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The Homology of Peiffer Products of Groups

W. A. Bogley and N. D. Gilbert

Abstract. The Peiffer product of groups first arose in work of J.H.C. White-
head on the structure of relative homotopy groups, and is closely related to
problems of asphericity for two-complexes. We develop algebraic methods for
computing the second integral homology of a Peiffer product. We show that a
Peiffer product of superperfect groups is superperfect, and determine when a
Peiffer product of cyclic groups has trivial second homology. We also introduce
a double wreath product as a Peiffer product.
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Introduction

Given two groups acting on each other by automorphisms, it is natural to ask
whether these groups can be embedded in an overgroup in such a way that the
given actions are realized by conjugation. If the actions are trivial, this can be
done simply by forming the direct product of the two groups. In general, the
question has a negative answer.

One is led to the following construction. Let G and H be groups and suppose
we are given fixed actions (g, h) 7→ gh and (h, g) 7→ hg of each group on the other.
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(These are assumed to be right actions, so that (gh)h
′

= ghh
′
, for example.) Let Π

denote the normal closure in the free product G ∗H of all elements

g−1h−1ghg , h−1g−1hgh : g ∈ G, h ∈ H.
The quotient G ./ H := (G ∗ H)/Π is the Peiffer product of G and H with the
given actions. For example, when G and H act trivially on each other, the Peiffer
product is just the direct product G ./ H ∼= G × H, and Π is the Cartesian
subgroup Π = G�H = ker(G ∗H → G ×H). When G and H are infinite cyclic
with nontrivial actions, it is shown in [8] that the Peiffer product is the quaternion
group of order eight: Z ./ Z ∼= Q8. The question that was alluded to in the opening
paragraph can now be posed as the following

Embedding Question. When are the natural maps G→ G ./ H ← H injective?

The Peiffer product of groups (so named in [8]) first arose in a topological setting
in the work of J.H.C. Whitehead [14] on the structure of relative homotopy groups.
Suppose that a connected two-complex Z is a union of connected subcomplexes X
and Y that intersect in the common one-skeleton X ∩ Y = Z1. One consequence
of Whithehead’s work in [14] is that the relative homotopy group π2(Z,Z1) can be
decomposed as the Peiffer product of the relative groups π2(X,Z1) and π2(Y, Z1):

π2(Z,Z1) ∼= π2(X,Z1) ./ π2(Y, Z1).(1)

(The actions arise via the homotopy action of π1(Z1).) As an application, White-
head proposed his notorious

Asphericity Question. Are subcomplexes of aspherical two-complexes themselves
aspherical?

The point here is that by comparing the homotopy sequences of the pairs (X,Z1)
and (Z,Z1), one sees that if Z is aspherical (i.e., π2(Z) = 0), then X is aspherical
if and only if π2(X,Z1) embeds in π2(Z,Z1). The longstanding unresolved status
of Whitehead’s Asphericity Question therefore stands as testimony to the subtlety
of the Embedding Question for Peiffer products.

The Peiffer product has been applied to algebraic problems (see for example its
implicit role in [10]) and to the topological setting in which it first appeared, the
calculation of low dimensional homotopy and homology groups [3, 5, 7, 9]. The
following theorem of M. N. Dyer [6] connects the vanishing of the second homotopy
group of a two-complex to the vanishing of the second homology group of its second
relative homotopy group.

Theorem. [6] Let Xbe a connected two-complex with one-skeleton X1. If X does
not have the homotopy type of the two-sphere, then X is aspherical if and only if
H2(π2(X,X1)) = 0.

In this paper we consider the purely algebraic problem of determining the second
integral homology H2(G ./ H) of a Peiffer product G ./ H in terms of information
about the factors G and H. As in [5], we exploit the description of a Peiffer product
via semidirect products. By way of general results, we show that any Peiffer product
of superperfect groups is superperfect (Corollary 2.3) and we give a very short proof
of the Künneth formula for the second homology of direct products (§4.1).

Our main results support a systematic approach to the problem of H2 calcu-
lations for Peiffer products. We draw the reader’s attention to Theorem 3.2 and
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Corollary 3.3, which are definitive technical results within this context. We illus-
trate the effectivenes of our approach by showing how to determine whether a Peiffer
product of cyclic groups has trivial second homology (Theorem 4.4). This in turn
is related to the Embedding Question for these Peiffer products. (See Corollary 4.5
and the succeeding examples.) We also introduce (§4.4) a double wreath product
construction as a Peiffer product and we investigate its second homology.

Notation. When a group H acts on a group G on the right, [G;H] will denote the
subgroup ofG generated by all elements g−1gh , g ∈ G, h ∈ H. Then [G;H] is normal
in G, and we denote the quotient G/[G;H] by GH . We shall use this subscript
notation for any quotient group obtained by killing an action. For example, if H
normalizes G in a common overgroup, then H acts on G by conjugation: gh =
h−1gh and [G;H] = [G,H] is the subgroup generated by the commutators [g, h] =
g−1h−1gh = g−1gh. Thus GH = G/[G,H] and if G = H, then GG = G/[G,G] is
the abelianized group Gab.

Now suppose that G and H are groups acting on each other on the right. We
form the following normal subgroups in the free product G ∗H:

S = 〈〈g−1h−1ghg : g ∈ G, h ∈ H〉〉(2)

T = 〈〈h−1g−1hgh : g ∈ G, h ∈ H〉〉
and we set Π = ST . Note that (G∗H)/S and (G∗H)/T are the semidirect products
G n H and G o H respectively. The quotient group (G ∗ H)/Π = G ./ H is the
Peiffer product of G and H with the given actions. The images of the natural maps
G→ G ./ H ← H will be denoted by Ḡ and H̄ respectively.

1. The low-dimensional homology of products of subgroups

R. Brown’s five-term exact sequence [5] for the homology of a group P , equal to
the product of two normal subgroups M and N , is

(3) H2(P )→ H2(P/M)⊕H2(P/N)→ (M ∩N)/[M,N ]

→ H1(P )→ H1(P/M)⊕H1(P/N)→ 0.

We shall be interested in the setting in which M ∩N = [M,N ], in which case the
group P decomposes as a Peiffer product of M and N .

Proposition 1.1. In a Peiffer product G ./ H, the subgroups Ḡ and H̄ are normal
subgroups satisfying G ./ H = ḠH̄ and Ḡ ∩ H̄ = [Ḡ, H̄]. Conversely, if P is a
group with normal subgroups M,N satisfying P = MN and M ∩N = [M,N ], then
P ∼= M ./ N .

Proof. It is immediate from the defining relations of the Peiffer product that Ḡ
and H̄ are normal subgroups of G ./ H and that ḠH̄ = G ./ H. Next,

(G ./ H)/Ḡ ∼= HG and (G ./ H)/H̄ ∼= GH .

As in [3, 7], we note that the quotient (G ./ H)/[Ḡ, H̄] is isomorphic to GH ×HG

and elements of Ḡ ∩ H̄ lie in the kernel of the quotient map G ./ H → GH ×HG.
Hence Ḡ ∩ H̄ ⊆ [Ḡ, H̄].

Conversely, suppose that M,N are normal subgroups of a group P with P =
MN . Following Brown [5], we form the Peiffer product M ./ N using the conjuga-
tion actions in P . By identifying M ./ N as a quotient of the semidirect product
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M oN , Brown obtains a short exact sequence

1→ (M ∩N)/[M,N ]→M ./ N → P → 1.

Hence if M ∩N = [M,N ] then M ./ N ∼= P . �

With Proposition 1.1, the Brown homology sequence (3) for the group G ./ H
and its normal subgroups Ḡ and H̄ shows that the maps GH ← G ./ H → HG

induce homomorphisms

H1(G ./ H) α1→ H1(GH)⊕H1(HG)

H2(G ./ H) α2→ H2(GH)⊕H2(HG)

where α1 is an isomorphism and α2 is surjective. For later convenience, we note
the following immediate corollary.

Corollary 1.2. Let G and H be perfect groups (i.e., H1(G) = H1(H) = 0). Then
for any actions of G and H on each other, the Peiffer product G ./ H is perfect.

Our next aim is to investigate the kernel of α2. The maps G← G ∗H → H induce
a homomorphism

ΠG∗H
β→ [G;H]G ⊕ [H;G]H

that is obviously surjective.

Proposition 1.3. There is a surjective homomorphism kerα2 → kerβ. If the
maps H2(G) → H2(GH) and H2(H) → H2(HG) are each injective, then kerα2

∼=
kerβ.

Proof. The standard five-term exact sequences for the extensions

1→ Π→ G ∗H π→ G ./ H → 1

1→ [G;H]→ G→ GH → 1

1→ [H;G]→ H → HG → 1

combine into a commutative diagram involving the maps α1, α2 and β as shown in
Figure 1.1. A diagram chase gives a surjection kerα2 → kerβ. If π denotes the
quotient map G ∗H → G ./ H then we obtain an extension of abelian groups

0→ kerα2 ∩ imH2(π)→ kerα2 → kerβ → 0.

Now each of H2(G)→ H2(GH) and H2(H)→ H2(HG) factors through H2(π) and
it follows that if H2(G)→ H2(GH) and H2(H)→ H2(HG) are each injective then
kerα2 → kerβ is an isomorphism. �

The converse of Proposition 1.3 is false, as the following example shows.

Example. Let A = 〈a, b | [a, b]〉 be free abelian of rank 2 and let V = {1, x, y, xy}
be a Klein 4–group. We let x act on A by inversion and let y act trivially. Define
an action of A on V by xa = y, xb = xy, ya = xy, yb = x. In A ./ V we have
a−1ya = xy and y−1ay = a: hence y = xy and x = 1. Then a−1xa = y implies
y = 1, so that V̄ = 1 and

A ./ V = (A ./ V )/V̄ = AV ∼= V,
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H2(G)⊕H2(H)

H2(π)

��

H2(G)⊕H2(H)

��
H2(G ./ H)

��

α2 // H2(GH)⊕H2(HG)

��
ΠG∗H

β //

��

[G;H]G ⊕ [H;G]H

��
H1(G)⊕H1(H)

��

H1(G)⊕H1(H)

��
H1(G ./ H)

α1 // H1(GH)⊕H1(HG)

Figure 1.1. Five term sequences

and H2(A ./ V ) = Z2, H2(AV ) = Z2 and H2(VA) = 0. We see that αi is an
isomorphism (i ≥ 1), and so β is an isomorphism: Π/[Π, A∗V ] ∼= Z2⊕V . However
Z = H2(A)→ H2(AV ) = Z2 is not injective.

The structure of H2(G ./ H) is summarised in the Hasse diagram in Figure 1.2.

H2(G ./ H)

H2(GH)⊕H2(HG)

ker (ΠG∗H
β→ [G;H]G ⊕ [H;G]H)

kerα2

kerα2 ∩ imH2(π)

Figure 1.2. Structure of H2(G ./ H)
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2. Twisted bilinear relations

Recall that Π = ST where S denotes the normal closure in G ∗H of all elements
g−1h−1ghg, g ∈ G, h ∈ H and T is the normal closure of all elements h−1g−1hgh,
g ∈ G, h ∈ H. The inclusions of S and T in Π induce a surjective homomorphism

SG∗H ⊕ TG∗H → ΠG∗H .

In this and the following section, we completely describe the structure of SG∗H , with
analogous remarks holding for TG∗H . The image in SG∗H of the normal generator
g−1h−1ghg for S will be denoted 〈g, h〉. Thus,

〈g, h〉 = g−1h−1ghg[S,G ∗H] ∈ SG∗H = S/[S,G ∗H].

Lemma 2.1. The abelian group SG∗H is generated by the elements 〈g, h〉 (g ∈
G , h ∈ H) and the following relations hold:

(i) 〈gg′, h〉 = 〈g′, hg〉〈g, h〉,
(ii) 〈g, hh′〉 = 〈g, h〉〈g, h′〉,

These relations imply that 〈g, 1〉 = 〈1, h〉 = 1 in SG∗H and that 〈g, h〉−1 = 〈g, h−1〉 =
〈g−1, hg〉. Furthermore, if x (resp. y) is a generating set for G (resp. H), then
SG∗H is generated by the elements 〈x, y〉, x ∈ x, y ∈ y.

Proof. The elements 〈g, h〉 generate SG∗H since S is the normal closure in G ∗H
of all the elements g−1h−1ghg. The validity of the relations (i) and (ii) may be
checked directly: for example, working modulo [S,G ∗H],

〈gg′, h〉 = g
′−1g−1h−1gg′hgg

′

= g
′−1h−gg′hgg

′
h−gg

′
g
′−1hgg−1h−1gg′hgg

′

= 〈g′, hg〉h−gg′g′−1hgg−1h−1ghgh−gg′hgg
′

= 〈g′, hg〉〈g, h〉.

The remaining assertions of the lemma follow directly from the relations (i) and
(ii). �

Denote the augmentation ideal in ZG by g and write H1(H) = Hab = H/[H,H].
Here is a restatement of Lemma 2.1. The elementary proof is left to the reader.

Corollary 2.2. There is a surjective homomorphism σ : Hab ⊗G g→ SG∗H given
by σ(h[H,H]⊗ (g − 1)) = 〈g, h〉.
Corollary 2.3. If G and H are perfect (i.e., Gab = Hab = 0), then the natural
map H2(G)⊕H2(H)→ H2(G ./ H) is surjective. If G and H are both superperfect
(i.e., H1 = H2 = 0), then so is G ./ H.

Proof. When H is perfect we have SG∗H = 0 by Corollary 2.2. When both G and
H are perfect, this implies that ΠG∗H = 0. The first statement follows from the five
term homology sequence for G ./ H = (G ∗ H)/Π. (See Figure 1.1.) The second
statement follows immediately. �
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3. The structure of SG∗H
In this section we show that the surjection σ : Hab ⊗G g→ SG∗H is actually an

isomorphism. Of course, the discussion also applies to show that TG∗H ∼= Gab⊗H h,
where h denotes the augmentation ideal in ZH. Following Brown [5], we rely on
the fact that the Peiffer product G ./ H is a quotient of the semi-direct product
GnH = (G∗H)/S. We begin by building a standard two-complex with fundamental
group GnH.

We have an action of G by automorphisms on H. Let K (resp. L) be the two-
complex modeled on a presentation P = 〈x : r〉 (resp. Q = 〈y : s〉) for G (resp.
H). For each (x, y) ∈ x × y, we can choose a reduced word vx,y in the free group
on y so that the relation yx = vx,y holds in G nH. If we set tx,y = x−1y−1xvx,y
and t = {tx,y : (x, y) ∈ x× y}, then

R = 〈x,y : r, s, t〉
is a presentation for the split extension G n H. Let M denote the two-complex
modeled on R and let p : M̃ → M be the universal covering projection. The
complex M contains the one-point union K ∨ L as a subcomplex and the pre-
image p−1(K ∨ L) = K ∨ L has fundamental group S = ker(G ∗ H → G n H).
The homology sequence for the pair (M̃,K ∨ L) determines an exact sequence of
Z(GnH)-modules

π2(M)→ H2(M̃,K ∨ L)→ Sab → 0(4)

in which the second term is the free Z(G n H)-module with basis elements ẽx,y,
(x, y) ∈ x × y, corresponding to the two-cells of M − (K ∨ L). The basis element
ẽx,y ∈ H2(M̃,K ∨ L) is mapped to the coset tx,y[S, S] ∈ Sab, where tx,y is viewed
in G ∗H.

Lemma 3.1. Given two-complexes K and L modeled on presentations (x : r) for
G and (y : s) for H and with M constructed as above, there is an exact sequence

π2(M)→ H2(M,K ∨ L)→ SG∗H → 0(5)

of abelian groups. Here, the second term is the free abelian group with basis con-
sisting of the two-cells ex,y, (x, y) ∈ x × y, of M − (K ∨ L) and the basis ele-
ment ex,y is mapped to 〈x, y〉 ∈ SG∗H . The first map in the sequence factors as

π2(M) h→ H2(M)→ H2(M,K ∨ L) where h is the Hurewicz homomorphism.

Proof. The result follows upon killing the action of GnH (i.e., of G ∗H) in the
sequence (4). �

Module generators for π2(M) have been described by Y. G. Baik and S. J.
Pride [1] (see [2]). In practice it is a simple matter to determine the images of
these generators under the map π2(M) → H2(M,L ∨K) and thus to work out a
presentation for SG∗H in terms of the generators 〈x, y〉, x ∈ x, y ∈ y. We briefly
describe the Baik-Pride π2 generators for the reader’s convenience.

Recall that K (resp. L) is modeled on a presentation P = (x : r) (resp. Q = (y :
s)) for G (resp. H) and that M is is modeled on a presentation R = (x,y : r, s, t)
where t consists of relations of the form tx,y = x−1y−1xvx,y, x ∈ x, y ∈ y, that
realize the action of G on H. Baik and Pride describe generators for π2(M) in
terms of spherical pictures. (See [4] for a general treatment of spherical pictures.)
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In addition to the collection of all spherical pictures over P and Q, two additional
families of spherical pictures are sufficient to generate π2(M) as a Z(GnH)-module.

Given (x, s) ∈ x×s, construct a disc pictureAx,s over the presentation (x,y : s, t)
consisting of a single positively oriented s-disc surrounded by a series of tx,y-discs
according to the occurences of the letters y±1 in the relator s. The boundary of
each tx,y-disc has two oppositely oriented occurences of arcs labeled by x; these x-
arcs are joined so as to form an annulus of tx,y-discs surrounding the original s-disc.
Since the generator x, when viewed as an element of G determines an automorphism
of H, the boundary of Ax,s supports a word in y∪y−1 that determines the identity
element of H. Thus we can choose a disc picture Bx,s over Q = (y : s) whose
boundary word is the same as that of Ax,s. Gluing these two pictures together along
their common boundary, we obtain a spherical picture Px,s over R. Constructing
one such picture for each (x, s) ∈ x × s, we refer to the resulting family as the
pictures of Type I.

Given (r, y) ∈ r × y, choose a disc picture Cr,y over (x,y : s, t) with boundary
word r−1y−1ry. This is possible because G acts on H and so r acts trivially on y.
Now attach two oppositely oriented r-discs to match the occurences of r and r−1

in the boundary of Cr,y and then close up the remaining oppositely oriented y-arcs
to obtain a spherical picture Qr,y over R. Constructing one such picture for each
(r, y) ∈ r× y, we refer to the resulting family as the pictures of Type II.

Each element of π2(M) can be represented by a spherical picture over R. Baik
and Pride showed that π2(M) is generated as a Z(GnH)-module by the homotopy
elements represented by spherical pictures over P and Q, together with the selected
pictures of Type I and Type II. The image of a homotopy element under the map
π2(M) → H2(M,K ∨ L) is computed by simply counting with multiplicity the
occurences of tx,y-discs in a representative picture. In particular, all pictures over
P and Q have trivial image. This process and the construction of Type I and
Type II pictures will be illustrated in the proof of Theorem 3.2 below.

Theorem 3.2. The map σ : Hab⊗Gg→ SG∗H is an isomorphism. (And similarly,
there is an isomorphism Gab ⊗H h ∼= TG∗H .)

Proof. Use the multiplication tables to construct presentations P for G and Q
for H. Thus the presentation P = (x : r) has generators x = {(g) : g ∈ G} and
defining relations r = {(g)(g′)(gg′)−1 : g, g′ ∈ G}. The presentation Q = (y : s) is
constructed in the same way. We can then build K, L, and M as described above.
The free abelian homology group H2(M,K∨L) has basis consisting of the two-cells
e(g),(h), g ∈ G, h ∈ H with boundary word reading t(g),(h) = (g)−1(h)−1(g)(hg). So
e(g),(h) ∈ H2(M,K ∨ L) maps to 〈g, h〉 ∈ SG∗H . In order to determine the image
of π2(M) → H2(M,K ∨ L), let g, g′ ∈ G and h, h′ ∈ H. It suffices to examine the
occurences of t-discs in the pictures A(g),s and Cr,(h) where r = (g)(g′)(gg′)−1 ∈ r
and s = (h)(h′)(hh′)−1 ∈ s. These pictures are displayed in Figure 3.1.

Examining the black discs in Figure 3.1, we find that the Type I picture P(g),s

has image e(g),(h) +e(g),(h′)−e(g),(hh′) ∈ H2(M,K∨L) and that the Type II picture
Qr,(h) has image e(g),(h)+e(g′),(hg)−e(gg′),(h) ∈ H2(M,K∨L). Passing to SG∗H , this
means that the relations (i) and (ii) from Lemma 2.1 are actually defining relations
for the generators 〈g, h〉 of the abelian group SG∗H . From this it is straightforward
to show that the assignment 〈g, h〉 7→ h[H,H] ⊗ (g − 1) defines an inverse to the
map σ. �
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Figure 3.1. A(g),s and Cr,(h)

Corollary 3.3. There is an isomorphism SG∗H ∼= Gab ⊗Hab if either
(a) G is a free group or
(b) G acts trivially on Hab.

Proof. When G is a free group, the augmentation ideal g (resp. abelianization
Gab) is the free ZG-module (resp. free abelian group) with basis in one-to-one
correspondence with a basis for G. The result (a) follows easily. The result (b)
follows from the fact that Gab ∼= g/g2. �

The setting of Corollary 3.3(a) is of interest in low dimensional homotopy theory.
When a two-complex Z is a union of aspherical subcomplexes X and Y with inter-
section X∩Y = Z1, Whitehead’s result (1) shows that the relative homotopy group
π2(Z,Z1) is the Peiffer product G ./ H where G = π2(X,Z1) and H = π2(Y, Z1).
Since X and Y are aspherical, the groups G and H are free.

4. Computations

4.1. Trivial actions: The Künneth formula. When G and H act trivially on
each other, the Peiffer product is simply the direct product: G ./ H ∼= G × H.
Inspection of the normal generators for S and T reveals that S = T = Π is the
Cartesian subgroup Π = G�H = ker(G ∗H → G ×H). Corollary 3.3(b) implies
that ΠG∗H ∼= Gab ⊗Hab. This result was first proved by MacHenry [11]. When we
examine the five-term homology sequence for G×H = (G ∗H)/Π (see Figure 1.1),
it is clear that the map H1(G) ⊕H1(H) → H1(G ×H) is an isomorphism and so
the sequence

H2(G)⊕H2(H)→ H2(G×H)→ Gab ⊗Hab → 0

is exact. Finally, the map H2(G)⊕H2(H)→ H2(G×H) is readily seen to be split
injective, so we recover the Künneth formula for the second homology of direct



64 W. A. Bogley and N. D. Gilbert

products:
H2(G×H) ∼= H2(G)⊕H2(H)⊕ (Gab ⊗Hab).

4.2. Conjugation action. Let G act on itself by conjugation. As in [3, 8] we have
G ./ G ∼= Gab ×G with the two canonical maps G→ G ./ G taking g 7→ (1, g) and
g 7→ (ḡ, g). There is an isomorphism

H2(G ./ G) ∼= H2(G)⊕H2(Gab)⊕ (Gab ⊗Gab).
Corollary 3.3(b) shows that the maps SG∗H → [H;G]H and TG∗H → [G;H]G can
each be identified with the commutator pairing Gab ⊗ Gab → [G,G]/[G, [G,G]] =
γ2(G)/γ3(G). It follows from the commutative diagram in Figure 1.1 that

ΠG∗G ∼= (Gab ⊗Gab)⊕ γ2(G)/γ3(G)

and that β : ΠG∗G → [G;G]G ⊕ [G;G]G is the map

(Gab ⊗Gab)⊕ γ2(G)/γ3(G)→ (γ2(G)/γ3(G))⊕2

which is the sum of the identity on the second summand and the diagonal commu-
tator pairing

χ⊕ χ : ḡ ⊗ h̄ 7→ ([g, h]γ3(G), [g, h]γ3(G)).
Therefore kerβ ∼= ker(χ : Gab ⊗Gab → γ2(G)/γ3(G)).

4.3. Peiffer products of cyclic groups. Consider a Peiffer product G ./ H
where G and H are cyclic groups generated by x and y respectively. Proposition 1.3
shows that H2(G ./ H) is isomorphic to the kernel of the map β : ΠG∗H →
[G;H]G ⊕ [H;G]H . Suppose that the actions are given by

xy = xa+1 and yx = yb+1.(6)

where a and b are integers. Note that if a or b is zero, then G ./ H is abelian. Given
the orders of G and H, it is a simple matter to work out the structure of G ./ H
and of H2(G ./ H) in this case. We therefore assume that a and b are nonzero.

With the given actions (6), the Peiffer product G ./ H is a quotient of the group
P (a, b) with presentation

P (a, b) = 〈x, y : x−1y−1xyb+1, y−1x−1yxa+1〉
and we begin by examining some relations in P (a, b) and its quotients.

Lemma 4.1. In the group P (a, b) and all of its quotient groups,
(a) xa = [x, y] = y−b is central and
(b) xa

2
= xab = yb

2
= yab = 1.

Proof. Working in P (a, b), we have 1 = x−1y−1xyb+1 = x−1xa+1yb = xayb, which
proves (a). Since xa is central we have xa = y−1xay = (xa+1)a = xa

2+a so that
xa

2
= 1. In the same way we have yb

2
= 1. Since xa and yb are central, we further

have 1 = (xayb)a = yab and similarly xab = 1. This proves (b). �

In a Peiffer product of cyclic groups with actions given by (6) where ab 6= 0, we
may as well assume that the factors G and H are cyclic of finite orders m and n,
respectively. We introduce the group P (a, b;m,n) with presentation

P (a, b;m,n) = 〈x, y : xm, yn, x−1y−1xyb+1, y−1x−1yxa+1〉.
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This group decomposes as a Peiffer product P (a, b;m,n) = Z/m ./ Z/n whenever
the congruence relations

(a+ 1)n ≡ 1 mod m(7)
(b+ 1)m ≡ 1 mod n

are satisfied. (These are necessary and sufficient ensure that the factors G = Z/m
andH = Z/n act on each other via (6).) For convenience, we introduce the following
notation:

µ = gcd(a,m) and ν = gcd(b, n).
In the presence of the congruence relations (7), we can examine the structure of
P (a, b;m,n) using Proposition 1.1 as follows:

P (a, b;m,n)/〈x〉 ∼= Z/ν(8)

〈x〉/(〈x〉 ∩ 〈y〉) ∼= P (a, b;m,n)/〈y〉 ∼= Z/µ(9)

〈x〉 ∩ 〈y〉 = [〈x〉, 〈y〉] = 〈[x, y]〉 = 〈xa〉(10)

Lemma 4.2. Assume that the parameters a, b, m, and n satisfy the congruence
relations (7). If H2(P (a, b;m,n)) = 0, then the subgroup 〈xa〉 of P (a, b;m,n) has
order gcd(µ, ν) and the group P (a, b;m,n) has order µν gcd(µ, ν).

Proof. Let P = P (a, b;m,n) and consider the quotient group P/〈xa〉 ∼= Z/µ⊕Z/ν.
The five-term sequence associated to the central extension

0→ 〈xa〉 → P → Z/µ⊕ Z/ν → 1

takes the form

0 = H2(P )→ Z/µ⊗ Z/ν → 〈xa〉 → H1(P )
∼=→ Z/µ⊕ Z/ν → 0.

From this we conclude that the subgroup 〈xa〉 of P has order gcd(µ, ν). Computa-
tion of the order of P is enabled by (8), (9), and (10). �

As an example, note that P (−2,−2) ∼= P (−2,−2; 4, 4) is the Peiffer product Z ./
Z with nontrivial actions by the infinite cyclic factors. Since P (−2,−2) is a finite
group with a balanced presentation, Lemmas 4.1 and 4.2 show that x2 = y2 = [x, y]
is a central element of order two and that Z ./ Z has order eight. As seen in [8],
Z ./ Z is the quaternion group of order eight.

We now examine H2(P (a, b;m,n)) under the assumption that the parameters a,
b, m, and n satisfy the congruence relations (7). Using Lemma 4.1, note that

xan/ν = ybm/µ = 1

in P (a, b;m,n). The group P (a, b;m,n) is therefore unchanged if we replace m
and n by gcd(a2, ab,m, an/ν) and gcd(b2, ab, n, bm/µ), respectively. The values of
µ and ν are unchanged and one can use the binomial theorem to show that the
congruence relations (7) are still satisfied. These observations show that we can
restrict our attention to the case where P = G ./ H where G = Z/m = 〈x〉 and
H = Z/n = 〈y〉, and where the parameters m,n, a, b satisfy the divisor relations

m | a2, ab,
an

ν
and n | b2, ab, bm

µ
.(11)

Recall that S (respectively T ) is the normal closure of x−1y−1xyb+1 (respectively
y−1x−1yxa+1) in the free product G∗H, and that Π = ST . Let Σ (resp. Θ) denote
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the image of SG∗H (resp. TG∗H) in ΠG∗H . Thus ΠG∗H = Σ + Θ. Note that the
intersection Σ ∩ Θ is contained in the kernel of β : ΠG∗H → [G;H]G ⊕ [H;G]H .
We obtain explicit information about the kernel of β by studying the sequence of
surjections

SG∗H → Σ→ Σ/(Σ ∩Θ)→ [H;G]H .

Lemma 4.3. Assume that the parameters a, b, m, and n satisfy the divisor rela-
tions (11).

(a) The group SG∗H is cyclic of order gcd(m,n), generated by 〈x, y〉.
(b) The order of the cyclic group Σ is a common divisor of a, b, m, and n. Thus

the order of Σ divides gcd(µ, ν).
(c) The order of the cyclic group Σ/(Σ∩Θ) is the least common multiple of m/µ

and n/ν.
(d) The group [H;G]H is cyclic of order n/ν.

Analogous results hold for the groups in the sequence of surjections

TG∗H → Θ→ Θ/(Σ ∩Θ)→ [G;H]G.

Proof. (a) Lemma 2.1 shows that SG∗H is cyclic, generated by 〈x, y〉.The structure
of SG∗H can be worked out from Theorem 3.2. For example, using the fact that
the augmentation ideal g in ZG is given by g ∼= ZG/〈∑m−1

i=0 xi〉, the group SG∗H ∼=
Hab ⊗G g is cyclic of order gcd(n, 1 + (b+ 1) · · ·+ (b+ 1)m−1). Using the binomial
theorem and the divisor relations (11), one can show that 1+(b+1) · · ·+(b+1)m−1

is congruent to m modulo n and so SG∗H is cyclic of order gcd(m,n).
(b) Consider 〈x, y〉b = 〈x, yb〉 = x−1y−bx(yb)x[S,G ∗H]. We have

x−1y−bx(yb)x = x−1y−bxyb
2+b = x−1y−bxyb = [x, yb].

On the other hand, since xayb ∈ ST , we have [x, yb] = [x, xayb] ∈ [ST,G ∗ H].
This shows that 〈x, y〉b lies in the kernel of SG∗H → Σ ⊆ ΠG∗H . In the same way,
〈xa, y〉 = x−ay−1xayx

a

[S,G ∗H] = [xa, y][S,G ∗H] is in the kernel of SG∗H → Σ
since [xa, y] = [ybxa, y] ∈ [ST,G ∗ H]. Using the twisted bilinear relations from
Lemma 2.1 and working modulo the kernel of SG∗H → Σ, for any positive integer
k we have

〈xk, y〉 = 〈x, yxk−1〉〈xk−1, y〉
= 〈x, y(b+1)k−1〉〈xk−1, y〉
≡ 〈x, y〉(k−1)b+1〈xk−1, y〉
≡ 〈x, y〉〈xk−1, y〉.

It follows that 〈xa, y〉 ≡ 〈x, y〉a modulo the kernel of SG∗H → Σ and so 〈x, y〉a
itself lies in this kernel. Together with part (a), this shows that the order of Σ is a
common divisor of m, n, a, and b, as claimed.

(c) Information on the intersection Σ ∩Θ is obtained by reducing elements of S
modulo T . For this, we first use the divisor relations (11) to show that the elements
xa and yb are central in the semi-direct product G o H = (G ∗ H)/T . Working
modulo T we have

y−1xay = (xy)a = xa
2+a = xa
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since m | a2. In addition,

y−bxyb = x(a+1)b = xab+1 = x

since m | gcd(a2, ab). Using this, we show that [S,G ∗H] ⊆ T . Given u,w ∈ G ∗H
and working modulo T , we have

[w−1x−1y−1xyb+1w, u] ≡ [w−1xaybw, u] ≡ [xayb, u] ≡ 1.

This shows that T contains a generating set for [S,G ∗H].
Now Σ/(Σ∩Θ) ∼= (Σ+Θ)/Θ = ST/T [S,G∗H] = ST/T embeds in (G∗H)/T ∼=

GoH by the map
〈x, y〉+ (Σ ∩Θ) 7→ xaybT.

Once again using the fact that xa and yb are central modulo T and that (G ∗H)/T
is the semidirect product G o H = Z/m o Z/n, we are able to conclude that
〈x, y〉k ∈ Σ ∩Θ if and only if m | ak and n | bk. The result follows easily.

(d) The group HG is cyclic of order ν so [H;G]H = [H;G] is cyclic of order n/ν,
generated by yb. �

Theorem 4.4. Let G = Z/m and H = Z/n, generated by x and y and with actions
given by (6). If we assume that the parameters a, b, m, and n satisfy the divisor
relations (11), then H2(G ./ H) = 0 if and only if m/µ = n/ν = gcd(µ, ν).

Proof. Let P = G ./ H. We use the conclusions of Lemma 4.3 without reference
throughout the proof of the theorem. Suppose first that m/µ = n/ν = gcd(µ, ν).
Since the order of Σ is a divisor of gcd(a, b,m, n) = gcd(µ, ν) and the order of
[H;G]H is n/ν, the fact that gcd(µ, ν) = n/ν implies that the surjection Σ →
[H;G]H is an isomorphism. In particular, Σ ∩ Θ = 0 so that ΠG∗H = Σ ⊕ Θ. In
the same way, Θ → [G;H]G is an isomorphism. Thus β is an isomorphism and so
H2(P ) = 0.

Now suppose that H2(P ) = 0. Then β is injective, which implies that the map
Σ/(Σ∩Θ)→ [H;G]H is an isomorphism. This in turn implies that lcm(m/µ, n/ν) =
n/ν so that m/µ divides n/ν. Analogous considerations applied to the map Θ/(Σ∩
Θ)→ [G;H]G show that n/ν divides m/µ. Thus m/µ = n/ν.

The order of the subgroup 〈x〉 = Ḡ of P is µ gcd(µ, ν) by (9), (10) and Lemma 4.2.
This implies that µ gcd(µ, ν) ≤ m = µn/ν, so that gcd(µ, ν) ≤ n/ν. On the
other hand, the fact that n | b2 can be used to show that n/ν | gcd(µ, ν). Thus
m/µ = n/ν = gcd(µ, ν). �

Corollary 4.5. With the notation and hypotheses of Theorem 4.4, if H2(G ./ H)
is trivial, then the factors G and H embed in the Peiffer product G ./ H.

Proof. The order of Ḡ is µ gcd(µ, ν) = µm/µ = m, so that G ∼= Ḡ. Similarly,
H ∼= H̄. �

Examples with H2 = 0. Given nonzero integers a and b with g = gcd(a, b), the
divisor relations (11) are satisfied if we set m = ag and n = bg. One notes that
m/µ = n/ν = gcd(µ, nu) = g, so the group P = P (a, b; ag, bg) = Z/ag ./ Z/bg has
order abg, H2(P ) = 0, and the factors embed in the Peiffer product.
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More with H2 = 0. Suppose that a = pq, b = qr, and m = n = q2 where p, q,
and r are pairwise relatively prime. The divisor relations (11) are satisfied and
m/µ = n/ν = gcd(µ, ν) = q, so P = P (pq, qr; q2, q2) = Z/q2 ./ Z/q2 has order q3,
H2(P ) = 0, and the factors embed in the Peiffer product.

Examples with H2 6= 0. Consider a fixed integer p ≥ 2. The divisor relations (11)
are satisfied for a = pr, b = ps, m = pr+t, and n = pr+s+t if r ≥ 1, s ≥ 0, and
0 ≤ t ≤ r. We have m/µ = n/ν = pt and gcd(µ, ν) = pr. For fixed r and s and
t = 0 . . . r, let Gt denote the Peiffer product

Gt = P (pr, pr+s; pr+t, pr+s+t) ∼= Z/pr+t ./ Z/pr+s+t.
Taking t = r, Theorem 4.4 shows that H2(Gr) = 0. With this, Lemma 4.2 provides
that Gr has order p3r+s and Corollary 4.5 shows that the element x has order p2r

in Gr ∼= Z/p2r ./ Z/p2r+s.
For each t, we have a central extension

0→ 〈xpr+t〉 → Gr → Gt → 1

and the five-term sequence for this extension shows that H2(Gt) ∼= 〈xpr+t〉 is cyclic
of order pr−t. Knowing the order of Gr and the order of x in Gr, we also conclude
that Gt has order p2r+s+t. Finally, we note that the factors embed in the Peiffer
product Gt ∼= Z/pr+t ./ Z/pr+s+t.

4.4. A double wreath product. Given positive integers m and n, let G = C
(n)
m

be the direct product of n copies of the multiplicative cyclic group Cm of order m
and let H = C

(m)
n be the direct product of m copies of the cyclic group Cn of order

n.

G = 〈x1, . . . , xn : xmi , [xi, xj ]〉
H = 〈y1, . . . , ym : yni , [yi, yj ]〉

Then G and H act on each other by cyclic permutation of indices.

x
yj
i = xi+1 (subscripts mod n)(12)

yxij = yj+1 (subscripts mod m)

The Peiffer product G ./ H is a homomorphic image of the standard wreath prod-
ucts Cm oCn and Cn oCm, so we think of G ./ H = C

(n)
m ./ C

(m)
n as a double wreath

product of Cm and Cn.

Lemma 4.6. For the double wreath product G ./ H = C
(n)
m ./ C

(m)
n , the map

β : ΠG∗H → [G;H]G ⊕ [H;G]H
is an isomorphism. In addition, the natural map

H2(G)⊕H2(H)→ H2(G ./ H)

is surjective.

Proof. We show that the kernel of the map SG∗H → [H;G]H is contained in
the kernel of the map SG∗H → ΠG∗H . An analogous result holds for the map
TG∗H → ΠG∗H and from this it follows that the map β is an isomorphism.

First note that [H;G]H = [H;G] ∼= C
(m−1)
n is generated by the elements

y−1
1 y2, y

−1
2 y3, . . . , y

−1
m−1ym.
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Next, Lemma 2.1 shows that SG∗H is generated by the elements

〈xi, yj〉 = x−1
i y−1

j xiyj+1[S,G ∗H].

The map β carries 〈xi, yj〉 to the element y−1
j yj+1 ∈ [H;G] = [H;G]H . Since H is

abelian, Theorem 3.2 shows that H ⊗G g ∼= SG∗H via the map h⊗ (g− 1) 7→ 〈g, h〉.
It follows that

〈xi, yj〉n = 1

for all i = 1, . . . , n and j = 1, . . . ,m. In addition,

m∏
j=1

〈xi, yj〉 = 〈xi, y1 . . . ym〉 = 〈xi, y1y
xi
1 . . . y

xm−1
i

1 〉 = 〈xi, y1+xi+···+xm−1
i

1 〉 = 1

for all i = 1, . . . , n since (1 +xi + · · ·+xm−1
i )(xi− 1) = 0 in the integral group ring

ZG. With this we see that it suffices to show that for each i and j, the elements
〈xi, yj〉 and 〈xi+1, yj〉 have the same image in ΠG∗H . Working in G∗H, notice that
x−1
i y−1

j xiyj+1 = [xi, yj ]y−1
j yj+1 ∈ S and y−1

j x−1
i yjxi+1 = [yj , xi]x−1

i xi+1 ∈ T so
that y−1

j yj+1x
−1
i xi+1 ∈ ST = Π. This implies that

[yj+1, y
−1
j yj+1x

−1
i xi+1] = [yj+1, x

−1
i xi+1] ∈ [Π, G ∗H].

The image of the element 〈x−1
i xi+1, yj+1〉 under the map SG∗H → ΠG∗H is

(x−1
i xi+1)−1y−1

j+1(x−1
i xi+1)y(x−1

i xi+1)
j+1 [Π, G ∗H] = [x−1

i xi+1, yj+1][Π, G ∗H] = 1

so that 〈x−1
i xi+1, yj+1〉 lies in the kernel of SG∗H → ΠG∗H . Now, using the relations

of Lemma 2.1 for SG∗H , we have

〈x−1
i xi+1, yj+1〉 = 〈xi+1, y

x−1
i
j+1〉〈x−1

i , yj+1〉
= 〈xi+1, yj〉〈x−1

i , yxij 〉
= 〈xi+1, yj〉〈xi, yj〉−1.

This shows that the elements 〈xi, yj〉 and 〈xi+1, yj〉 have the same image in ΠG∗H
and completes the proof that β is an isomorphism.

To prove the second assertion of the Lemma, note that the groups GH and HG

are both cyclic, so that H2(GH) = H2(HG) = 0. Referring to Figure 1.1, the map
α2 is the zero map. Since β is injective, it follows that H2(G ./ H)→ ΠG∗H is the
zero map and so H2(G ∗H) = H2(G)⊕H2(H)→ H2(G ./ H) is surjective. �

We will not attempt to determine the kernel of the map H2(G) ⊕ H2(H) →
H2(G ./ H) here, but we can use Lemma 4.6 to compute the order of the double
wreath product C(n)

m ./ C
(m)
n .

Proposition 4.7. The order of the double wreath product C(n)
m ./ C

(m)
n of Cm and

Cn is mn gcd(m,n).
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Proof. Letting G = C
(n)
m and H = C

(m)
n we use Proposition 1.1 to compute as

follows:

(G ./ H)/Ḡ ∼= HG
∼= Cn

Ḡ/(Ḡ ∩ H̄) ∼= (G ./ H)/H̄ ∼= Cm

Ḡ ∩ H̄ = [Ḡ, H̄]

= sgp{x−1
i xi+1 : i = 1, . . . , n}

= sgp{y−1
j yj+1 : j = 1, . . . ,m}.

Now [Ḡ, H̄] = [G ./ H,G ./ H] is central in G ./ H and the five-term sequence for
the central extension

0→ [Ḡ, H̄]→ G ./ H → GH ×HG → 1

has the form

H2(G ./ H)→ H2(GH ×HG)→ [Ḡ, H̄]→ H1(G ./ H)
∼=→ GH ×HG → 0.

The composite maps G → G ./ H → GH × HG and H → G ./ H → GH × HG

factor through the cyclic groups GH and HG and so induce the trivial map on
second homology. And since H2(G)⊕H2(H)→ H2(G ./ H) is surjective, it follows
that the map H2(G ./ H) → H2(GH ×HG) is the trivial map. This implies that
[Ḡ, H̄] ∼= H2(GH ×HG) ∼= Cm ⊗ Cn. Thus the order of [Ḡ, H̄] is gcd(m,n) and so
the order of G ./ H is mn gcd(m,n). �

A parting shot. Let p be a prime number. We close by calling attention to the
groups P (p, p; p2, p2) = Z/p2 ./ Z/p2 of §4.3 and C

(p)
p ./ C

(p)
p of §4.4, both of

which have order p3. These are nonisomorphic nonabelian groups whose center
and derived subgroups coincide and have order p. Such groups are called extra-
special p-groups. According to [12, pages 140–141], every nonabelian group of
order p3 is isomorphic to either Z/p2 ./ Z/p2 or to C(p)

p ./ C
(p)
p . Further, the extra-

special p-groups “play an important role in some of the deeper parts of finite group
theory” and every extra-special p-group can be exhibited as a “central product” of
nonabelian groups of order p3. It is therefore satisfying to see how these groups
can be constructed from cyclic groups using the Peiffer product construction.
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