoRXS, 8 /s g T i XS vy — (1) onth } gt
+ oop T TIXEE T (= vaCe + al(r)j viwas + (5 +3 — a(r)) vithC}

mod (v3). Collecting two terms gives the result for r > 3. O



The Chromatic E;-term H°M? for p > 3 37

Definition 4.1.6. For s = s'p — 1 € Ny and j < a3, we define X(vé,Xir) by
X(v%,X{;,T) = U2X§Z;n 1/X21 bvlv2 1X383~0 /XC—HZST b pHXgr 1“272/”%+1
= (alr) = Db o gt X s,
where j = cp —b and 0 < b < p. Moreover, we define D X{,, ,, (v]* ,v§2+1 X3,) €

v3 'BP./(p,v5°) @4 T for 0 <m < p,0<n <p,s=sp—1¢& Ny, and positive
integers e; and ey by

DXy (07,0527, X5 ) = —(m 4 n) of TLXS 1 fog?
Fnlm = 200 XSt /shugr AT
+ ot X3, /052 {nGe 4 (m — n)wa 2}
Then we obtain the following lemma.

Lemma 4.1.7. Assume that > 3 is odd and ¢ < a3, —2. Then do(X (v}, X3.))
is expressed as

DX[a b] (U§)+1 A X3 7‘) + A(U27X3 T)
—1 .
+ CL( )b v1v; a3,r—j—p—1 (SP 1)p” (Uéﬂrsz(g'773(113_1)+Uf91(7)%))
mod vp+2 H_ere b and c are the integers in 4.1.6, a = ¢ (p) with 0 < a < p, and the
element A(vy, X3,.) is defined to be 0 for 0 <b <1 and to be

X5 nXs? A ,
e {Z (1—1) }—bW{ZE(b— L)}
2 1=1

forb> 2. Here E(m,n) is as in Lemma 4.1.2 and

91(11%) = (a —1)(vs — v5t1)CE + {(a +b—2) vit; — vt} }ug 2.

vg*‘rl(

In particular, 112 1oy (vgP Ed ) = t1 + vows 2)/v3.

Proof. The differential on the first term of X (v;X?fm) has already been com-

puted in Lemma 4.1.2. For the second term, notice that —bv; v 1X§f /Xc+a3 "
is congruent to

—buy X5 f/s’ JHIHasr g 1)vf+lv3X§ P /gl PR
mod (vP*?). Using Propositions 3.2.3, 3.2.4 and 3.3.4, we obtain
do(—borb ™1 X5 P /' X0
= —ble?ff 5’U§+b+as,r+1{(vz FotP)P - b1y
— me?) ) 1tp(v2 4 Ultp)b 1/U]+b
Falr)bons I IG )
+(a+b— 2)bvf+1X§ Py [ p] TR
+ bvszrlX?fr 1/1)]4rl

Awhy + (0= DE on+ (a = 1) T — 85) /05 + (a — w2}
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+bvp+1 az,r—j—p— 1X§i?_—21)p

A—vat? (& + a(r)(a — )¢ (vs — vht1) — (a(r) — 1 Juaws 5}
mod (v?7?). For the third term, notice that
do(bo T X5 _us /oy t) = 0ol do(X5E_yun2) oy
mod (v?7?). Propositions 3.1.3 and 3.2.3 give do(X3h _u22), and we obtain
do (b”1+1X§r 1U2, 2/” D)
= b (G = )/t T T TR (s — )
mod (vP*?). For the last term, we may assume that r > 5 because a(3) — 1 = 0.

Then it follows that do(v3>" 7~ pX:gSf P Puyg) = v;:"”'*jpréff_fgl)p(umt]f —why)
mod vy by Propositions 3.1.6 and 3.2.3, and hence

do(— (alr) = Dboi o TP XY P )
=~ (a(r) = Doy os> T (unath — why).
Collecting four terms gives
do(X (v3, X5,))
= Xgpr 1 { vy + 01th)? — b — buyt? (vg + 01t} bil} /v%“’
— bU1X3 7{’ { Uz + vltp b—1 _ 1} /s’ Jj+b+as,ri1
+M>MU%TJ“fﬁ?§”@ r(5")
+b(a+b—2)PT XS t Js/v) AT
—(a+b)v X3h 1751/’UJJr1 XS od b + (a — b)waa}

as 1 s 2
+a(r)pe gt PPN (@ = 1) (05 — ht) = ootz }

Then, apply the equation

b
b o
(X+Y)P =X —bY(X +Y)" =D (1-1i) ( )X”“Y’
i
i=2
to the first term, and the congruence
X?‘f:f = Xg,/H»l + a(r)s’vg(rH)X{;pT ugs mod v5" Y for odd r > 3
to the fourth term. Modifying these terms completes the proof. O
We also set X (v3, X3,) tovs X35, /X2, —bvlvg_ngf:Q/s’ng'l for j = p—b. Then
we have:

p+1

Lemma 4.1.8. dO(X(vg_l,X§71)) is expressed as —3vy X3 1t1/v5 mod v}, while

do(X(vgd,Xgq 1)) is expressed as
2v1X32(tp 200 ,) /5" V8 P
— 0P X5, /05t vz + 0]t =] (Gt ta/ua + C1))
+ Pt Z b2
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mod v?? for some Z € v; ' BP,BP, where
Oy = (usof? ™ — wy )t + (ugy — wy o )ty + uf ot
: m — mp P (m+1)p+1
Proof. Notice that 1/X3" = 1/vy"” + mvivz/vy
compute dg on

5 2p+1—0b 1, D2 +p+1-b p+1 1. P2 +2p+2-b
X§’1/02 +111ng3 1/1) bled /s'vh — b v3X32/s

mod (v?). So we may

instead of do(X (vh~ X§ 1)). For b = 1 case, we consider the differential mod

(U{H' ), so that the last term can be omitted. Because X3, = v3” + 1121}(5 1)p71v4

p>+p

mod v3¥ and X3’2 = X3 1 mod v5 ™", we may compute dy on

va(v3 /v2)? +”1U§p+1/1’2 "‘Uf”:(as_l)pm/vz _Ul(Xg 1/51 pH) .

Then, we obtain the desired result using (2.1.1) — (2.1.3), Proposition 3.2.3 and
Proposition 3.3.4.
Similar but harder calculation shows the b = 2 case. O

Next we define X (v3? , X3") to modify the differential on Xo(v3, X35, )P. Let

j 2)p+2 i+2+as, 1
Ay = _(jgl) w 2X§I;/U(J+ wt + 50 + Doy Pu3 X3 r+1/5lvéj+ Fosrrt )
p—j—1)p—1 -
A= o (as e X:S,gffll)p{a(r);?vzuzﬁ -+ 1)”3“2,2},
AQ = ’U%p 1U:(38p_1)p+2/112.

Using these elements, we define X (v3” , X35 as follows. For r = 1,

; R Ay forj<p-3
X+(U%p7X3,€") = .
Ag+ Ay for j=p—2.

If » > 3 is odd and either j =a3, —p+2or j<as, —p—1, then
Xy (v p,X ) = Ao+ Ay
Then we obtain the following lemma.
Lemma 4.1.9. Mod (vi*™),
dol(Xo(uh, X5,)7 + X (v, X31))
i +1) U?X?f:rﬂtl _ (j'i'l) Ufp)_(:i[;t%
S,ng+2+a3,r+2 9 B
= (F = Doy PTGy (0)),
where 05(v}) =0 for r =1 and
62(03) = (j + D)(va = v541)G5 +{ (G + Dokt — vat? Juaz
for odd r > 3. In particular, v} _192(1);3""71771) = 0P () + vows 2) /3.

Proof. Here we prove only for » > 3 case. Other cases are similarly proved.
Notice that do(Ap) is congruent to

+1 s j as,r
_(J 9 )Ufpdo(ng&pr)/véjﬁ)pH +5 + 1)”1 dO(U3X3 7‘+1)/SI Jretasrnp
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(v 2p+1) v£j+2)p+2)

mod so that it is sufficient to compute do(v3X3".) mod (vy, and

(j+2+asz,r41)p+1 )

do (U3X37T+1) mod (v1, vy . Easy computations show that

do(v3X3h) = (v%t?pz + 0ol 2 + 21121}3tp — 2vhvgty — 2vp+1tp +1)X3 -
2
do(’UgX3 r+1) (Ugtlf — ’U2t1)X3 1 + s ’Upa3 T+1X6p tp (’Ug =+ Ugtp — 1}2t1)

—s’vg(HQ)XéSp 1) pCQ (vs + Ugtl —vbty).

r—1

Using these and the congruence
s’ — /,.Q3,r+2—D sp 1 b(r+2) ysp—1
X3,r+2 = X3 r+1 T S U v Xs,r — Sy X3,r U2,2,

we can show that dy(Ap) is congruent to

2 _ _ ’
PR ol B 0 A0

9 (+2)p +50 +1) W@

= 5 + Dyuirofrer TP e 11”{42(1;3+v2t1 —vyty) + vhtiug o}
On the other hand, dy(A;) is congruent to
Joitu T o (a(r) X{T P 5) = G 1o o o (05 X s ).

Noticing that (as, —j — 1)p > (p — 3)p, we have
do (X?()s;v 1)Pu273) = dO(UZ,S)Xg(jf:ll)p + nR(u2,3)dO(Xg(,?f:1l)p)

2 1 2 —1
= (uzott —wh ) XPTDP 4 (uzs + uzat] —wh 3)do(X$TP)

mod (v). Because do(X:gsf TPy = R lXésf SPTUPE mod (v, ol ),
the second term remains only for = 3. Observe that uz 3 and wj 5 can be replaced
with —v;psvgqu 2 and —vz_p3v§2C§ respectively. So we obtain
sp—1
dola(r) X537 P uz )
2
= a(r) - X$TTP (ot — wh )
a — s 1

ar) ol TP X (0 )

sp—1 sp—1
= a(r) - X§7- ”(uz,zt’f —uhg) + (2= alr) X (s~ )

s 71 2
= X§PTP 2ugot? —a(r) - why — (2—a(r) -1 Y.

Moreover, it is easy to see that
-1 1 2
do(v3 X377 Pz 0) = XTP TP {uat) unp — vhtiuss — 5 (vs + et —bt)}.

Collecting terms gives do(X ¢ (v3? , X3h)) as

. 2 2p? 2p—2 —1 v
(] + 1) v Xsh (7 —wt ) - 1) (X§ f+1 _Ug X3 pyat1)

2 véjJr?)P +30 s U(J+2+a3,r+1)17

. . a3 r—j—1)p—1 ¢ (sp—1
— e(r,§)P — (j — DpoiPofter TP X (Pm0Pg, (0],

This completes the proof for r > 3 case. O
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4.2. Some inductive methods of constructing elements z(sp”/j; k). Here
we describe some inductive methods of constructing x(k) = z(sp”/j; k). Because
(xé,,/v%)pk = (X:)f’r/v%)pk for j < as,, we may start with X§,T/v§ p1i < as,).
In general, each z(k) (k > 1) is constructed by adding some appropriate terms to
x(k — 1)? so that we can find an element of Coker ¢ (2.5.1) from the numerator
of the leading term of do(z(k)). There are some patterns for adding terms and
constructing z(k) for a large enough k. We first observe the case with small j and
s & Ny, which is the simplest example of such patterns.

Proposition 4.2.1. Assume that an element W1 satisfies
do(W1h) = fjva?ff;tl/vng mod v? !
for 1 <j<as,—2, then Wy (k > 2) defined inductively on k by
Wi = WP ol Pu, X3/ ximH for k=2,
_ k . k—1_
= WP, +2ju>" P X3h JoFPTIPT T for > 3
satisfies
: . k—1
do(Wy) = —2jvf2’kX§§kt1/véjp+l)p mod vf““.
Proof. Using Propositions 3.2.3 and 3.3.4, for k = 2, we have
do (jvtllzgfpvzxgilf /X§ﬁ+1) = jvtll2,2*p+1X§,];2 (tgl) - QUf_ltl)/Uéijrl)p,
while for k£ > 3, we have
do (24 az.k—stp’“ (Gp+1)pF~t-1) _ 97 az,k—P+1X5pk P _ P (Gp+1)p*!
0 (<)Y 3,r /s = 2)0; 3.r (] —vi "t1)/vy .
The result now follows by an easy calculation. (]

We will see that each z(sp”/j;1) withr > 1,1 < j < a3, —2 and s ¢ Ny satisfies
the condition for Wj in the above proposition.

In general, we speculate on the existence of some rules in constructing elements
x(k) for large k as the above case. Next we observe another pattern, which occurs
in most cases. To state this, we first introduce some elements.

Definition 4.2.2. Fore; > 1, e3> 1, s =s'p—1 € Ny and odd r > 3, we define

Yoy (vflp,véeﬁl)p,X?f’rH) as follows: for s’ & Ny, it is given by

(e1—1)p—1 sp e1p y sp e1p—1 s’
Y1 v X3 v X3 U2 —(a+b)(b—-2) U1 X342

(a+D) _— T
ea+1 1 1 3. ’
X2?1 vé€2+ )p S,Uée2+ )p+az, 12

for s’ € Ny, it is given by

e1p ys'’
Uy X3,r+3

S//v(€2+1)p+b(r+3) ’
2

(above terms) + 2a
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Moreover, we define Z (v elp, éeﬁl)pi X35 ,14) by

i ’

“flp ”3X§,f+i lp X3 r4i—112,2 for ' ¢ N dodd r+i

- — or s and o T 1

s'v (€2+1)P1+P+1+a3,r+i+1 ,U(Ez-‘rl) 0 ’
2

6117
X3 r4i—1U2,2
(€2+1)p

110 Xg 4
rT
7w(3ﬂ272 — 2U373) fOI'S/ e NO,
Uy

for s’ ¢ Ng and even r + ¢,

and DZ (v, of TP X3 ) € 07 BP./(p,v5°) @4 T by

e1p’ v’ 11) s
v X5 it X3t
2 2o o — for s’ and odd 7 + 4
s'v (€2+1)P1+1+a3,r+¢+1 (€2+1) (2wa2 = C2) ¢ No t
1P Xs tp ,U€1P X3 . t
3,r+i4+1%1 1 3,r+1 2 / .
2— — for s and even r + ¢
s'v (€2+1)P +1+asrtit1 + U(€2+1)P1 < Vg G g No T
2
5117
vt XS
1 3,7+ /
_7@2“ (32 —2¢3) fors’ € Ny.

Notice that each of these leading terms includes an element of Coker 4.
Proposition 4.2.3. Assume that an element x(k) satisfies
do (8(k) = DXy (05,087, X3,) + 0 Zu/of? mod v+
for some Zj, € vngP*BP, with es = —=b (p) and odd r > 3. Let
w(k+1) = 2(k)? + Yo (057, 08P X5 ).
We compute do(x(k + 1)). For a # 0, we get
do (x(k +1)) = aDZ (P, ol P X5 ) + 08P Zy fos2 TP mod of T

for some Zy11 € vngP*BP. For a =0, we get

do ((k +1)) = bo P X3 8] v ce et Uflpzlgﬂ/véegﬂ)pil mod vf'*+?

for some Z;_| € vy 'BP,BP.

Proof. Here we may ignore elements killed by véeﬁl)p ~! For the first term of
Yiap (v, §e2+1)p7X§’T+1), notice that (a+b)v§€171)p ! v X35 /X”+1 is congruent
to

(a+ b)vgel71)p71U2X§,€~{1/U£€2+1)p — (b= DPug ol T2PTly
mod (p, U§61+1)p71). Using (2.1.2), Propositions 3.2.4 and 3.3.4, we have
do((a + b)v%erl)p*lng /XEZH)

e1—1 s
= (a+ b)vg ! )pX37’;

2
ARt + (b= 200t bt (b= 1)l (] T — -

es+2
+ ’Ulvg tzl)(c))}/vé 22

(4) B)
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mod (v{'?"?). For the second term, we can easily obtain

do(avllegz;u /U(€2+1)p) eleS:D ’ (Co — 42)/ (€2+1)p(B)

mod (v¥'?) by Proposition 3.1.3. For the third term, using the congruence

s’ _ ys'p /,03,r42—P sp b(r+2)—p*—p—1
X340 = X541 — 80y v3 X3, mod v, ,

(2.1.2), Propositions 3.2.3 and 3.3.4, we have
do(—(a+b)(b— 20777 X5y /s vy T
= —(a+b)(b— 2)vi XS Ly 1 /s oy T
+(a+b)(b— 2P P TIXE =kt oy (8P —15)  —vl }juleatDp
1fA) 1\ 2 (B) 1 2 1(0)
mod (v¢'*1?). Collecting three terms gives
(4) = 0,
(B) = o X o (@t )T )08+ alG — ),
@) = (a+b)v11p+1X§it”/ (et Dpt1,

Thus do(Y]a (V77 e TP , X3 ,+1)) is congruent to
_ (a + b)(b o 2)U§1PX§:7?+1ti’/slvé€2+l)p+1+a3'r+2 + (a + b)U%el_l)ngﬁntf/véeTH)p
e s ea+1 2
PPN ST (0 D) — ) [0k + oG — @)

mod v{***! for a # 0, and do(Yjo 4 (v7*7, v5 (et 1)p , X5 ,11)) is congruent to

e 2+ D)p+1tas, 4o

—b(b— 2)1’1117-)(3 Fi1tl/s'vs ettt
+ bol S TIPXE (P 4 ol (P — D) ol ol Ry fpler TP

2 o .
mod v{'? *2 for a = 0. Now, recall definitions of (2 and ws 2 and notice the congru-
ences

b(r+2)—p*—p—1

s'p _ a3, r4+2—P s
X&TJrl = X3 42 + s'vgy 113X37T+1 mod v, ,
sp b(r+1) p°—p— 1
Xsh = X540 mod vy

Modifying the differentials using the above two congruences completes the proof of
this proposition for the case s’ ¢ N.
For s’ € Ny case, the result is proved using the congruence

d0(2avlle3 +3/ ! (e2+1)p+b(r+3)) 2av{'?Y,

where
Y = X5t fug PO Xn (G = G tafa) oS 4 O
for some Z € vngP*BP. O

We define Y (vf Sptop v§2_p,X§f’2_1) to be
p S 72”71X,Sp71(4 vy + Py, 2)/X§711 for s & Ny,

(above terms) -+ 407 S st 4/8'vy ritans g e No.
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By routine calculation, we have:
3 2 2
Lemma 4.2.4. For s ¢ Ny, do(Y (07 7" 7P o} 7P,X§?{1)) is expressed as

3,2 -~ 2 2
(W) PP X b ) {40b ] 4+ of (48] P — 5th) + vfvb (2¢2 — ¢ 4+ Co — w3 )}

3 2 2
+p2— —p—1
+op TP PZ P

p®+p> p+1

mod vy For s € Ny, it is expressed as

(above terms) + 4v¥ vt “PX3 sth Juh vt
— 40} TPIIXE (G = Go b o) /0] P T g
mod vfgﬂ’%pﬂ. Here, Z,7' € v; ' BP,BP, and
P\ p 4pp° _ pP+D?
Ca = ( Z u3;it2fj)t1 + Us,otl(tQ — 1t )-
itj=2
Proof. By Proposition 3.3.4,
do(v2 X35 /X5TY) = do(v2 X355 1) /XETH + nr(v2 X5 do(1/X57)
= dO(U2X§p2 1)(1/U2 P —vivs /vy +1)
p— 27 —
+ (v X3h ) vl (t — viwa ) /0h P
mod (vP*?). Tt is sufficient to compute do(nggf’Q_l) mod (v, v} S+ ) and mod
Cians vgtp). Notice that
do(v2 X35 1) = do(v2) X35 + nr(v)do(X55 1),
2
= do(’l]g)’t/ésp or* —|—77R(v2)d0(v§5p DPY mod vp+2,v§2_p.

Using the results of 3.2, we see that do(4v] Shpt 2l v X35 1/X ') is congruent
to

3,.2 - 2 2
(4o I XEET ol T (] + o (6] TP — 85) /0h).
On the other hand, we have

3,2 _ 2 3,,.2_ _ 2_
do(v] T TP XS uan Ul P) = o T Py (X5H g ) f0) P

Sp?—p+1
(P P -p )

mod , and

do(X5% Mun o) = do(uz2) X5% " + np(uz,2)do (X35 )
= (G — X35+ (w22 + G — )do (X35 1)

mod (v1,vz). According to Proposition 3.2.3,

sp—1 sp?—p—1,p p *+p+1, sp>—p?—p—1
do(X3h ) = —vh Xs 1 ty +v U3 (uz,0t2 — w33)
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mod (vy, v} +p+2) Using this congruence and Definition 3.2.1, we obtain

p®+p°—p ysp—1 p®+p®—2p y-sp—1
d U1 X3o u22\ vy X35 tp
0 P _p = »2—p 2C2 - <2 + 02 — W33
vh v

by 2

p3+p27pZ
p?—p—1
Uy

for some Z € vg !BP,BP. Collecting terms gives the result for s 91 No case.

For s € Ny case, it is easy to see that do(4 v} e st 4/8'vh PPt ras, *) is con-
gruent to

U;f3+p27st # +p X Ly . | Filod b o7
T — e (G- (3+ug ot2)+(elements killed by v] ).
U2 2
g
Proposition 4.2.5. Assume that an element x(2) satisfies
U1 +P 2XSP 1t1 I) +p 1X3 2t
do(2(2)) = —2s(s — 1)—1 +2(s— 1)—
P P 2+p
2 2
p?+p—1 yrsp—1 p>+p—1
S\ U1 X31 to ’Ul 7
B 240 e S
+ <2) ’Ugil <<2 + Vs + 1> 1}572

mod (v} +p) for some Z € v3 1BP BP, where Cy is as in Lemma 4.1.8. Then
z(3) = x(2)? + (2)Y( fﬂj Pl 7p7X§)”2 1) satisfies
3 2 2 3 2 2
do(z(3)) = s(s = 1)DZ (o] " 7P ) TP X ol TP TP 2y o TP
mod (vf3+p2_p+1) for some Z3 € v; ' BP.BP.

3 2 2
Proof. Collect the differentials on z(2)? and (5)Y (v} ™ 77 v} _p,X?i”Q_l) using
the congruences
Of + 02 = w33 mod 13,
X35= X35 — svg - ng?pr ' mod vf e
O

As the next step of Proposition 4.2.3 or 4.2.5, we show the following proposition.
Here we state only the result.

Proposition 4.2.6. Assume that an element x(k + 1) satisfies
do(w(k + 1)) = D2, o7, X3 0) 077 Zig /o5 TP mod v

for some Zjy1 € vy 'BP,.BP, where e, and ey are positive integers and v > 1.
Then x(k + 1) defined inductively on i > 2 by

ok +i) = ok +i— 1P + Z@i? o=t xs )
satisfies

do(z(k + 1)) = DZ (v} i’ (ngrl)pi’ X3 i) +opt Zkﬂ/v(eﬁl mod v{'? 1
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for some Zy; € vg_lBP*BP. O

Proposition 4.2.6 is regarded as the last step in this pattern. We will see in
Section 5 that x(k) is constructed in this way in many cases. Actually we have
other two inductive ways of constructing z(k), introduced in the following two
propositions. Their proofs are relatively easy, so we leave the proofs to the reader.

Proposition 4.2.7. Assume that an element x(k) satisfies

ri—1 i 2—1i

do(x(k)) = vfPof Puf I 0,050 TP TP mod ot

[
(= o7 05t Ju3” + vf* Zy, fv5)

3—i 2—1
for 0;(vs> " TP ) (i = 1,2) as in Lemma 4.1.7 or 4.1.9, and some Z;, €
vy 'BP.BP. Then x(k +1) defined inductively on i > 1 by
i i i+2 it paa .
z(k+i) = az(k+i—1)P —v]P v +1H/v‘g e mpasat o odd 4,
= z(k+i-1)P for even 1
satisfies

g i 5(4) i+2 i+l
do(a(k +i)) = of P gt pug T e

+ vflpiZkH/vgi“erFI mod vflpi“
for some Zy1; € vy " BP,BP, where §(i) = 0 for odd i and 1 for even i. |
Proposition 4.2.8. Assume that an element x(k) satisfies
do(z(k)) = S 052 0S8 wy mod v§* !
with Maz{p'=* —p",0} + P(t — 2) + 1 < ea. Then x(k + i) defined inductively on
i>1 by
wlk+i) =2k i — 1P+ (~1) P PO e PO ™ L
satisfies
do(z(k +1)) = (—1)"vflpi+P(i_l)vggpi_P(i_l)v?’pr“wg,tﬂ mod Uflpi+P(i_1)+1,

where P(i,§) = p/ (pP 7Tt = 1)/(p—1) =p' +-- -+ p’ fori > j. We will abbreviate
P(i,0) to P(i). O

Our guide to constructing z(k) is to add suitable elements to z(k — 1)? so that
the differential has one of the forms in the assumptions of Propositions 4.2.1, 4.2.6,
4.2.7 and 4.2.8. In fact, we will observe that each case follows one of the above four
patterns by k = 5.

5. Proof of the main theorem

In this section we prove our main theorem by defining z(k) (= z(sp”/j; k)) for
all cases using the preparatory computations displayed in Section 4. Notice that
the smallest integer N with do(z(k)) # 0 mod p, v}’ ' gives the v;-divisibility N (k)
(= N(s,1,j; k)) of z(k).
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5.1. Definitions of x(0) and the differentials. Now we start with X§7r/v%
(ptj < as, and pts € Z). Using Propositions 3.2.4 and 3.3.4, we can easily
calculate do(X3,./v3) mod vf :

. 2
do(X50/v}) = —v105th /v3 + svrv§ ™ (th — 1] 7) Jua,
and for r = 1 or for even r > 2,
dO(Xg,r/vg) = _]UIXS rtp/vj+1'
Finally, for odd r > 3,
do( X35, /v]) = —jvi X5, 8 fud Tt — svrog® I X5 (jtzfﬂ/w + w2»2) :

Moreover, we have

do(X50/v2) = vivh 1v§ Ywa mod (v?),
3
1

v105 205 o (vy — uit))  mod (vf)
for p | (s — 1). Then the coboundary § : HOZWl2 — H'MJ} on X:;f)T/Ulvg is
6(X3 Joivd) = —jusP tp/vj+1 + (elements killed by ).

According to 2.5, its numerator belongs to Cokerd, when s ¢ Ng = {s'p—1 | p{ s}
and r > 1 is odd or when 7 > 0 is even by (2.5.1). In this case, we can set x(0)
to X3, /vy with the v;-divisibility N(0) = 1. In another case, we need to modify

X3,/ v% so that its coboundary includes an element of Cokerd.

5.1.1. FOrR OoDD r > 3 AND s € Np.
(i) Foras, —p<j<asg,.  Weset z(0) to Xo(vé,Xjr). By Lemma 4.1.5, we
have
do (2(0)) = (1 — jvyvg® Tp§P=IrT "¢, mod vi,
and so N(0) = 1. Notice that this differential is trivial either for j = a3, —
p+2=1(p)orforj<az, —p-—1L
(ii) Either for j = a3, —p+2or for j <az, —p—1.  We also set z(0) to
Xo(vy, X3,.). Then, Lemma 4.1.5 shows that
41

mod (v}), and so N(0) = 2. Note that all elements but &(r, j) are vanished
when p | (j + 1), and &(r,j) = 0 unless r > 3 is odd and a3, —p? —p < j <
a3, — 2p, in which case

do(2(0)) = —j(j + 1)02X5, 11 /s/ul P2 _ (

. 1 —1)p" !
e(r,j) = fa(r)vag?’ ri ép Dp wa 3.

(iii) Forp| (j+1),p* f (j+p+1) and j < ag,—p*—p.  Set z(0) = X (v, X3,).
2 2

Notice that we replace Xo(vy®" 7 "7, X35 ) with X (v;>" " 7%, X3 ) for j =

as, — p*> — p although &(r, a3, — p* — p) # 0. Then Lemma 4.1.7 shows that

do(2(0)) = DXy (o0 05T X5,) + a(r)ol Tlogsr TIPSR g, (uh)
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mod vP*T2. Note that do(z(0)) # 0 mod (v**1), and so N(0) = p when

PG +p+1).
(iv) For p* | (j +p+1) and j < ag, — p? — 2p. We first define B(j) by

B(j) = X(v§7X§,r) for j S a3,y _p2 - 3p,
2 r—1
Blas, —p” = 2p) = X(05° 77 7, X5,) — a(r)of g™ 20,
Then, let

(0) B(j) for s € Ny
€T =
B(j) — 21}1+1X3 ryo/s"v ]+1+b(r+2) for s’ € Np.

Easy calculation shows that do(z(0)) = —DZ(v?™ 03t , X3 ,) mod (v b2y
and so N(0) =p—+ 1.

5.1.2. For r=1AND s € Ng.  For j < p — 2, we set (0) to Xo(v}, X3,). Then
Lemma 4.1.5 shows that

» . [i+1
dofa0) = ~3(5 + oRxattf5of — (T] )t

mod (v}), and so N(0) = 2. For j = p — 1, we set 2(0) to X (v&~"

X3q )
Lemma 4.1.8, we have do(z(0)) = =307 X3 1t1/v5 mod (v P+ “and so N( ) =

5.2. Definitions of x(k) (k > 1) and the differentials. = We complete the
proof of our main theorem by defining (k) and computing the differentials for all
cases, based on the computations in & = 0 case.

5.2.1. For r = 0.
(i) Forpt(s—1). Weset z(1) to X3;/X21. Then Lemma 4.1.3 shows that

‘ s s
do((1)) = (s = Dof X5 01 /o5 + (2> vfus” e va
mod v?' and so N(1) = p. For k = 2, we set

o) = (1) + (3 ) X2, X357

Then Lemma 4.1.8 implies

o ((2) P82, X§ﬁ1>)

2t — 20 )

p® xsp=1 (,2p p’+p—1
s\ v1 X34 12} 1 to o} 7y
_<2)pl{ +doy oy (C2+v2+01>}+p2

Uy
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mod Ufzﬂ), and hence do(z(2)) is congruent to

Up-i-p 2X5p 1 p+p 1X5t
—25(5_1)—11+2( R
1)2 Vs
p>+p—1 y sp—1 p +p—1
s\ v X t v Zo
+<2)11113)1<<2+2+Cl)+1172
Vs V2 Uy

mod vf2+p. Notice that do(z(2)) # 0 mod (v} e 1), and so N(2) = p? +
p— 2. For k =3, we set 2(3) to #(2)? + (3)Y (o¥ 777, 77, X357"). Then
Lemma 4.2.5 shows that

do (£(3)) = s(s — 1)DZ@W] 77708 P XS b Pz 0 P
mod (v} e Pt for some Zs € vy ' BP,BP, and so N(3) = p* + p* — p.
Applymg Proposition 4.2.6, we can define x(kj) inductively on k£ > 4 and
obtain N (k) = p* + pF~1 — pk*Q. O
Recall that N; = {(ap2 —p—1p"+1]|ptar>1: odd}.

(ii) For p | (s — 1) and s & Nj. We have already computed do(z(0)) =

vivh 1v§ 1w272 mod v?. Thus we can define z(k) inductively on k > 1 using
Proposition 4.2.8 and obtain N (k) = P(k). O

(iii) For s € Ny.  In this case s is expressed as (sop —1)p™ +1 (s € Ny and odd
ro > 1). We set z(1) to

z(0)P — 1/‘1(7'0+2)U X( o1 mPHP X§Oro+2) ”%p g 2p71”:(ss_1)p+1u22

with a(3) = 1 and a(rg + 2) = 3 for 79 > 3. Then the differential on the
second term is given by Lemma 4.1.7. For the third term, we have

dO( ,Ufpvg —2p—1 (s 1)p+1u2’2)
_ s— 2
= o0} T ol TP usCh + (ot — vt} ) (a0 — ()}
mod (v}P*). Collecting three terms gives
as r +2 s
do(w(1)) = =1/a(ro + 2)D X[ ) (077, 05 7 x50 L)

mod v2p+1 and so N(1) = 2p — 1. Applying Propositions 4.2.3 and 4.2.6, we

can deﬁne x(k‘) inductively on k > 2 and obtain N (k) = 2p*. O

5.2.2. FOR EVEN r > 2.  Define z(1) by
(1)

Xj’;/Xa“ + svfv (3p Dp” +2/2v§ for j =az, — 1,
= X3 /X for j < as, —2.

Then, in both cases we have

do(x(1)) = —jo} X541 (t1 — viwa) /v
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mod (vP1?). Notice that do(x(1)) # 0 mod (v?*"), and so N(1) = p when s ¢ Ny.
Then we can define z(k) inductively on k& > 2 by Proposition 4.2.1 and obtain
N(k) = a2 . When s € Ny, notice that the above differential can be rewritten as

do(a(1)) = DXy (of 0", X5 10),

and so N(1) = p. Applying Propositions 4.2.3 and 4.2.6, we can define z(k) induc-
tively on k > 2 and obtain N (k) = p* + pF~—L. 0

5.2.3. FOR ODD r > 1 AND s € Ny.  Define z(1) by
z(l) = X;ﬁ/X‘Qj 1 forr =1,
= Xk;)”Z/X2 - svlvé % Tﬁj)pvéﬂkl)pruz)g for odd r > 3.
For odd r > 3 and j < as, —p—1, dO(Xgﬁ,/Xg’l) has already been computed in

Lemma 4.1.2. We also obtain do(Xgﬁn/Xg’l) for other cases by easy computations.
We first give the case r = 1:

do(X35 /XY = vf X3kt [P — ooV o,
and for j < p—2,
do( X3/ X4,) = —jol X5hts ful? .
Now let r > 3 be odd. Then
dO(ng /Xa3 )= leéS];"tl/ peortt SUPU(Sp_l)pT(Cg — Wa,2),
do(X3h /X557 1) = 20P X0t fuf™ TP — ool (0B CE 4 2ug8] ),

and for j < a3, — 2, we have

Ao (X3 XE) = o X5t fuf? T — sl PO g
Additionally, we consider the element —sv{ véag‘ﬁj ) vé‘qp —Le ug,2 for odd r» > 3, on
which the differential is congruent to

—svpv(a?” —p,, (Sp p” (G2 — D)

mod v? . Collecting terms shows that do(z(1)) is congruent to

o) X3ty fup® g sva:(fp*l)p (7T —t5) /vy for odd r > 3 and j = as,,.,
ﬁ%@%ﬁmﬁwﬂ—ﬁﬁwmwwwzEMZ%W%7

— o X3Pty fuP for j <as, —2

mod v?™! and so N(1) = p
(i) For Kk > 2 and j < ag, —2.  Using Proposition 4.2.1, we can define z(k)
inductively on k so that

do(@(k)) = 20t X501y fofP P

mod (v T***) and obtain N (k) = as - O
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For k>2and j=as, —1. Let
r+1
2(2) = 2(1)P + ju>?" pX vg? T v’ + sov¥ 112 (ép Lp Uz 2.
Then easy calculation shows that

do(x(2)) = —sob 1ol Tl
mod (v} Jr2) and so N(2) = p?>+1. Applying Proposition 4.2.8, we can define
z(k) 1nductively on k > 3 and obtain N (k) = P(k) — pF~1. O
Fork>2,0ddr >3 and j =as,. Letxz(2)=xz(1)?—of 71X3 PYIUSEARN
and z(3) = z(2)P + sv¥ ey {op= R 1 /BT Then ecasy computations show
that

do((2))
do(x(3))
(

p>+2

2 1
p*+1, (sp—1)p""" p
T g tY/va mod v 77,

—Sv

p+p, (sp—l)p"'Jr2 pP4pt+2
1

—sv (t1 — viwa2)/v2  mod v

sD Xy 0)(v] et vz’X:)f];urlz))

and so N(2) = p? + 1 and N(3) = p® + p. Applying Propositions 4.2.3
and 4.2.6, we can define x(k) inductively on k > 4 and obtain N (k) = p* +

pk—2 _|_pk—3. O

5.2.4. FOR r =1 AND s € Ny.

(1)

For j = p— 1. First we define 7 by T = z(0)? + 31}:112,2pr§7;71/@§2—1.
Observe that d0(~) = —311?“X§plt1/1)2 mod (v} 7**?). Then, let z(1) =
T30 2X3 3/3' 5 +a33, 2(2) = TP +30,>° TP XY o> T, and 2(3) = z(2)P+

3vy* Py p /v2 b 3o XS /s b ftass . Easy computations show that

do(z(1)) = —311(112’20211:(3817_1)1)(2, do(z(2)) = —3@?2’3U§p3t1/1)§3,
3
do(z(3)) = 31}?2‘41)&5]071)}7 Py Jul

mod UH 24 and so N(k) = ag k41 (1 < k < 3). For k > 4, we define x(k)

L 1)k k-2 k-2
z(k — 1)P — 3u>**! pv§8p e Jvb L

inductively on k by z(k) = 2

Parallel calculation to the proof of Proposition 4.2.1 shows that
k—2 k—2

do((k)) = 3o+l P

( 1+az, k+1)

mod and so we obtain N (k) = ag k1. O

For j < p—2. We set z(1) to Xo(vz,Xs P 4 Xy (vlP , X3h). As is already
computed in Proposition 4.1.9,
Jj+1

do((1)) = —j(j + 1) X5 gty /s'vf? T2H 002 — < !

2p s 42 ,,9p+2
)”1 X3 ot1 /vy

mod (02, and so N(1) = 2p. For k > 2, we can construct (k) as in
5.2.5 (ii) and obtain N (k) = 2pk + p*~1 — pF=2. O
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5.2.5. FOR OoDD r > 3 AND s € Np.
(i) Foras, —p<j<as, (j#as, —p+2). Weset

2(1) = 2(0) + (1 — j)ofoy™ 7 Pog ™ g
Easy calculation shows that for a3, —1 < j < a3,
do(@(1)) = (1= j)efes™ 7 Pug ™7 Gy mod o,
and for a3, —p < j < as, — 2,
do(z(1)) = (5 — 1)vf+1v§a3”‘_j)p_1v§8p_1)prw213 mod v? 2,

For j = a3, and k > 2, we can define z(k) as in 5.2.3 (iii). For j = a3, — 1,
2 —_ —

we set 2(2) to z(1)P —3/20" "LX (v{* e PP 1,X§7T+2). Then dy(z(2)) is

congruent to

2 . _ 2 2 _ r41 2
307 TP o (2t — 01G) /205 T TPTIP g gyl Pyl g (PP
2 r+1—p+1 2

(= =3/2DXp (v} TP, 0y e TP s ) 4+ 3 TP 2y oyt

mod (v’f2+p+1) for some Zy € v; ' BP,BP, and so N(2) = p?>+p—1. Applying
Propositions 4.2.3 and 4.2.6, we can define z(k) inductively on k& > 3 and
obtain N (k) = p¥ +p*~1. On the other hand, we can apply Proposition 4.2.8
to ag, —p < j < as, — 2 case and obtain N (k) = P(k). O

(ii) Either for j = a3, —p+2, or for j < az, —p—1land p{(j+1). For
j=asz,—p— 2, we set

2(1) = Xo(v5™ 772, X5, )7 + X (0 TP TIP X30) 2P 0,
Otherwise, we set

(1) = Xo(vg, X35, + X4 (37, X30).

We now use Proposition 4.1.9, to compute do(z(1)) mod (v:**'). For j =
agr —p— 17
2p vrs’ 2D ys 2
_ Uy Xr+2t1 U1 X3,r+1t1 2p p?—1~-(sp—1)p az,r—p—1
dol=(1)) = 7251v3(r+2)—p2—p+1 B vg3m+rp2*p+2 +3v vy Xy 17 02 (v, )-
Otherwise,
2p v s’ - 2p ys 2
s vy X7 ot J+ 1\ vr X35, 4400
do(ﬂﬂ(l)):*](]Jrl)W* 9 W
So N(1) = 2p. For k = 2, we set
JH1Y 9p2 o jp+2)p—2
o) =1 = (17 1) X X )
Using Proposition 4.1.7, we now compute do(z(2)), getting
)t e
311%”21)53_%5)81) DT g, (o3P e mod v%p2+1 for j=as, —p—1,

. 2., int2)p—1 2 .
() DX gy (077 P PP ,X5,42)  mod vi” TP otherwise.

7
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Thus, N(2) = 2p? for j = az, —p—1, and N(2) = 2p? + p— 2 for other cases.
In the former case, we can construct z(k) inductively on k > 3 using Propo-
sition 4.2.7 and obtain N (k) = 2pF. In the latter case, Propositions 4.2.3
and 4.2.6 work well, and so we obtain N (k) = 2p* + pF=1 — pF—2, (]

For j <as, —2pand p| (j+1). Foras, —p*> <j<as, —2p, we have
already shown that
i _ r—1
do(@(0)) = —a(r)vfvg™ ST g

mod (v$) in 5.1.1 (ii). Then we can define z(k) inductively on k > 1 using
Proposition 4.2.8 and obtain N(k) = p* + P(k). For j < a3z, — p*> — p,
5.1.1 (iii) and (iv) also show how to compute the congruence class of do(z(0))
mod p, v, For p? t (j +p+ 1), we get

r—1

DXy (o 03 X5, a(r)of os T g (1),
For p? | ( +p+ 1), we get
—DZ (W vt X3 ).
When p?|(j +p+1), we can construct z(k) inductively on k > 1 using Propo-
sition 4.2.6 and obtain N (k) = p**! + p*. On the other hand, we set z(1) to
2 )
2(0) + Yiyr g (0F TP 0F TP X5 L) when p® £ (j 4+ p + 1). Then do(a(1)) is
expressed as follows. For p? { (5 + 1),
2 3 2
do(@(1)) = 7'DZ(o} 7,0, X3, 1) mod of P
For j = as,r _P2 - D
do(z(1)) = a(r)vf2+pv§37pv§5p_1)pr+l91(1);3’"'_1)2_’))1’ mod Uf2+p+1.

For p? | (j + 1) and j < as, — 2p* — p,

do(w(1)) =7 PG [ TP mod of TP,

When p? 1 (j + 1), we construct z(k) inductively on k > 2 using Proposi-
tion 4.2.6 and obtain N (k) = p**! + p*. When j = a3, — p*> — p, we can
construct z(k) inductively on k¥ > 2 asin j = a3, —p — 1 case and k > 3
(discussed in 5.2.5 (ii)), and obtain N (k) = p**! 4+ pk. When p? | (j + 1)

. 2 . p’+p’4p, yrsp (j+1)p°+p+1
and j < ag, —2p° —p, we set z(2) to z(1)? — v} v3 X3l 41/0s .
Since

3 2 i+1 2 1
do(*vf +p +pv3X5p U(J+ )P~ +p+ )

3,r+1/ %2
3 2 - 2 2
I o il (G+1)p*+p P p—1 p—1
=10 X??,r+2/”2 (t —vy ") vy wap

> +p*+p+2

mod (v} ), we have

3.2 . 2 )
d0($(2)) = _DX[l,O] (Uf +p +P+17,Uéj+1)p +17—X§’7~+2)7

and so N(2) = p + p? + p. Applying Propositions 4.2.3 and 4.2.6, we can
define z(k) inductively on k > 3 and obtain N (k) = pF*+1 4 pk 4+ pF=1 4 ph=2,
Finally we have completed the computations for all cases. (]
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Now we can prove our main theorem.

Proof of Theorem. For each F,-basic eclement (l‘g)r/’l}%)pk of Lemma 2.3.3, we
have already constructed the element x(k) (= z(sp”/j; k)), which satisfies the con-
gruence z(sp”/j; k) = (xgjr/vé)pk mod (v1), and determined the v;-divisibility N (k)
(= N(s,r,7;k)) of 2(k) as the smallest integer with do(x(k)) £ 0 mod (U{V(k)ﬂ).
We also define y(mp") by y(mp”) = 1/XJ". and obtain N(m;r) = az, (Corol-
lary 3.3.5). Using these results, let B be the direct sum of the cyclic modules as
in Proposition 2.4.1. The linear independence of the set

T/ ERSVH az,r yvm
{8 (sp" /55 k) for” )Y U {8(1 fur> XEL)}
is verified by checking with condition (2.5.2). This completes the proof. (]
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