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Nevanlinna–Pick interpolation for Schur–Agler
class functions on domains with matrix polynomial

defining function in C
n

Joseph A. Ball and Vladimir Bolotnikov

Abstract. We consider a bitangential interpolation problem for operator-
valued functions defined on a general class of domains in Cn (including as
particular cases, Cartan domains of types I, II and III) which satisfy a type
of von Neumann inequality associated with the domain. The compact formu-
lation of the interpolation conditions via a functional calculus with operator
argument includes prescription of various combinations of functional values
and of higher-order partial derivatives along left or right directions at a pre-
scribed subset of the domain as particular examples. Using realization results
for such functions in terms of unitary colligation and the defining polynomial
for the domain, necessary and sufficient conditions for the problem to have a
solution were established recently in Ambrozie and Eschmeier (preprint, 2002),
and Ball and Bolotnikov, 2004. In this paper we present a parametrization of
the set of all solutions in terms of a Redheffer linear fractional transformation
acting on a free-parameter function from the class subject to no interpolation
conditions. In the finite-dimensional case when functions are matrix-valued,
the matrix of the linear fractional transformation is given explicitly in terms
of the interpolation data.
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1. Introduction

In this paper we pursue our work on interpolation theory for Schur–Agler func-
tions that are a far-reaching operator-valued multivariable analogue of classical
Schur functions (that is, analytic and mapping the unit disk D into the closed unit
disk D. The operator-valued Schur class S(E , E∗) consists, by definition, of ana-
lytic functions F on D with values F (z) equal to contraction operators between
two Hilbert spaces E and E∗. In what follows, the symbol L(E , E∗) stands for the
algebra of bounded linear operators mapping E into E∗. The class S(E , E∗) ad-
mits several remarkable characterizations. We mention in particular that any such
function F (z) can be realized in the form

F (z) = D + zC(I − zA)−1B

where the connecting operator (or colligation)

U =
[
A B
C D

]
:
[
H
E

]
→
[
H
E∗

]
is unitary, and where H is some auxiliary Hilbert space (the internal space for the
colligation). From the point of view of system theory, F (z) = D+ zC(I − zA)−1B
is the transfer function of the linear system

Σ = Σ(U) :

{
x(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n) +Du(n)

in the sense that any solution (u, x, y) of Σ defined on the nonnegative integers Z
+

with x(0) = 0 satisfies
ŷ(z) = F (z) · û(z).

Here in general we denote by

x̂(z) =
∞∑

n=0

x(n)zn

the Z-transform of the sequence {x(n)}∞n=0. It is also well-known that the Schur
class functions satisfy a von Neumann inequality: F ∈ S(E , E∗) and T ∈ L(H′) a
contraction operator =⇒ ‖F (rT )‖ ≤ 1 for all r < 1. Here F (rT ) can be defined,
e.g., by

F (rT ) =
∞∑

n=0

rnFn ⊗ Tn ∈ L(E ⊗H′, E∗ ⊗H′) if F (z) =
∞∑

n=0

Fnz
n.

Multivariable generalizations of these and many other related results have been
obtained recently in the following way: let Q be a p× q matrix-valued polynomial

Q(z) =

q11(z) . . . q1q(z)
...

...
qp1(z) . . . qpq(z)

 : C
n → C

p×q(1.1)

and let DQ ∈ C
n be the domain defined by

DQ = {z ∈ C
n : ‖Q(z)‖Cp×q < 1} .(1.2)

(Here ‖ · ‖Cp×q refers to the induced operator norm arising by considering a p× q
matrix M as an operator from C

q into C
p.) Now we recall the Schur–Agler
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class SAQ(E , E∗) that consists, by definition, of L(E , E∗)-valued functions S(z) =
S(z1, . . . , zn) analytic on DQ and such that

‖S(T1, . . . , Tn)‖ ≤ 1

for any collection of n commuting operators (T1, . . . , Tn) on a Hilbert space K,
subject to

‖Q(T1, . . . , Tn)‖ < 1.

By [9, Lemma 1], the Taylor joint spectrum of the commuting n-tuple (T1, . . . , Tn)
is contained in DQ whenever ‖Q(T1, . . . , Tn)‖ < 1, and hence S(T1, . . . , Tn) is well-
defined by the Taylor functional calculus (see [28]) for any L(E , E∗)-valued function
S which is analytic on DQ. Upon using K = C and Tj = zj for j = 1, . . . , n where
(z1, . . . , zn) is a point in DQ we conclude that any L(E , E∗) function is contractive
valued, and thus, the class SAQ(E , E∗) is the subclass of the Schur class SDQ

(E , E∗)
of contractive valued functions analytic on DQ. By the von Neumann result, in the
case when Q(z) = z, these classes coincide; in general, SAQ(E , E∗) is a proper
subclass of SDQ

(E , E∗).

Special choices of

Q(z) =

z1 . . .
zn

 and Q(z) =
[
z1 z2 . . . zn

]
lead to the unit polydisk DQ = D

n and the unit ball DQ = B
n of C

n, respectively.
The classes SAQ(E , E∗) for these two generic cases have been known for a while.
The polydisk setting was first presented by J. Agler in [2] and then extended to
the operator valued case in [19, 22]; see also [3, 15, 20]. The Schur–Agler func-
tions on the unit ball appeared in [30] and later in [1, 47, 40] in connection with
complete Nevanlinna–Pick kernels and in [13, 46] in connection with the study of
dilation theory for commutative row contractions; we refer to [23] for a thorough
review of the operator-valued case. The general setting introduced above unifies
these two generic settings and besides, covers some other interesting cases including
Cartan domains of the first three types, their cartesian products and their inter-
sections. General domains DQ and classes SAQ(E , E∗) (for E = E∗ = C) have been
introduced in [9]. The operator-valued version of this class has appeared in [8], [17].

The following theorem gives several equivalent characterizations of the class
SAQ(E , E∗); the proof can be found in [8, 17]; the proof for the scalar-valued
case (where E = E∗ = C) can be found in [9] in a somewhat different form.

Theorem 1.1. Let S be a L(E , E∗)-valued function defined on DQ. The following
statements are equivalent:

(1) S belongs to SAQ(E , E∗).
(2) There exist an auxiliary Hilbert space H and a function

H(z) =
[
H1(z) . . . Hp(z)

]
(1.3)

analytic on DQ with values in L(Cp ⊗H, E∗) so that

IE∗ − S(z)S(w)∗ = H(z) (ICp⊗H − Q(z)Q(w)∗)H(w)∗.(1.4)
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(3) There exist an auxiliary Hilbert space H and a function

G(z) =

G1(z)
...

Gq(z)

(1.5)

analytic on DQ with values in L(Cq ⊗H, E) so that

IE − S(z)∗S(w) = G(z)∗ (ICq⊗H − Q(z)∗Q(w))G(w).(1.6)

(4) There exist an auxiliary Hilbert space H and analytic functions H(z) and
G(z) as in (1.3) and (1.5), so that relations (1.4) and (1.6) hold along with

S(z) − S(w) = H(z) (Q(z) − Q(w))G(w) (z, w ∈ DQ).(1.7)

(5) There is a unitary operator

U =
[
A B
C D

]
:
[
C

p ⊗H
E

]
→
[
C

q ⊗H
E∗

]
(1.8)

such that

S(z) = D + C (ICp⊗H − Q(z)A)−1 Q(z)B for all z ∈ Ω.(1.9)

Moreover, if S is of the form (1.9), then it holds that

IE∗ − S(z)S(w)∗ = C (I − Q(z)A)−1 (I − Q(z)Q(w)∗) (I −A∗Q(w)∗)−1
C∗,

S(z) − S(w) = C (I − Q(z)A)−1 (Q(z) − Q(w)) (I −AQ(w))−1
B,

IE − S(z)∗S(w) = B∗ (I − Q(z)∗A∗)−1 (I − Q(z)∗Q(w)) (I −AQ(w))−1
B.

Hence the representations (1.4), (1.6) and (1.7) are valid with

H(z) = C (I − Q(z)A)−1
and G(z) = (I −AQ(z))−1

B.(1.10)

The representation (1.9) is called a unitary realization of S ∈ SAQ(E , E∗) and
can be viewed as a realization of S as the transfer function of a certain type of
multidimensional system; see Section 4.

Remark 1.2. In formulas (1.9) and (1.10) we abused notations and used Q(z)
instead of Q(z) ⊗ IH.

Let HDQ
(E ,K) be the set of all L(E ,K)-valued functions F which are analytic on

DQ. Given F ∈ HDQ
(E ,K) and T = (T1, . . . , Tn) an n-tuple of commuting bounded

operators on K for which the Taylor joint spectrum σTaylor(T ) is contained in DQ,
one can use the Taylor functional calculus (details below in Section 2) to define
a left evaluation map F �→ F∧L(T ) ∈ L(E ,K). Similarly, if F ∈ HDQ

(K, E∗)
and T ′ = (T ′

1, . . . , T
′
n) is an n-tuple of commuting bounded operators on K with

σTaylor(T ) ⊂ DQ, one can use the Taylor functional calculus to define a right
evaluation map F �→ F∧R(T ′) ∈ L(K, E∗).

Let K and K′ be two Hilbert spaces and let

T = (T1, . . . , Tn) and T ′ = (T ′
1, . . . , T

′
n)(1.11)

be commutative n-tuples of operators Tj ∈ L(K) and T ′
j ∈ L(K′) such that

σTaylor(T ) ⊂ DQ and σTaylor(T ′) ⊂ DQ.(1.12)
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We shall consider bitangential interpolation problems with the data sets consisting
of two Hilbert spaces K and K′, two commutative n-tuples of the form (1.11) and
satisfying (1.12), and bounded operators

XL : E∗ → K, YL : E → K, XR : K′ → E∗, YR : K′ → E .
Given this data set

D = {T, T ′, XL, YL, XR, YR} ,(1.13)

the formal statement of the associated bitangential interpolation problem is:

Problem 1.3. Find necessary and sufficient conditions for existence of a function
S ∈ SAQ(E , E∗) such that

(XLS)∧L (T ) = YL and (SYR)∧R (T ′) = XR.(1.14)

To formulate the solution criterion we need some additional notation. Define
operators

E1 =


IK
0
...
0

 , E2 =


0
IK
...
0

 , . . . , Ep =


0
...
0
IK

 ,(1.15)

E′
1 =


IK′

0
...
0

 , E′
2 =


0
IK′

...
0

 , . . . , E′
q =


0
...
0
IK′

 ,(1.16)

Qj·(T ′) =

qj1(T ′)
...

qjq(T ′)

 , Q·k(T ) =

q1k(T )∗
...

qpk(T )∗

(1.17)

and the operators

Mj = Mj(T ′) =
[
Ej 0
0 Qj·(T ′)

]
for j = 1, . . . , p,(1.18)

Nk = Nk(T ) =
[
Q·k(T ) 0

0 E′
k

]
for k = 1, . . . , q.(1.19)

Theorem 1.4. There is a function S ∈ SAQ(E , E∗) satisfying interpolation con-
ditions (1.14) if and only if there exists a positive semidefinite operator

P ∈ L ((Cp ⊗K) ⊕ (Cq ⊗K′))

subject to the Stein identity
p∑

j=1

M∗
j PMj −

q∑
k=1

N∗
kPNk = X∗X − Y ∗Y(1.20)

where Mj and Nk are the operators defined via formulas (1.15)–(1.19) and where

X =
[
X∗

L XR

]
and Y =

[
Y ∗

L YR

]
.(1.21)
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The special case where only a set of left tangential interpolation conditions
(XLS)∧L(T ) = YL or only right tangential interpolation conditions (SYk)∧R(T ′) =
XR is considered corresponds to the special case of Problem 1.3 where one takes
K′ = {0} (respectively, K = {0}). As a corollary to Theorem 1.4 we therefore have
the following.

Corollary 1.5. (1) Suppose that DL = {T,XL, YL} is the data set for a left
tangential interpolation problem (i.e., DL is as in (1.13) with K′ = {0}).
Then there exists an S ∈ SAQ(E , E∗) satisfying the interpolation condition

(XLS)∧L(T ) = YL

if and only if there exists a positive semidefinite solution

P = [Pij ]
p
i,j=1 ∈ L(K ⊗ C

p)

to the Stein equation
p∑

j=1

Pjj −
q∑

k=1

p∑
i,j=1

qik(T )Pijqjk(T )∗ = XLX
∗
L − YlY

∗
L .

(2) Suppose that DR = {T ; , YR, XR} is the data set for a right tangential inter-
polation problem (i.e., DR is as in (1.13) with K = {0}). Then there exists
an S ∈ SAQ(E , E∗) satisfying the interpolation condition

(SYR)∧R(T ′) = XR

if and only if there exists a positive semidefinite solution

P ′ = [P ′
ij ]

q
i,j=1 ∈ L(K′ ⊗ C

q)

of the Stein equation
q∑

j=1

P ′
jj −

p∑
k=1

q∑
i,j=1

qki(T ′)∗P ′
ijqjk(T ′) = Y ∗

RYR −X∗
RXR.

In the special case in Corollary 1.5 where K = ⊕ω∈ΩE∗ for some subset Ω of DQ

and one takes

T = diagω∈Ω[ωIE∗ ], XL = colω∈Ω[IE∗ ], YL = colω∈Ω[F (ω)]

for some given function F : Ω → L(E , E∗), the left interpolation condition with
operator argument (XLF )∧L(T ) = YL gives rise to full-operator-value interpolation
along the subset Ω of DQ. The interpolation problem then is: given F : Ω →
L(E , E∗), find S ∈ SAQ(E , E∗) so that

S(ω) = F (ω) for all ω ∈ Ω ⊂ DQ.

This case of part (1) of Corollary 1.5 can already be found in [17]. We note that a
more general version of this problem, where the matrix polynomial Q(z) is replaced
by a continuum z → Qλ(z) of matrix-valued analytic functions indexed by λ in a
separable compact Hausdorff space Λ, has been worked out in [7].

Let P be any operator satisfying the conditions in Theorem 1.4. Let us represent
its block entries explicitly as

P =
[
PL PLR

P ∗
LR PR

]
(1.22)
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where

PL =

Ψ11 . . . Ψ1p

...
...

Ψp1 . . . Ψpp

 , PR =

Φ11 . . . Φ1q

...
...

Φq1 . . . Φqq

 ,(1.23)

PLR =

Λ11 . . . Λ1q

...
...

Λp1 . . . Λpq

 ,(1.24)

with 
Ψj� ∈ L(K) for j, � = 1, . . . , p,
Φj� ∈ L(K′) for j, � = 1, . . . , q,
Λj� ∈ L(K′,K) for j = 1, . . . , p; � = 1, . . . , q.

(1.25)

It turns out that for every positive semidefinite P satisfying (1.20), there is a
solution S of the bitangential interpolation Problem 1.3 such that, for some choice
of associated functions H(z) and G(z) of the form (1.3) and (1.5) in representations
(1.4), (1.6), (1.7), it holds that

(XLHj)∧L(T )
[
(XLH�)∧L(T )

]∗
= Ψj� for j, � = 1, . . . , p,(1.26)

(XLHj)∧L(T ) (G�YR)∧R (T ′) = Λj� for j = 1, . . . , p; � = 1, . . . , q,(1.27) [
(GjYR)∧R(T ′)

]∗
(G�YR)∧R(T ′) = Φj� for j, � = 1, . . . q.(1.28)

Furthermore, it turns out that conversely, for every solution S of Problem 1.3 with
representations (1.4), (1.6), (1.7) (existence of these representations is guaranteed
by Theorem 1.1), the operator P defined via (1.22)–(1.24) and (1.26)–(1.28) satisfies
conditions of Theorem 1.4. These observations suggested the following modification
of Problem 1.3 with the data set

D = {T, T ′, XL, YL, XR, YR, Ψj�, Φj�, Λj�} .(1.29)

Problem 1.6. Given the data D as in (1.29), find all functions S ∈ SAQ(E , E∗)
satisfying interpolation conditions (1.14) and such that for some choice of associated
functions Hj and G� in the representations (1.4), (1.6), (1.7), the equalities (1.26)–
(1.28) hold.

In contrast to Problem 1.3, the solvability criterion for Problem 1.6 can be given
explicitly in terms of the interpolation data.

Theorem 1.7. Problem 1.6 has a solution if and only if the operator P given by
(1.22)–(1.24) is positive semidefinite and satisfies the Stein identity (1.20).

Moreover, there exists defect subspaces ∆̃ and ∆̃∗ and an operator-valued function

z �→ Σ(z) =
[
Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

]
:
[
E

∆̃∗

]
→
[
E∗
∆̃

]
for z ∈ DQ

of the form

Σ(z) =
[
U22 U23

U32 0

]
+
[
U21

U31

]
(I∆̃∗

− Q(z)U11)−1Q(z)
[
U12 U13

]
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with

U0 =

U11 U12 U13

U21 U22 U23

U31 U32 0

 :

 Ĥ
E

∆̃∗

→

ĤE∗
∆̃


unitary and completely determined by the interpolation data set D (see (1.13)) so
that S is a solution of Problem 1.6 if and only if S has the form

S(z) = Σ11(z) + Σ12(z)
(
I∆̃∗

− T (z)Σ22(z)
)−1

T (z)Σ21(z)

for a free-parameter function T (z) ∈ SAQ(∆̃, ∆̃∗).

As a corollary of Theorem 1.7 we get a description (albeit less satisfactory) of
the set of all solutions of a Problem 1.3.

Corollary 1.8. Suppose that D is an interpolation data set for Problem 1.3 as
in (1.13). Given any positive semidefinite solution P of the Stein identity (1.20),
define operators ΨP

j� ∈ L(K) for j, � = 1, . . . , p, ΦP
ij ∈ L(K′) for j, � = 1, . . . , p, and

Λp
j� ∈ L(K,K′) for j = 1, . . . , p and � = 1, . . . , q, by (1.22), (1.23) and (1.24). Let

ΣP (z) =
[
ΣP

11(z) ΣP
12(z)

ΣP
21(z) ΣP

22(z)

]
:
[
E

∆̃P
∗

]
→
[
E∗
∆̃P

]
be the linear-fractional coefficient matrix function generated from the expanded in-
terpolation data set

DP =
{
T, T ′, XL, YL, XR, YR,ΨP

j�,Φ
P
j�,Λ

P
j�

}
associated with a Problem 1.6 as in Theorem 1.7. Then S is a solution of Prob-
lem 1.3 if and only if S has the form

S(z) = ΣP
11(z) + ΣP

12(z)
(
I∆̃P∗

− T P (z)ΣP
22(z)

)−1

T P (z)ΣP
21(z)

for some choice P of positive semidefinite solution of (1.20) and some choice of
free-parameter function T P (z) ∈ SAQ(∆̃P , ∆̃P

∗ ).

The paper is organized as follows. Section 2 reviews material from [49, 51] (see
also [28]) on Vasilescu’s adaptation based on the Martinelli kernel (see [51]) of the
Taylor functional calculus (see [49, 50]) to formulate and develop the basic proper-
ties of the left and right point evaluation operators F �→ F∧L(T ) and F �→ F∧R(T ′)
needed in the very formulation of the bitangential interpolation problem. Section 3
derives the necessity direction of the solvability criterion in Theorem 1.7. Section 4
discusses the connections with multidimensional system theory and delineates how
solutions of Problem 1.6 are in correspondence with the characteristic functions
of unitary colligations arising as unitary extensions of a certain partially defined
isometry uniquely specified by the interpolation data. Section 5 sets up the uni-
versal unitary colligation completely determined by the interpolation data which
leads to the linear fractional parametrization for the set of all solutions of Prob-
lem 1.6 asserted in the second part of Theorem 1.7; the ideas here adapt the earlier
work of [11, 12] done for the classical one-variable setting. Section 7 makes explicit
how the bitangential interpolation problems covered in [17] can be seen as exam-
ples of Problems 1.3 and 1.6 here and considers the special case of a bitangential
Nevanlinna–Pick interpolation problem involving only finitely many interpolation
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nodes. In the latter case the coefficients of the Redheffer linear fractional map
parametrizing the set of all solutions can be described more explicitly. For some
particular choices of Q similar formulas were obtained in [26], [5] and [14], [27].
The results and techniques used in Sections 4–7 are an adaptation of the approach
carried out for closely related multivariable interpolation problems for particular
cases of the domains DQ in [14, 16, 15].

2. Right and left evaluation with operator argument

We begin with a review of the elements of the Taylor functional calculus for a
tuple of commuting Hilbert space operators, as worked out in explicit form by use
of an adaptation of the Bochner–Martinelli kernel by Vasilescu. A good survey of
the general topic of joint spectra and functional calculus for operator tuples is [28];
more specific information can be found in [51, 52, 43].

Denote by Λ[e] = ⊕n
k=0Λ

k[e] the exterior algebra over C on n generators e1, . . . ,
en. The linear space Λ[e] becomes a Hilbert space if we declare the collection

{ei1 ∧ · · · ∧ eik
: 1 ≤ i1 < · · · < ik ≤ n}

to be an orthonormal basis for Λk[e] for each k = 1, . . . , n. Note that we identify
Λ0[e] with C. For i = 1, . . . , n let Ei be the operator defined on Λ[e] by Ei : ξ �→ ei∧ξ
for ξ ∈ Λ[e]. Then one can check that

EiEj + EjEi = 0, E2
i = 0, E∗

i Ej + EjE
∗
i = δi,jIΛ[e]

where δi,j is the Kronecker delta. Therefore

EiE
∗
i Ei = Ei(I − EiE

∗
i ) = Ei − E2

i E
∗
i = Ei,

so each Ei is a partial isometry. Now let T = (T1, . . . , Tn) be a commuting n-tuple
of operators on a Hilbert space K. On K ⊗ Λ[e] define the operator

DT = T1 ⊗ E1 + · · · + Tn ⊗ En.

One can check thatD2
T = 0, i.e., that RanDT ⊂ KerDT . We say that T is invertible

in the sense of Taylor if we have the equality RanDT = KerDT , or equivalently
(see [51, Lemma 2.1]), if RT := DT +D∗

T is invertible (as an operator on K⊗Λ[e]).
We define the Taylor spectrum of T to be the set of all λ = (λ1, . . . , λn) ∈ C

n for
which the n-tuple

λ− T := (λ1IK − T1, . . . , λnIK − Tn)
is not invertible in the sense of Taylor.

Now suppose that z �→ β(z) = (β1(z), . . . , βn(z)) is an n-tuple of L(K)-valued
holomorphic functions on an open set Ω ⊂ C

n. (We shall eventually restrict to the
case

β(z) = z − T := (z1IK − T1, . . . , znIK − Tn)(2.1)

for an n-tuple of operators T = (T1, . . . , Tn) in L(K), so the reader should keep this
example in mind.) Define an operator Dβ : C∞(Ω,Λ(K)) → C∞(Ω,Λ(K)) by

(Dβf)(z) := Dβ(z)f(z) for z ∈ Ω.

Hence Rβ is then defined by

(Rβf)(z) = (Dβ(z) +D∗
β(z))f(z).



256 Joseph A. Ball and Vladimir Bolotnikov

In addition we need the so-called Dolbeault complex (see [39, page 268]), i.e., the
exterior algebra Λ[∂z] generated by the indeterminants dz = (dz1, . . . , dzn). The
operator ∂ on C∞(Ω) ⊗ Λ[∂z] is then given by

∂ : ξ �→ ∂f ∧ dzi1 ∧ · · · ∧ dzik
if ξ = fdzi1 ∧ · · · ∧ dzik

where
∂f :=

∂f

∂z1
dz1 + · · · + ∂f

∂zn
dzn.

For an n-tuple β = (β1, . . . , βn) of functions in HΩ(K,K), we declare the Taylor
spectrum of β in Ω to be

σΩ
Taylor(β,K) :=

{
λ ∈ Ω: Ker(Dβ(λ)) �= Ran(Dβ(λ))

}
.

Then the Martinelli kernel associated with β is defined by

M(β)(z) := R−1
β(z)

(
∂zR

−1
β(z)

)n−1
E|K⊗Λ0[e] : K ⊗ Λ0[e] → K⊗ Λ0[e] ⊗ Λn−1[dz].

for all z /∈ σΩ
Taylor(β,K). If we identify K ⊗ Λ0[e] with K, then we view M(β)(z)

simply as an element of L(K) ⊗ Λn−1[dz].
We now specialize to the case when β(z) is of the form (2.1) for an n-tuple of

operators T = (T1, . . . , Tn) ∈ L(K)n. Assume that σTaylor(T ) ⊂ Ω. One can use
the Martinelli kernel associated with z− T to define a functional calculus for T for
functions f ∈ H(Ω,C) as follows (see [51]). Choose an open subset Ω′ with smooth
boundary ∂Ω′ so that

σTaylor(T ) ⊂ Ω′ ⊂ Ω′ ⊂ Ω.(2.2)

Note that by definition σ
DQ

Taylor(z − T ) = σTaylor(T ) ⊂ Ω′ and hence M(z − T ) is
defined on ∂Ω′. Then, for f a scalar-valued holomorphic function on Ω, we can
define f(T ) via

f(T ) =
1

(2πi)n

∫
∂Ω′

M(z − T ) · f(z) ∧ dz.

For further details, we refer to [51, 28]. The definition of the Taylor spectrum
originates in [49] and an equivalent formulation of the functional calculus using
more homological algebra machinery can be found in [50].

For F ∈ HΩ(E , E∗), we can define a functional calculus

F �→ F (T ) ∈ L(E ⊗ K, E∗ ⊗K)

by

F (T ) =
1

(2πi)n

∫
∂Ω′

F (z) ⊗M(z − T ) ∧ dz.

This is the functional calculus needed to define the Schur–Agler class above.
To formulate the general bitangential interpolation problem, we need to intro-

duce left and right operator evaluation defined as follows. Suppose first that we are
given a function F ∈ HΩ(E ,K) (i.e., F is holomorphic on Ω with values in L(E ,K))
together with a commuting n-tuple T = (T1, . . . , Tn) ∈ L(K)n with σTaylor(T ) ⊂ Ω.
We then define the left evaluation of F with operator argument T by

F∧L(T ) =
1

(2πi)n

∫
∂Ω′

M(z − T ) · F (z) ∧ dz(2.3)
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with Ω′ chosen as in (2.2). Similarly, if F̃ ∈ HΩ(K′, E∗) and T ′ = (T ′
1, . . . , T

′
n) ∈

L(K′)n with σTaylor(T ′) ⊂ Ω, define the right evaluation of F̃ with operator argu-
ment T ′ by

F̃∧R(T ′) =
1

(2πi)n

∫
∂Ω′

F̃ (z) ·M(z − T ′) ∧ dz.(2.4)

We need the following general result of Fubini type concerning this left and right
functional calculus with operator argument.

Proposition 2.1. Let T = (T1, . . . , Tn) ∈ L(K)n, T ′ = (T ′
1, . . . , T

′
m) ∈ L(K)m

and let (T, T ′) be a commuting (n+m)-tuple of operators on the Hilbert space K.
Suppose that the functions

F : Ω �→ L(E ′,K) and F̃ : Ω̃ �→ L(E , E ′)

are analytic on open sets Ω and Ω̃ containing σTaylor(T ) and σTaylor(T ′) respec-
tively. Define an analytic function of n+m variables

(z, w) = (z1, . . . , zn, w1, . . . , wm)

by
H(z, w) = F (z)F̃ (w) : Ω × Ω̃ �→ L(E ,K).

Then

H∧L(T, T ′) = (F∧L(T ) · F̃ )∧L(T ′).(2.5)

Similarly, if F takes values in L(E , E ′) and F̃ takes values in L(K, E) and if we set
H(z, w) = F (z)F̃ (w), then

H∧R(T, T ′) = (F · F̃∧R(T ′))∧R(T ).(2.6)

Proof. This result is a mild generalization of Theorem 3.8 in [52]. Alternatively,
one can view it as a generalization of Proposition 12 in [43] (specialized to the
Hilbert space case where one can take the generalized inverse V appearing there to
be simply (Rz−T )−1 — see the concluding remark (2) in [43]). In these references,
the result is given for the case where E = E ′ = K and the values of F and G
are scalar operators. The same proof goes through for our setting, with proper
attention to the order of writing of values of F , F̃ and M(z − T,w − T ′). �

Remark 2.2. If Ω is a logarithmically convex Reinhardt domain (see [39, Section
2.3]), then 0 ∈ Ω and any function F ∈ HΩ(E , E∗) is given by its power series
expansion about the origin

F (z) =
∑
j∈Nn

Fjz
j Fj ∈ L(E , E∗)

uniformly converging on compact subsets of Ω. Then the left and right evaluation
maps (2.5) and (2.6) are given explicitly by

F∧L(T ) =
∑
j∈Nn

T jFj and F̃∧R(T ) =
∑
j∈Nn

F̃jT
j,

for every choice of F ∈ HΩ(E ,K) and F̃ ∈ HΩ(K, E∗) and for any commuting
n-tuple T = (T1, . . . , Tn) ∈ L(K)n.
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Similarly, if Ω = Ω1 × · · · × Ωn is a polydomain (the Cartesian product of n
1-variable domains Ω1, . . . ,Ωn), then we may write

F∧L(T ) =
1

(2πi)n

∫
Ωn

· · ·
∫

Ω1

(z1I − T1)−1 · · · (znI − Tn)−1F (z) dz1 · · · dzn,

F̃∧R(T ) =
1

(2πi)n

∫
Ωn

· · ·
∫

Ω1

F̃ (z)(z1I − T1)−1 · · · (znI − Tn)−1 dz1 · · · dzn.

We need to note the following elementary properties of evaluations (2.3) and (2.4).

Lemma 2.3. Let T and T ′ be commuting n-tuples of the form (1.11) with Taylor
spectrum contained in Ω. Then:

(1) For every constant function W (z) ≡W ∈ L(K′,K),

(W )∧L (T ) = (W )∧R (T ′) = W.(2.7)

(2) For every F ∈ HΩ(E ,K), F̃ ∈ HΩ(K′, E∗), W ∈ L(E ′, E) and W̃ ∈ L(E∗, E ′
∗),

(F ·W )∧L (T ) = F∧L(T ) ·W and
(
W̃ · F̃

)∧R

(T ′) = W̃ · F̃∧R(T ′).(2.8)

(3) For every F ∈ HΩ(E ,K), F̃ ∈ HΩ(K′, E∗) and j ∈ {1, . . . , d},

(zjF (z))∧L (T ) = Tj · F∧L(T ) and
(
zjF̃ (z)

)∧R

(T ′) = F̃∧R(T ′) · T ′
j .(2.9)

(4) For every choice of F ∈ HΩ(E ,K) and of F̃ ∈ HΩ(E ′, E),(
F · F̃

)∧L

(T ) = (F∧L(T ) · F̃ )∧L(T ).(2.10)

(5) For every choice of F ∈ HΩ(E ′
∗, E∗) and of F̃ ∈ HΩ(K′, E ′

∗),(
F · F̃

)∧R

(T ′) = (F · F̃∧R(T ′))∧R(T ′).(2.11)

Proof. Statement (1) is a consequence of the fact that the Martinelli–Vasilescu
functional calculus reproduces constants. Statement (2) is an immediate conse-
quence of equalities∫

Ω′
H(z) ·W dz =

∫
Ω′
H(z) dz ·W,

∫
Ω′
W̃ · H̃(z) dz = W̃ ·

∫
Ω′
H̃(z) dz

for a L(E ,K)-valued (2n−1)-form H(z) and a L(K′, E∗)-valued (2n−1)-form H̃(z).
Alternatively, the first equality in (2.8) follows from (2.10) for the special case

of F̃ (z) ≡W when combined with (2.7):

(F ·W )∧L (T ) =
(
F∧L(T ) ·W

)∧L
(T ) = F∧L(T ) ·W

and the second equality in (2.8) follows in much the same way from (2.11) for the
special case of F (z) ≡ W̃ .

The first relation in (2.9) follows from (2.10) for the special case when E ′ = E
and F̃ (z) = zjIE . Indeed, in this case (2.10) gives

(zjF (z))∧L (T ) = (F · F̃ )∧L(2.12)

=
(
F∧L(T ) · F̃

)
)∧L(T ) =

(
F1 · F∧L(T )

)∧L
(T )
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where F1(z) = zjIK. Applying the first relation in (2.8) (with F = F1 and W =
F∧L(T )) to the right-hand side in (2.12) we get

(zjF (z))∧L (T ) = F∧L
1 (T ) · F∧L(T )

and since F∧L
1 (T ) = Tj by (2.3), the first equality in (2.9) follows. To get the

second equality, one can apply (2.11) to the special case E ′
∗ = E∗ and F (z) = zjIE∗ .

Finally, statement (4) follows from (2.5) and statement (5) from (2.6) upon
setting T = T ′ in (2.5) and (2.6). �

3. The solvability criterion

In this section we prove the necessity part of Theorem 1.7.

Proof of the necessity part in Theorem 1.7. Suppose that S ∈ SAQ(E , E∗)
satisfies conditions (1.14) and (1.26)–(1.28) for some choice of associated functions
H and G of the form (1.3) and (1.5) in the representation (1.4), (1.6), (1.7). Let P
be defined as in (1.22)–(1.24). Interpolation conditions (1.26)–(1.28) mean that P
can be represented as

P =
[
T
∗
L

T
∗
R

] [
TL TR

]
(3.1)

where the operators TL : C
p ⊗K → H and TR : C

q ⊗K′ → H are given by

TL =
[[

(XLH1)∧L(T )
]∗
. . .
[
(XLHp)∧L(T )

]∗](3.2)

and

TR =
[
(G1YR)∧R(T ′) . . . (GqYR)∧R(T ′)

]
.(3.3)

Comparing (3.1) with (1.22) we conclude that

PL = T
∗
LTL, PR = T

∗
RTR, PLR = T

∗
LTR.(3.4)

It follows from (3.1) that P ≥ 0 and thus, it remains to show that P satisfies the
Stein identity (1.20). To this end, note that by the first property in (2.9),

(pF )∧L (T ) = p(T ) · F∧L(T )

for every polynomial p in n variables and every F ∈ HQ(K, E). In particular, taking
into account the block structure (1.3) of H and (1.1) of Q, we get

(XLHQ)∧L (T ) =

[
p∑

i=1

qi1XLHi . . .

p∑
i=1

qiqXLHi

]∧L

(T )

=

[
p∑

i=1

qi1(T ) (XLHi)
∧L (T ) . . .

p∑
i=1

qiq(T ) (XLHi)
∧L (T )

]
which can be written in terms of (1.17) and (3.2) as

(XLHQ)∧L (T ) =
[
Q·1(T )∗T∗

L . . .Q·p(T )∗T∗
L

]
.(3.5)

Note also that according to decomposition (1.3),

(XLH)∧L (T ) =
[
(XLH1)

∧L (T ) . . . (XLHp)
∧L (T )

]
,
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which can be written in terms of (1.15) and (3.2) as

(XLH)∧L (T ) =
[
E∗

1T
∗
L . . . E

∗
pT

∗
L

]
.(3.6)

Similarly, taking advantage of the second property in (2.9) we conclude that

(pF )∧R (T ′) = F∧R(T ′) · p(T ′)

for every polynomial p in n variables and thus, on account of the block structure
(1.5) of G and (1.1) of Q,

(QGYR)∧R (T ′) =



q∑
i=1

(GiYR)∧L (T ′)q1i(T ′)

...
q∑

i=1

(GiYR)∧L (T ′)qpi(T ′)


which can be written in terms of (1.17) and (3.3) as

(QGYR)∧R (T ′) =

TRQ1·(T ′)
...

TRQp·(T ′)

 .(3.7)

Finally,

(GYR)∧R (T ′) =

(G1YR)∧R (T ′)
...

(GqYR)∧R (T ′)

 =

TRE
′
1

...
TRE

′
q

 ,(3.8)

where E′
1, . . . , E

′
q are given in (1.16).

Substituting the partitionings (1.18), (1.19), (1.21) and (1.22) into (1.20) we
conclude that (1.20) is equivalent to the following three equalities:

p∑
j=1

E∗
jPLEj −

q∑
k=1

Q·k(T )∗PLQ·k(T ) = XLX
∗
L − YLY

∗
L ,(3.9)

p∑
j=1

E∗
jPLRQj·(T ′) −

q∑
k=1

Q·k(T )∗PLRE
′
k = XLXR − YLYR,(3.10)

p∑
j=1

Qj·(T ′)∗PRQj·(T ′) −
q∑

k=1

(E′
k)∗PRE

′
k = X∗

RXR − Y ∗
RYR.(3.11)

To check (3.9) we fix w and apply the left evaluation (2.3) to the equality

XLX
∗
L −XLS(z)S(w)∗X∗

L = XLH(z) (I − Q(z)Q(w)∗)H(w)∗X∗
L

which is an immediate corollary of (1.4). Making use of properties (2.7), (2.8) and
of relation (3.5) and taking into account the first interpolation condition (1.14), we
get

XLX
∗
L − YLS(w)∗X∗

L = (XLH)∧L (T ) ·H(w)∗X∗
L

− (XLHQ)∧L (T ) · Q(w)∗H(w)∗X∗
L.



Nevanlinna–Pick interpolation 261

The last equality holds for all w ∈ DQ. Taking adjoints and replacing w by z, we
get

XLX
∗
L −XLS(z)Y ∗

L = XLH(z)
(
(XLH)∧L (T )

)∗
−XLH(z)Q(z)

(
(XLHQ)∧L (T )

)∗
.

Applying again the left evaluation to the latter equality we get

XLX
∗
L − YLY

∗
L = (XLH)∧L (T )

(
(XLH)∧L (T )

)∗
− (XLHQ)∧L (T )

(
(XLHQ)∧L (T )

)∗
.

Substituting (3.5) and (3.6) into the right-hand side expression we come to

XLX
∗
L − YLY

∗
L =

p∑
j=1

E∗
j T

∗
LTLEj −

p∑
k=1

Q·k(T )∗T∗
LTLQ·k(T )

which is equivalent to (3.9), since T
∗
LTL = PL.

To prove (3.10) we start with equality

XLS(z)YR −XLS(w)YR = XLH(z) (Q(z) − Q(w))G(w)YR

which is a consequence of (1.7). We fix w ∈ DQ in this equality and apply the left
evaluation: by the first interpolation condition in (1.14) we have

YLYR −XLS(w)YR = (XLHQ)∧L (T )G(w)YR − (XLH)∧L (T )Q(w)G(w)YR.

The last identity holds true for all w ∈ DQ and we apply the right evaluation (2.4)
to it. In view of the second interpolation condition in (1.14) and of properties (2.7),
(2.8), we obtain

YLYR −XLXR = (XLHQ)∧L (T ) (GYR)∧R (T ′)

− (XLH)∧L (T ) (QGYR)∧R (T ′).

Substituting equalities (3.5), (3.6), (3.7) and (3.8) into the right-hand side expres-
sion in the last equality we come to

YLYR −XLXR =
p∑

j=1

E∗
j T

∗
LTRQj·(T ′) −

q∑
k=1

Q·k(T )∗T∗
LTRE

′
k

which is equivalent to (3.10), since T
∗
LTR = PLR, by (3.4). The proof of (3.11) is

quite similar: we start with equality

Y ∗
RYR − Y ∗

RS(z)∗S(w)YR = Y ∗
RG(z)∗ (I − Q(z)∗Q(w))G(w)YR

(which follows from (1.6)) and apply the right evaluation assuming that z is fixed.
Then we take adjoints in the resulting equality (in which z is again a variable)
and apply again the right evaluation map. The obtained equality together with
relations (3.7) and (3.8) leads to (3.11). We omit the complete details. �
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4. Solutions to the interpolation problem and unitary
extensions

We define a Q-colligation as a quadruple

C = {H, E , E∗, U}(4.1)

consisting of three Hilbert spaces H (the state space), E (the input space) and E∗
(the output space), together with a connecting operator

U =
[
A B
C D

]
:
[
C

p ⊗H
E

]
→
[
C

q ⊗H
E∗

]
.(4.2)

Associated with any such Q-colligation is the discrete-time, multidimensional, lin-
ear system

ΣC :



x1(i)
...

xp(i)

 = Q(σ∗)A

x1(i)
...

xp(i)

+ Q(σ∗)Bu(i)

y(i) = C

x1(i)
...

xp(i)

+Du(i).

(4.3)

Here i = (i1, . . . , in) ∈ Z
n, σ∗ = (σ∗

1 , . . . , σ
∗
n) is the n-tuple of operators defined on

any element v ∈ �(Zn,V) (the linear space of all V-valued function i �→ v(i) on Z
n

where V is any vector space) defined as

σ∗
j : v(i1, . . . , in) �→ v(i1, . . . , ij−1, ij − 1, ij+1, . . . , in)

and Q(σ∗) : C
q ⊗ �(Zn,V) → C

p ⊗ V is the operator obtained by substituting
(σ∗

1 , . . . , σ
∗
n) for (z1, . . . , zn), the arguments of Q. It is convenient to introduce the

formal Z-transform:

{v(i)}i∈Zn �→ v∧(z) :=
∑
i∈Zn

v(i)zi

where z is the n-tuple of independent variables z = (z1, . . . , zn) and we are using
the standard multivariable notation

zi = zi1
1 · · · zin

n if i = (i1, . . . , in) ∈ Z
n.

Assume that

(u, x, y) = {u(i), x(i) = (x1(i), . . . , xp(i)), y(i)}i∈Zn

is a system trajectory for ΣC , i.e., (u, x, y) satisfies the system equations (4.3) over
all i ∈ Z

n. Application of the formal Z-transform to all the equations in (4.3) leads
to the identities among formal power series

x∧(z) = Q(z)Ax∧(z) + Q(z)Bu∧(z)

y∧(z) = Cx∧(z) +Du∧(z).
(4.4)

Using the first equation to solve for x∧(z) leads to

x∧(z) = (I − Q(z)A)−1Q(z)Bu∧(z)

and then substitution of this identity in the second of equations (4.4) leads to

y∧(z) = TΣC (z) · u∧(z)
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where we have set TΣC (z) equal to the transfer function of the system ΣC (also
known as the characteristic function of the Q-colligation C)

SC(z) = D + C (ICp⊗H − Q(z)A)−1 Q(z)B.(4.5)

As examples we mention the case where Q(z) is equal to the first-degree diagonal
polynomial of the form

Zdiag(z) :=

z1 . . .
zn


in which case the system of equations (4.3) can be written in the form

x1(σ1(i))
...

xn(σn(i))

 = A

x1(i)
...

xn(i)

+Bu(i)

y(i) = C

x1(i)
...

xn(i)

+Du(i)

with transfer function of the form

SC(z) = D + C(I − Zdiag(z)A)−1Zdiag(z)B.

Here σ1, . . . , σn are the forward shift operators

σj : v(i) �→ v(i1, . . . , ij−1, ij + 1, ij+1, . . . , in).

Multidimensional systems of this form are known as Roesser (sometimes also as
Givone–Roesser) systems in the literature (see [48, 35]). As another example, con-
sider the case where Q(z) has the row matrix form

Zrow(z) :=
[
z1 · · · zn

]
in which case the system equations have the form

x(i) = A1x(σ∗
1(i)) + · · · +Anx(σ∗

n(i)) +B1u(σ∗
1(i)) + · · · +Bnu(σ∗

n(i))

y(i) = Cx(i) +Du(i)

and the transfer function has the form

SC(z) = D + C(I − Zrow(z)A)−1Zrow(z)B.

Systems of this form are known as Fornasini–Marchesini systems in the literature
(see [31, 35]).

The colligation C is said to be unitary if the connecting operator U is unitary,
in which case the associated system ΣC is said to be conservative. Thus, one of the
assertions of Theorem 1.1 is that a L(E , E∗)-valued function S which is analytic on
Ω belongs to the class SAQ(E , E∗) if and only if it is the characteristic function of
some unitary Q-colligation C (i.e., the transfer function of a conservative Q-system
ΣC) of the form (4.1).

System-theoretic properties of conservative systems for the Roesser case are dis-
cussed in [22] and in more definitive detail in [21], where connections between
conservative Roesser systems and Fornasini–Marchesini systems are also explored.
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A noncommutative version of a conservative Fornasini–Marchesini system is stud-
ied at length in [24]. Here we do not develop the system-theoretic properties of
conservative systems of the form (4.3) except only to observe the following fact
which will be used in the sequel. A colligation

C̃ = {H̃, E , E∗, Ũ}(4.6)

is said to be unitarily equivalent to the colligation C if there is a unitary operator
α : H → H̃ such that [

α⊗ Iq 0
0 IE∗

]
U = Ũ

[
α⊗ Ip 0

0 IE

]
.

It is easily checked by the very definition (5.5) of the characteristic function that:

Remark 4.1. Unitarily equivalent colligations have the same characteristic func-
tion.

Remark 4.2. Note also that for a fixed point z ∈ Ω, the action of SC(z) on a
vector e ∈ E , namely

SC(z) = D + C (ICp⊗H − Q(z)A)−1 Q(z)B : e→ e∗
is the result of the feedback connection[

A B
C D

] [
h
e

]
=
[
h′

e∗

]
, h = Q(z)h′.

The characteristic function of a Q-colligation can be expressed directly in terms
of the connecting operator U.

Lemma 4.3. Let U be a unitary operator of the form (4.2), let S, H and G be the
operator valued functions defined via formulas (1.9) and (1.10). Then

U
(
I(Cp⊗H)⊕E − P

Cp⊗HQ(z)P
Cq⊗HU

)−1 =
[
A (IHp − Q(z)A)−1

G(z)
H(z) S(z)

]
,(4.7)

where P
Cp⊗H and P

Cq⊗H stand for the orthogonal projections of (Cp ⊗H) ⊕ E and
(Cq ⊗H) ⊕ E∗ onto C

p ⊗H and C
q ⊗H, respectively.

Proof. Upon making use of (1.8) we get(
IHp⊕E − PHp Q(z)PHq U

)−1

=
[
ICp⊗H − Q(z)A −Q(z)B

0 IE

]−1

=
[
(ICp⊗H − Q(z)A)−1 (ICp⊗H − Q(z)A)−1 Q(z)B

0 IE

]
and since[

A B
C D

] [
(ICp⊗H − Q(z)A)−1 (ICp⊗H − Q(z)A)−1 Q(z)B

0 IE

]
=
[
A (ICp⊗H − Q(z)A)−1

B + (ICp⊗H − Q(z)A)−1 Q(z)B
C (ICp⊗H − Q(z)A)−1

D + C (ICp⊗H − Q(z)A)−1 Q(z)B

]
=
[
A (ICp⊗H − Q(z)A)−1 (ICq⊗H −AQ(z))−1

B

C (ICp⊗H − Q(z)A)−1
D + C (ICp⊗H − Q(z)A)−1 Q(z)B

]
,
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relation (4.7) follows by (1.9) and (1.10). �

Equality (4.7) allows us to define the functions S, H and G associated to a Q-
colligation C directly in terms of the connecting operator U and projections onto
input, output and state spaces. Indeed, it is readily seen from (4.7) that

S(z) = PE∗U
(
I(Cp⊗H)⊕E − P

Cp⊗HQ(z)P
Cq⊗HU

)−1 |E ,

H(z) = PE∗U
(
I(Cp⊗H)⊕E − P

Cp⊗HQ(z)P
Cq⊗HU

)−1 |Hp ,

G(z) = PHq U
(
I(Cp⊗H)⊕E − P

Cp⊗HQ(z)PHq U
)−1 |E ,

(4.8)

where PE∗ and P
Cq⊗H are the orthogonal projections of the space (Cp ⊗ H) ⊕ E∗

onto E∗ and C
q ⊗H, respectively.

From now on we assume that we are given an interpolation data set D as in
(1.29) and that the necessary conditions for Problem 1.6 to have a solution are in
force: the operator P defined in (1.22)–(1.24) is positive semidefinite on the space

H0 = (Cp ⊗K) ⊕ (Cq ⊗K′).(4.9)

and satisfies the Stein identity (1.20) which we write now as
p∑

j=1

M∗
j PMj + Y ∗Y =

q∑
k=1

N∗
kPNk +X∗X.(4.10)

Introduce the equivalence ∼ on H0 by

h1 ∼ h2 if and only if 〈P (h1 − h2), y〉H0 = 0 for all y ∈ H0,

denote [h] the equivalence class of h with respect to the above equivalence and
endow the linear space of equivalence classes with the inner product

〈[h], [y]〉 = 〈Ph, y〉H0 .(4.11)

We get a prehilbert space whose completion is Ĥ. It is readily seen from definitions
(1.18), (1.19) of operators Mj and Nk that Mjx and Nkx belong to H0 for any
x ∈ K ⊕K′. Furthermore, identity (4.10) can be written as

p∑
j=1

〈[Mjf ], [Mjg]〉Ĥ + 〈Y f, Y g〉E =
q∑

k=1

〈[Nkf ], [Nkg]〉Ĥ + 〈Xf,Xg〉E∗ ,

holding for every choice of f, g ∈ K ⊕K′. Therefore the linear map defined by the
rule

V :


[M1f ]

...
[Mpf ]
Y f

→


[N1f ]

...
[Nqf ]
Xf

(4.12)

extends by linearity to define an isometry from

DV = Clos




[M1f ]
...

[Mpf ]
Y f

 , f ∈ K ⊕K′

 ⊂
[

C
p ⊗ Ĥ
E

]
(4.13)
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onto

RV = Clos




[N1f ]
...

[Nqf ]
Xf

 , f ∈ K ⊕K′

 ⊂
[

C
q ⊗ Ĥ
E∗

]
.(4.14)

The next two lemmas establish a correspondence between solutions S to Problem 1.6
and unitary extensions of the partially defined isometry V given in (4.12).

Lemma 4.4. Any solution S to Problem 1.6 is a characteristic function of a uni-
tary colligation

Ũ =

[
Ã B̃

C̃ D̃

]
:
[

C
p ⊗ (Ĥ ⊕ H̃)

E

]
→
[

C
q ⊗ (Ĥ ⊕ H̃)

E∗

]
,(4.15)

which is an extension of the isometry V given in (4.12).

Proof. Let S be a solution to Problem 1.6. In particular, S belongs to the class
SAQ(E , E∗) and by Theorem 1.1, it is the characteristic function of some unitary
colligation C of the form (4.1). In other words, S admits a unitary realization (1.9)
with the state space H and representations (1.4), (1.6), (1.7) holds for functions H
and G defined via (1.10) and decomposed as in (1.3) and (1.5). These functions are
analytic and respectively L(Cp ⊗H, E∗)- and L(E , C

q ⊗H)-valued on Ω and lead
to the following two representations

S(z) = D +H(z)Q(z)B = D + CQ(z)G(z),(4.16)

of S, each of which is equivalent to (1.9).
The interpolation conditions (1.14) and (1.26)–(1.28) which are assumed to be

satisfied by S, force certain restrictions on the connecting operator U = [ A B
C D ].

Substituting (4.16) into (1.14) we get equalities

(XLD +XLHQB)∧L (T ) = YL

(DYR + CQGYR)∧R (T ′) = XR

which are equivalent, due to properties (2.7) and (2.8), to

XLD + (XLHQ)∧L (T )B = YL(4.17)

DYR + C (QGYR)∧R (T ′) = XR,(4.18)

respectively. It also follows from (1.10) that

C +H(z)Q(z)A = H(z), B +AQ(z)G(z) = G(z)

and therefore, that

XLC + (XLHQ)∧L (T )A = (XLH)∧L (T )(4.19)

BYR +A (QGYR)∧R (T ′) = (GYR)∧R (T ′).(4.20)

The equalities (4.17) and (4.19) can be written in matrix form as[
(XLHQ)∧L (T ) XL

] [ A B
C D

]
=
[
(XLH)∧L (T ) YL

]
,(4.21)
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whereas the equalities (4.18) and (4.20) are equivalent to[
A B
C D

] [
(QGYR)∧R (T ′)

YR

]
=
[
(GYR)∧R (T ′)

XR

]
.(4.22)

Since the operator [ A B
C D ] is unitary, we conclude from (4.21) that[

A B
C D

] [
(XLH)∧L (T )∗

Y ∗
L

]
=
[
(XLHQ)∧L (T )∗

X∗
L

]
.(4.23)

Combining (4.22) and (4.23) we conclude that for every choice of f ∈ K ⊕K′,[
A B
C D

] [
(XLH)∧L (T )∗ (QGYR)∧R (T ′)

Y ∗
L YR

]
f(4.24)

=
[

(XLHQ)∧L (T )∗ (GYR)∧R (T ′)
X∗

L XR

]
f.

Let TL and TR be given by (3.2) and (3.3), and let

T :=
[
TL TR

]
: H0 → H.(4.25)

(Recall that the space H0 is introduced in (4.9).) Now we use the interpolation
conditions (1.26)–(1.28), which provide the factorization (3.1) of the operator P .
Thus,

P = T
∗
T

and
〈[h], [y]〉Ĥ = 〈Ph, y〉H0 = 〈Th, Ty〉H0

for every h, y ∈ H0. Therefore, the linear transformation U defined by the rule

U : Th→ [h] (h ∈ H0)(4.26)

can be extended to the unitary map (which still is denoted by U) from Ran T onto
Ĥ. Noticing that Ran T is a subspace of H and setting

N := H� Ran T and H̃ := Ĥ ⊕ N ,

we define the unitary map Ũ : H → H̃ by the rule

Ũ g =

{
Ug for g ∈ Ran T,

g for g ∈ N .
(4.27)

Introducing the operators

Ã = (Ũ ⊗ Iq)A(Ũ ⊗ Ip)∗, B̃ = (Ũ ⊗ Iq)B, C̃ = C(Ũ ⊗ Ip)∗, D̃ = D

we construct the colligation C̃ via (4.6) and (4.15). By definition, C̃ is unitarily
equivalent to the initial colligation C defined in (4.1). By Remark 4.1, C̃ has the same
characteristic function as C, that is, S(z). It remains to check that the connecting
operator of C̃ is an extension of V, that is

[
Ã B̃

C̃ D̃

]
[M1f ]

...
[Mpf ]
Y f

 =


[N1f ]

...
[Nqf ]
Xf

 , for every f ∈ K ⊕K′.(4.28)
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To this end, note that by (4.26), (4.27) and block partitionings (1.18) and (4.25) of
Mj and T, it holds that

Ũ∗ ([Mjf ]) = T(Mjf) =
[
TLEj TRQj·(T ′)

]
f

for every f ∈ K ⊕K′ and for j = 1, . . . , p. Therefore,

(Ũ ⊗ Ip)∗

 [M1f ]
...

[Mpf ]

 =

TLE1 TRQ1·(T ′)
...

...
TLEp TRQp·(T ′)

 f(4.29)

which, on account of (3.6) and (3.7) can be written as

(Ũ ⊗ Ip)∗

 [M1f ]
...

[Mpf ]

 =
[
(XLH)∧L (T )∗ (QGYR)∧R (T ′)

]
f.(4.30)

Similarly, by (4.26), (4.27) and block partitionings (1.19) and (4.25) of Nk and T,
it holds that

[Nkf ] = ŨT(Nkf) = Ũ
[
TLQ·k(T ) TRE

′
k

]
f

for k = 1, . . . , q. Therefore,

(Ũ ⊗ Iq)∗

 [N1f ]
...

[Nqf ]

 =

TLQ·1(T ) TRE
′
1

...
...

TLQ·q(T ) TRE
′
q

 f(4.31)

which, on account of (3.5) and (3.8) can be written as

(Ũ ⊗ Iq)∗

 [N1f ]
...

[Nqf ]

 =
[
(XLHQ)∧L (T )∗ (GYR)∧R (T ′)

]
f.(4.32)

Thus, by (4.24) and in view of (1.21), (4.30) and (4.32),

[
Ã B̃

C̃ D̃

]
[M1f ]

...
[Mpf ]
Y f

(4.33)

=
[
Ũ ⊗ Iq 0

0 I

] [
A B
C D

] [
(Ũ ⊗ Ip)∗ 0

0 I

]
[M1f ]

...
[Mpf ]
Y f


=
[
Ũ ⊗ Iq 0

0 I

] [
A B
C D

] [
(XLH)∧L (T )∗ (QGYR)∧R (T ′)

Y ∗
L YR

]
f

=
[
Ũ ⊗ Iq 0

0 I

] [
(XLHQ)∧L (T )∗ (GYR)∧R (T ′)

X∗
L XR

]
=


[N1f ]

...
[Nqf ]
Xf

 ,
which proves (4.28) and completes the proof of the lemma. �
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Lemma 4.5. Let Ũ of the form (4.15) be a unitary extension of the isometry V
given in (4.12). Then the characteristic function S of the colligation
C̃ = {Ĥ ⊕ H̃, E , E∗, Ũ},

S(z) = D̃ + C̃
(
I

Cp⊗(Ĥ⊕H̃) − Q(z)Ã
)−1

Q(z)B̃,

is a solution to Problem 1.6.

Proof. We use the arguments from the proof of the previous lemma in the reverse
order. We fix a factorization

P = T
∗
T(4.34)

of the positive operator P with an operator

T =
[
TL TR

]
: H0 → G

where G is an auxiliary Hilbert space,

TL =
[
TL,1 . . . TL,p

]
, TL,1, . . . ,TL,p ∈ L(K,G)

and
TR =

[
TR,1 . . . TR,q

]
, TR,1, . . . ,TR,q ∈ L(K′,G).

We use operators TL,j and TR,k to define operators FL : K → C
p × G and FR :

K′ → C
q × G as follows:

FL :=

TL,1

...
TL,p

 =

TLE1

...
TLEp

 and FR :=

TR,1

...
TR,q

 =

TRE
′
1

...
TRE

′
q

 .(4.35)

We shall make use of the following two formulas:TLQ·1(T )
...

TLQ·q(T )

 =
[
(F∗

L · Q)∧L (T )
]∗
,(4.36)

TRQ1·(T ′)
...

TRQp·(T ′)

 = (Q · FR)∧R (T ′),(4.37)

which are similar to formulas (3.5) and (3.7) and are verified in much the same way.

Let Ũ be the unitary map defined via formulas (4.26), (4.27). Then relations
(4.29) and (4.31) hold by construction; in view of (4.35)–(4.37) these relations can
be written as

(Ũ ⊗ Ip)∗

 [M1f ]
...

[Mpf ]

 =
[
FL (Q · FR)∧R (T ′)

]
f,(4.38)

(Ũ ⊗ Iq)∗

 [N1f ]
...

[Nqf ]

 =
[[

(F∗
L · Q)∧L (T )

]∗
FR

]
f.(4.39)
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Since Ũ extends V:

[
Ã B̃

C̃ D̃

]
[M1f ]

...
[Mpf ]
Y f

 =


[N1f ]

...
[Nqf ]
Xf

 for every f ∈ K ⊕K′,

it follows from (4.38) and (4.39) that the operator

U =
[
A B
C D

]
=
[

(Ũ ⊗ Iq)∗ 0
0 I

][
Ã B̃

C̃ D̃

] [
Ũ ⊗ Ip 0

0 I

]
satisfies [

A B
C D

] [
FL (QFR)∧R (T ′)
Y ∗

L YR

]
=

[[
(F∗

LQ)∧L (T )
]∗

FR

X∗
L XR

]
.(4.40)

By Remark 4.1, the colligations C and C̃ defined in (4.1) and (4.6) have the same
characteristic functions and thus, S can be taken in the form (1.9). Let H(z) and
G(z) be defined as in (1.10) and decomposed as in (1.3) and (1.5). We shall use
the representations (4.16) of S(z) which are equivalent to (1.9).

Since U is unitary, it follows from (4.40) that

A∗ (F∗
LQ)∧L (T )∗ + C∗X∗

L = FL,(4.41)

B∗ (F∗
LQ)∧L (T )∗ +D∗X∗

L = Y ∗
L ,(4.42)

A (QFR)∧R (T ′) +BYR = FR,(4.43)

C (QFR)∧R (T ′) +DYR = XR.(4.44)

Taking adjoints in (4.41) we get

XLC = F
∗
L − (F∗

LQ)∧L (T )A

which can be written, by properties (2.7) and (2.8) of the left evaluation map, as

XLC = (F∗
L(I − QA))∧L (T ).

Multiplying both sides in the last equality by (I − Q(z)A)−1 on the right and
applying the left evaluation map to the resulting identity

XLH(z) = (F∗
L(I − QA))∧L (T ) · (I − Q(z)A)−1,

we get

(XLH)∧L (T ) =
(
(F∗

L(I − QA))∧L (T )(I − QA)−1
)∧L

(T )(4.45)

=
(
F
∗
L(I − QA)(I − QA)−1

)∧L
(T )

= (F∗
L)∧L (T ) = F

∗
L.

Note that the second equality in the last chain has been obtained upon applying
(2.10) to functions F (z) = F

∗
L(I −Q(z)A) and F̃ (z) = (I −Q(z)A)−1, whereas the

third equality follows by the property (2.7). Now we take adjoints in (4.42) to get

YL = (F∗
LQ)∧L (T )B +XLD = (F∗

LQB)∧L (T ) +XLD.(4.46)
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By (4.45),

(F∗
LQB)∧L (T ) =

(
(XLH)∧L (T ) · QB

)∧L

(T )

and applying (2.10) to functions F (z) = XLH(z) and F̃ (z) = Q(z)B leads us to

(F∗
LQB)∧L (T ) = ((XLHQB)∧L (T ).

Substituting the latter equality into the left-hand side expression in (4.46) and
making use of the first representation of S in (4.16), we get

YL = (XLHQB)∧L (T ) +XLD

= (XLHQB +XLD)∧L (T ) = (XLS)∧L (T ),

which proves the first interpolation condition in (1.14).

To get the second interpolation condition in (1.14) write (4.43) in the form

BYR = (I −AQ)FR)∧R (T ′),

multiply the latter equality by (I − AQ(z))−1 on the left and apply the right
evaluation map to the resulting identity

G(z)YR = (I −AQ(z))−1 (I −AQ)FR)∧R (T ′).

We have

(GYR)∧R (T ′) =
(
(I −AQ)−1 ((I −AQ)FR)∧R (T ′)

)∧R

(T ′)(4.47)

=
(
(I −AQ)−1(I −AQ)FR

)∧R
(T ′)

= (FR)∧R (T ′) = FR.

Note that the third equality in the last chain has been obtained upon applying (2.11)
to functions F (z) = (I−AQ(z))−1 and F̃ (z) = (I−AQ(z))FR. Substituting (4.47)
into (4.44) and applying (2.11) to functions F (z) = CQ(z) and F̃ (z) = G(z)YR,
we get

XR =
(
CQ (GYR)∧R (T ′)

)∧R

(T ′) +DYR

= (CQGYR)∧R (T ′) +DYR

= (CQGYR +DYR)∧R (T ′)

which coincides with the second equality in (1.14), due to the second representation
in (4.16).

Thus, S belongs to SAQ(E , E∗) as the characteristic function of a unitary Q-
colligation and satisfies the first-order interpolation conditions (1.14). It remains
to show that it satisfies also conditions (1.26)–(1.28). But it follows from (4.45),
(4.47) and (4.35) that

T ∗
L,j = (XLHj)

∧L (T ) and TR,� = (G�YR)∧L (T ′)

for j = 1, . . . , p and � = 1, . . . , q. These last equalities together with factorization
(4.34) imply (1.26)–(1.28). �
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5. The universal unitary colligation associated with the
interpolation problem

A general result of Arov and Grossman (see [11], [12]) describes how to parame-
trize the set of all unitary extensions of a given partially defined isometry V. Their
result has been extended to the multivariable case in [22] (for the case of the poly-
disk) and in [23] (for the case of the unit ball) and will be extended in this section
to the case of Q-colligations.

Let V : DV → RV be the isometry given in (4.12) with DV and RV given in
(4.13) and (4.14). Introduce the defect spaces

∆ =
[
C

p ⊗ Ĥ
E

]
�DV and ∆∗ =

[
C

q ⊗ Ĥ
E∗

]
�RV

and let ∆̃ to be another copy of ∆ and ∆̃∗ to be another copy of ∆∗ with unitary
identification maps

i : ∆ → ∆̃ and i∗ : ∆∗ → ∆̃∗.
Define a unitary operator U0 from DV ⊕ ∆ ⊕ ∆̃∗ onto RV ⊕ ∆∗ ⊕ ∆̃ by the rule

U0x =


Vx, if x ∈ DV,

i(x) if x ∈ ∆,
i−1
∗ (x) if x ∈ ∆̃∗.

(5.1)

Identifying
[
DV

∆

]
with

[
C

p ⊗ Ĥ
E

]
and

[
RV

∆∗

]
with

[
C

q ⊗ Ĥ
E∗

]
, we decompose U0

defined by (5.1) according to

U0 =

 U11 U12 U13

U21 U22 U23

U31 U32 0

 :

C
p ⊗ Ĥ
E

∆̃∗

→

C
q ⊗ Ĥ
E∗
∆̃

 .(5.2)

The (3, 3) block in this decomposition is zero, since (by definition (5.1)), for every

x ∈ ∆̃∗, the vector U0x belongs to ∆, which is a subspace of
[

Ĥ
E∗

]
and therefore, is

orthogonal to ∆̃ (in other words P∆̃U0|∆̃∗
= 0, where P∆̃ stands for the orthogonal

projection of RV ⊕ ∆∗ ⊕ ∆̃ onto ∆̃).

The unitary operator U0 is the connecting operator of the unitary colligation

C0 =
{
Ĥ,
[

E
∆̃∗

]
,

[
E∗
∆̃

]
, U0

}
,(5.3)

which is called the universal unitary colligation associated with the interpolation
problem.

Let C̃ be any Q-colligation of the form

C̃ =
{
H̃, ∆̃, ∆̃∗, Ũ

}
.(5.4)

We define another Q-colligation FC0 [C̃], called the coupling of C0 and C̃, to be the
Q-colligation of the form

FC0 [C̃] =
{
Ĥ ⊕ H̃, E , E∗, FU0 [Ũ]

}
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with the connecting operator FU0 [Ũ] defined as follows:

FU0 [Ũ] :

ch
e

→

c′h′
e∗

(5.5)

if the system of equations

U0 :

 ce
d̃∗

→

c′e∗
d̃

 and Ũ :
[
h

d̃

]
→
[
h′

d̃∗

]
(5.6)

is satisfied for some choice of d̃ ∈ ∆̃ and d̃∗ ∈ ∆̃∗. To show that the operator
FU0 [Ũ] is well-defined, (i.e., that for every triple (c, h, e), there exist d̃ and d̃∗ for
which the system (5.6) is consistent and the resulting triple (c′, h′, e∗) does not
depend on the choice of d̃ and d̃∗) we note first that on account of (5.1) and (5.2),
the first equation in (5.6) determines d̃ uniquely by

d̃ = P∆̃ (VPDV
+ iP∆)

[
c
e

]
= iP∆

[
c
e

]
.

With this d̃, the second equation in (5.6) determines uniquely d̃∗ and h′. Using d̃∗
one can recover now c′ and e∗ from the first equation in (5.6).

Since operators U0 and Ũ are unitary, it follows from (5.6) that

‖c‖2 + ‖e‖2 + ‖d̃∗‖2 = ‖c′‖2 + ‖e∗‖2 + ‖d̃‖2,

‖h‖2 + ‖d̃‖2 = ‖h′‖2 + ‖d̃∗‖2

and therefore, that

‖c‖2 + ‖e‖2 + ‖h‖2 = ‖c′‖2 + ‖e∗‖2 + ‖h′‖2,

which means that the coupling operator FU0 [Ũ] is isometric. A similar argument
can be made with the adjoints of U0, Ũ and FU0 [Ũ], and hence FU0 [Ũ] is unitary.
Furthermore, by (5.5) and (5.6),

FU0 [Ũ]|(Cp⊗Ĥ)⊕E = U0|(Cp⊗Ĥ)⊕E

and since DV ⊂ (Cp ⊗ Ĥ) ⊕ E , it follows that

FU0 [Ũ]|DV
= U0|DV

= V.(5.7)

Thus, the coupling of the connecting operator U0 of the universal unitary colligation
associated with Problem 1.6 and any other unitary operator is a unitary extension
of the isometry V defined in (4.12). Conversely for every unitary Q-colligation
C = {Ĥ ⊕ H̃, E , E∗, U} with the connecting operator being a unitary extension
of V, there exists a unitary Q-colligation C̃ of the form (5.4) such that C = FC0 [C̃]
(the proof is the same as in [22, Theorem 6.2]). Thus, all unitary extensions U of
the isometry V defined in (4.12) are parametrized by the formula

U = FU0 [Ũ], Ũ : (Cp ⊗ H̃) ⊕ ∆̃ → (Cq ⊗ H̃) ⊕ ∆̃∗(5.8)

and H̃ is an auxiliary Hilbert space.
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According to (4.5), the characteristic function of the Q-colligation C0 defined in
(5.3) with the connecting operator U0 partitioned as in (5.2), is given by

Σ(z) =
[

Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

]
(5.9)

=
[
U22 U23

U32 0

]
+
[
U21

U31

]
(I − Q(z)U11)

−1 Q(z)
[
U12 U13

]
and belongs to the class SAQ(E ⊕ ∆̃∗, E∗ ⊕ ∆̃), by Theorem 1.1.

Theorem 5.1. Let V be the isometry defined in (4.12), let Σ be the function con-
structed as above and let S be a L(E , E∗)-valued function. Then the following are
equivalent:

(1) S is a solution of Problem 1.6.
(2) S is a characteristic function of a Q-colligation C = {Ĥ ⊕ H̃, E , E∗, U}

with the connecting operator U being a unitary extension of V.
(3) S is of the form

S(z) = Σ11(z) + Σ12(z)
(
I∆̃∗

− T (z)Σ22(z)
)−1

T (z)Σ21(z)(5.10)

where T is a function from the class SAQ(∆̃, ∆̃∗).

Proof. The equivalence 1 ⇐⇒ 2 follows by Lemmas 4.4 and 4.5.
2 =⇒ 3. By the preceding analysis, the colligation C is the coupling of the

universal colligation C0 defined in (5.3) and some unitary Q-colligation C̃ of the
form (5.4). The connecting operators U, U0 and Ũ of these colligations are related
as in (5.8). Let S, Σ and T be characteristic functions of C, C0 and C̃, respectively.
Applying Remark 4.2 to (5.5) and (5.6), we get

S(z)e = e∗, Σ(z)
[
e

d̃∗

]
=
[
e∗
d̃

]
, T (z)d̃ = d̃∗.(5.11)

Substituting the third relation in (5.11) into the second we get

Σ(z)
[

e

T (z)d̃

]
=
[
e∗
d̃

]
,

which in view of the block decomposition (5.9) of Σ splits into

Σ11(z)e+ Σ12(z)T (z)d̃ = e∗ and Σ21(z)e+ Σ22(z)T (z)d̃ = d̃.

The second from the two last equalities gives

d̃ = (I − Σ22(z)T (z))−1 Σ21(z)e

which, being substituted into the first equality, implies(
Σ11(z) + Σ12(z)T (z) (I − Σ22(z)T (z))−1 Σ21(z)

)
e = e∗.

The latter is equivalent to(
Σ11(z) + Σ12(z) (I − T (z)Σ22(z))

−1 T (z)Σ21(z)
)
e = e∗

and the comparison of the last equality with the first relation in (5.11) leads to
representation (5.10) of S, since a vector e ∈ E is arbitrary.
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3 =⇒ 2. Let S be of the form (5.10) for some T ∈ SAP(∆̃, ∆̃∗). By Theo-
rem 1.1, T is the characteristic function of a unitary Q-colligation C̃ of the form
(5.4). Let C be the unitary Q-colligation defined by C = FC0 [C̃]. By the preceding
“2 =⇒ 3” part, S of the form (5.10) is the characteristic function of C. It remains
to note that the colligation C is of required the form: its input and output spaces co-
incide with E and E∗, respectively (by the definition of coupling) and its connecting
operator is an expansion of V, by (5.7). �

As a corollary we obtain the sufficiency part of Theorem 1.4, including the
parametrization of the set of all solutions: under the assumption that P is pos-
itive semidefinite and satisfies the Stein identity (1.23), the set of all solutions of
Problem 1.6 is parametrized by formula (5.10) and is nonempty.

6. Explicit formulas

In the case when the spaces K and K′ are finite-dimensional,

dim K <∞, dim K′ <∞,(6.1)

it is possible to get more explicit formulas for coefficients Σij(z) of the linear frac-
tional transformation (5.10) parametrizing all the solutions of Problem 1.6 in terms
of interpolation data. We now explain this point in detail.

Setting H0 = (Cp ⊗ K) ⊕ (Cq ⊗ K′) (as in (4.9)), we define operators W1 ∈
L(K ⊕K′, C

p ⊗H0) and W2 ∈ L(K ⊕K′, C
q ⊗H0) as follows:

W1 =

 P
1
2M1

...
P

1
2Mp

 and W2 =

 P
1
2N1

...
P

1
2Nq

 ,(6.2)

The Stein equation (4.10), which is assumed to be in force, can be written in terms
of the matrices (6.2) as

W ∗
1W1 + Y ∗Y = W ∗

2W2 +X∗X(6.3)

and we let T be the operator on the space K ⊕K′ defined by

T := W ∗
1W1 + Y ∗Y = W ∗

2W2 +X∗X.(6.4)

Due to assumptions (6.1), RanT is a (finite dimensional) subspace of K ⊕ K′.
Equality (6.3) guarantees that the linear map

V :
[
W1

Y

]
f −→

[
W2

X

]
f (f ∈ K ⊕K′)(6.5)

is an isometry from

DV = Ran
[
W1

Y

]
⊂
[

C
p ⊗H0

E

]
onto RV = Ran

[
W2

X

]
⊂
[

C
q ⊗H0

E∗

]
.

The isometry in (6.5) would coincide with that in (4.12) if we took the factor–
spaces of C

p⊗H0 and C
q ⊗H0 over the kernel of P instead of C

p⊗H0 and C
q ⊗H0

themselves. In this case formulas would become less explicit. The defect spaces
now take the form

∆ =
[

C
p ⊗H0

E

]
�DV and ∆∗ =

[
C

q ⊗H0

E∗

]
�RV.
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As in the general case we let ∆̃ to be another copy of ∆ and ∆̃∗ to be another copy
of ∆∗ with unitary identification maps

i : ∆ → ∆̃ and i∗ : ∆∗ → ∆̃∗.(6.6)

Let the operator
[
α
β

]
: ∆̃ →

[
C

p ⊗H0

E

]
be defined via[

α
β

]
δ̃ = i−1δ̃ (δ̃ ∈ ∆̃).

Then

α∗α+ β∗β = I∆̃(6.7)

and since
[
α
β

]
δ̃ belongs to ∆ which is orthogonal to DV, it follows that〈[
α
β

]
δ̃,

[
W1

Y

]
d

〉
= 0 for every δ̃ ∈ ∆̃ and d ∈ K ⊕K′

which can be written in operator form as

α∗W1 + β∗Y = 0.(6.8)

Furthermore, we introduce the operator
[
γ
π

]
: ∆̃∗ �→

[
C

q ⊗H0

E∗

]
by the rule[

γ
π

]
δ̃∗ = i−1

∗ δ̃∗ (δ̃∗ ∈ ∆̃∗)

and conclude, that similarly to (6.7) and (6.8),

γ∗γ + π∗π = I∆̃∗
and γ∗W2 + π∗X = 0.(6.9)

The second relation in (6.9) is a consequence of the fact that
[
γ
π

]
δ̃∗ belongs to ∆∗

which is orthogonal to RV. Now let

A :=

W1 α 0
Y β 0
0 0 I∆̃∗

 :

RanT
∆̃
∆̃∗

→

C
p ⊗H0

E
∆̃∗

(6.10)

and

B :=

W2 0 γ
X 0 π
0 I∆̃ 0

 :

RanT
∆̃
∆̃∗

→

C
q ⊗H0

E∗
∆̃

 .(6.11)

Then the definition (5.1) of the universal unitary colligation U0 can be written
equivalently in terms of the operators A and B as

U0A = B.(6.12)

Note that by (6.4), (6.7), (6.8) and (6.9),

A
∗
A = B

∗
B =

T 0 0
0 I∆̃ 0
0 0 I∆̃∗

 =: T̂(6.13)
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and the operator T̂ is invertible (with bounded inverse) on RanT⊕ ∆̃⊕ ∆̃∗. Since
A is onto, it follows from (6.12) that

U0 = BT̂−1
A

∗.(6.14)

According to the formula (4.8), the characteristic function of the universal unitary
colligation is given by

Σ(z) = PE∗⊕∆̃
U0

(
I − P

Cp⊗HQ(z)P
Cq⊗HU0

)−1 |E⊕∆̃∗
.

Substituting (6.14) into the latter equality we get

Σ(z) = PE∗⊕∆̃
BT̂−1

A
∗
(
I − P

Cp⊗HQ(z)P
Cq⊗HBT̂−1

A
∗
)−1

|E⊕∆̃∗

= PE∗⊕∆̃
BT̂−1

(
I − A

∗P
Cp⊗HQ(z)P

Cq⊗HBT̂−1
)−1

A
∗|E⊕∆̃∗

= PE∗⊕∆̃
B

(
T̂ − A

∗P
Cp⊗HQ(z)P

Cq⊗HB

)−1

A
∗|E⊕∆̃∗

which, on account of (6.10) and (6.11), can be written as

Σ(z) =
[
X 0 π
0 I∆̃ 0

]T̂ −

W ∗
1

α∗

0

Q(z)
[
W2 0 γ

]−1 Y ∗ 0
β∗ 0
0 I∆̃∗

 .(6.15)

The first inverse in this chain of equalities is invertible since U0 is unitary and
‖Q(z)‖ < 1, all the other inverses exist since the first one does. By (6.13) and
(6.4),

T̂ −

W ∗
1

α∗

0

Q(z)
[
W2 0 γ

]
=

 D(z) 0 −W ∗
1 Q(z)γ

−α∗Q(z)W2 I∆̃ −α∗Q(z)γ
0 0 I∆̃∗


where

D(z) := T −W ∗
1 Q(z)W2 = W ∗

1 (W1 − Q(z)W2) + Y ∗Y.(6.16)

Inverting the latter operator gives D(z)−1 0 D(z)−1W ∗
1 Q(z)γ

α∗Q(z)W2 I∆̃ α∗Q(z)
[
I +W2D(z)−1W ∗

1 Q(z)
]
γ

0 0 I∆̃∗


which, being substituted into (6.15), leads us to

Σ(z) =
[

XD(z)−1Y ∗ π +XD(z)−1W ∗
1 Q(z)γ

β∗ + α∗Q(z)W2D(z)−1Y ∗ α∗Q(z)
[
I +W2D(z)−1W ∗

1 Q(z)
]
γ

]
.(6.17)

This is the formula we desired to get. Note that D(z) is considered as a function
taking values in L(RanT). For every z ∈ DQ, D(z) is invertible. In the case when
T is positive definite, D(z) is considered as an operator on K⊗K′ and is invertible
at every z ∈ DQ.
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7. Nevanlinna–Pick interpolation problem

In [17] we considered the following bitangential Nevanlinna–Pick interpolation
problem whose data set consists of two subsets ΩL and ΩR of DQ, two Hilbert
spaces EL and ER and four operator-valued functions

a : ΩL �→ L(E∗, EL), c : ΩL �→ L(E , EL),(7.1)

b : ΩR �→ L(ER, E), d : ΩR �→ L(ER, E∗).(7.2)

Problem 7.1. Find all functions S ∈ SAQ(E , E∗) such that S satisfies the inter-
polation conditions

a(ζ)S(ζ) = c(ζ) for all ξ ∈ ΩL(7.3)

S(ξ)b(ξ) = d(ξ) for all ξ ∈ ΩR.(7.4)

If S ∈ SAQ(E , E∗) meets conditions (7.3) and (7.4), then, as its values are
contractive operators, we have necessarily ‖c(ζ)‖ ≤ ‖a(ζ)‖ and ‖d(ξ)‖ ≤ ‖b(ξ)‖
for every ζ ∈ ΩL and every ξ ∈ ΩR. Furthermore, without loss of generality we can
normalize a and b pointwise and to assume that

‖c(ζ)‖ ≤ ‖a(ζ)‖ = 1 and ‖d(ξ)‖ ≤ ‖b(ξ)‖ = 1 (ζ ∈ ΩL, ξ ∈ ΩR).(7.5)

In [17] we also considered a modified interpolation problem with the extended data
set including also the functions

Ψ̃j�(ξ, µ) : ΩL × ΩL → L(EL) (j, � = 1, . . . p),
Λ̃j�(ξ, µ) : ΩL × ΩR → L(ER, EL) (j = 1, . . . p; � = 1, . . . q),
Φ̃j�(ξ, µ) : ΩR × ΩR → L(ER) (j, � = 1, . . . q).

(7.6)

Problem 7.2. Given four functions a, b, c and d as in (7.1) and (7.2) and given
p2 + pq+ q2 functions Ψ̃j�, Λ̃j�, Φ̃j� as in (7.6), find all functions S ∈ SAQ(E , E∗)
such that the interpolation conditions (7.3), (7.4) are satisfied, and in addition,
there exists a choice of functions H(z) and G(z) of the form (1.3) and (1.5), re-
spectively, and associated with S as in representations (1.4), (1.6) and (1.7), which
satisfy equalities

a(ξ)Hj(ξ)H�(µ)∗a(µ)∗ = Ψ̃j�(ξ, µ) (ξ, µ ∈ ΩL; j, � = 1, . . . , p),(7.7)

a(ξ)Hj(ξ)G�(µ)b(µ) = Λ̃j�(ξ, µ)(7.8)

(ξ ∈ ΩL, µ ∈ ΩR; j = 1, . . . , p; � = 1, . . . , q),

b(ξ)∗Gj(ξ)∗G�(µ)b(µ) = Φ̃j�(ξ, µ) (ξ, µ ∈ ΩR; j, � = 1, . . . , q).(7.9)

We now show that Problems 7.1 and 7.2, at least for the case where ΩL and
ΩR are contained in compact subsets of DQ, are particular cases of Problems 1.3
and 1.6, respectively. To this end, let K0 be the set of all EL-valued functions on
ΩL which take nonzero values at at most finitely many points, with inner product

〈g1, g2〉K0 =
∑

ζ∈ΩL

〈g1(ζ), g2(ζ)〉EL

and let K = EL⊗�2(ΩL) be the completion of K0 with respect to this inner product.
Similarly, let K′

0 be the set of ER-valued functions defined on ΩR and vanishing
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everywhere but at at most finitely many points, with inner product

〈f1, f2〉K′
0

=
∑

ζ∈ΩR

〈f1(ζ), f2(ζ)〉ER

and let K′ = EL⊗�2(ΩR) be the completion of K′
0 with respect to this inner product.

The spaces K and K′ are invariant with respect to multiplication by each of the
coordinate functions z �→ zj for j = 1, . . . , n. Let Tj and T ′

j be equal to the operator
Mzj of multiplication by zj restricted to K and K′, respectively. Then the n-tuples
T = (T1, . . . , Tn) ∈ L(K)n and T ′ = (T ′

1, . . . , T
′
n) ∈ L(K′)n are commutative. By

the diagonal form of T and T ′, we see that σTaylor(T ) = ΩL and σTaylor(T ′) = ΩR.
Furthermore, we introduce the operators

XR : K′ → E∗, YR : K′ → E , XL : K → E∗, YL : K → E
defined first by equalities

XRf =
∑

ζ∈ΩR

d(ζ)f(ζ), YRf =
∑

ζ∈ΩR

b(ζ)f(ζ),(7.10)

XLg =
∑

ζ∈ΩL

a(ζ)g(ζ), YLg =
∑

ζ∈ΩL

c(ζ)g(ζ)(7.11)

for f ∈ K′
0 and g ∈ K0 and then extended to all of K′ and K by continuity (as is

possible due to (7.5)). Furthermore, we make use of the functions (7.6) to define
operators Ψj�, Φj� and Λj� (acting as in (1.25)) by the rules

Ψj�g =
∑

ζ∈ΩL
Ψ̃j�(z, ζ)g(ζ) (g ∈ K0, z ∈ ΩL),

Φj�f =
∑

ζ∈ΩR
Φ̃j�(z, ζ)f(ζ) (f ∈ K′

0, z ∈ ΩR),
Λj�f =

∑
ζ∈ΩL

Λ̃j�(z, ζ)f(ζ) (f ∈ K′
0, ζ ∈ ΩR)

(7.12)

extended to K and K′ by continuity.
Now we will show that for the above choice of T , T ′, XL, YL, XR and YR,

conditions (1.14) coincide with conditions (7.3), (7.4). To this end, we pick a point
ζ ∈ ΩR and a vector eR ∈ ER and let

f(z) :=

{
eR, if z = ξ,

0, otherwise.
(7.13)

Then

(SYR)∧R (T ′)f = S(ζ)b(ζ)eR and XRf = d(ζ)eR.(7.14)

The second relation in (7.14) follows immediately from definitions of XR, T ′ and
f ; the first equality follows from definitions of YR, T ′ and f by (2.4):

(SYR)∧R (T ′)f =
1

(2πi)n

∫
∂Ω′

S(z)YR ·M(z − T ′)f ∧ dz

=
1

(2πi)n

∫
∂Ω′

S(z) ·M(z − ξ)b(ξ)eR ∧ dz

=
1

(2πi)n

∫
∂Ω′

S(z) ·M(z − ξ) ∧ dz b(ξ)eR

= S(ξ)b(ξ)eR
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where we have chosen Ω′ to be a domain with smooth boundary ∂Ω′ such that the
closure Ω′ of Ω′ is compact and Ω′ ⊂ Ω′ ⊂ DQ. Since eR ∈ ER and ξ ∈ ΩR were
picked arbitrarily, it follows from (7.14) that the second condition in (1.14) implies
(7.4). On the other hand, (7.4) implies (again due to equalities (7.14)) that

(SYR)∧R (T ′)f = XRf

for every function f ∈ K′ of the form (7.13). By linearity and continuity, the latter
equality holds for every f ∈ K′ and thus, (7.4) implies (and therefore, is equivalent
to) the second condition in (1.14).

Similarly, taking a point ζ ∈ ΩL and a vector eL ∈ EL we consider a function

g(z) :=

{
eL, if z = ζ,

0, otherwise.
(7.15)

Then, similarly to (7.14) we have

(XLS)∧L (T )g = a(ζ)S(ζ)eL and YLg = c(ζ)eL(7.16)

which allows us to conclude that (7.3) is equivalent to the first condition in (1.14).
Furthermore, replacing S by G� in (7.14) and by Hj in (7.16) leads us to equalities

(G�YR)∧R (T ′)f = G�(ξ)b(ξ)eR for � = 1, . . . , q,(7.17)

(XLH)∧L (T )g = a(ζ)Hj(ζ)eR for j = 1, . . . , p,(7.18)

holding for functions f and g defined via formulas (7.13) and (7.15) from arbitrarily
chosen ζ ∈ ΩL, ξ ∈ ΩR, eL ∈ EL, eR ∈ ER, eL ∈ EL. Take the function f defined in
(7.13) and the function f̃ of the same form based on a point µ ∈ ΩR and a vector
ẽR ∈ ER. By (7.17),〈

(GjYR)∧R (T ′)f̃ , (G�YR)∧R (T ′)f
〉
H

= 〈Gj(µ)b(µ)ẽR, G�(ξ)b(ξ)eR〉H .(7.19)

On the other hand, by the definition (7.12) of the operator Φj�,

〈Φj�f̃ , f〉K′ = 〈Φ̃j�(ξ, µ)ẽR, eR〉ER
.(7.20)

Since eR, ẽR ∈ ER and ξ, µ ∈ ΩR were picked arbitrarily, it follows from (7.19) and
(7.20) that conditions (1.28) imply (7.9). On the other hand, (7.9) implies (again
due to equalities (7.19), (7.20)) that〈

(GjYR)∧R (T ′)f̃ , (G�YR)∧R (T ′)f
〉
H

= 〈Φj�f̃ , f〉K′

for any functions f, f̃ ∈ K′ of the form (7.13). By linearity and continuity, the lat-
ter equality holds for every choice f, f̃ ∈ K′ and thus, (7.9) is equivalent to (1.28).
Using much the same arguments one can check that conditions (1.26) and (1.27)
are equivalent to conditions (7.7) and (7.8), respectively. Therefore, Problems 7.1
and 7.2 are particular cases of Problems 1.3 and 1.6, respectively. Therefore, Theo-
rems 1.4 and 1.7 give necessary and sufficient conditions for Problems 7.1 and 7.2 to
have a solution. These conditions were presented in [17] in a slightly different form.
Now we have more: Theorem 5.1 gives a description of all solutions to Problem 7.2
in terms of a linear fractional transformation.
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Let us display in some more detail the case when the number of interpolation
conditions is finite (i.e., when the sets ΩL and ΩR of interpolation nodes are finite).
Let

ΩL = {z(1), . . . , z(k)} and ΩR = {ω(1), . . . , ω(m)}(7.21)

z(j) = (z(j)
1 , . . . , z

(j)
n ) ∈ DQ and ω(i) = (ω(i)

1 , . . . , ω
(i)
n ) ∈ DQ. Now the functions a,

b, c, d in (7.1), (7.2) are completely defined by their values

xj := a(z(j)), yj := c(z(j)), ui := b(ω(i)), vi := d(ω(i))

for j = 1, . . . , k and i = 1, . . . ,m which can be considered as part of interpolation
data instead of the original functions. We assume for simplicity that EL = ER = C

so that

v1, . . . , vm ∈ E∗ and u1, . . . , um ∈ E .(7.22)

whereas xj and yj are functionals on the spaces E∗ and E , respectively:

x1, . . . , xk ∈ E∗
∗ and y1, . . . , yk ∈ E∗.(7.23)

The functions (7.6) now are scalar-valued and also can be replaced by their values
at interpolating nodes

ψj�
ri := Ψ̃j�(z(r), z(i)) for j, � = 1, . . . p; r, i = 1, . . . , k,

λj�
ri := Λ̃j�(z(r), ω(i)) for j = 1, . . . , p; � = 1, . . . , q;

r = 1, . . . , k; i = 1, . . . ,m,
φj�

ri := Φ̃j�(ω(r), ω(i)) for j, � = 1, . . . , q; r, i = 1, . . . ,m.

(7.24)

In this special context, Problem 7.2 reads:

Problem 7.3. Given interpolation data (7.21)–(7.24), find all functions S in the
class SAQ(E , E∗) satisfying conditions

xrS(z(r)) = yr (r = 1, . . . , k), S(ω(i))ui = vi (i = 1, . . . ,m)(7.25)

and such that, for some choice of functions H and G of the form (1.3) and (1.5)
associated with S via representations (1.4), (1.6) and (1.7), it holds that

xrHj(z(r))H�(z(i))∗x∗i = ψj�
ri for j, � = 1, . . . , p; r, i = 1, . . . , k,

xrHj(z(r))G�(ω(i))ui = λj�
ri for j = 1, . . . , p; � = 1, . . . , q;

r = 1, . . . , k; i = 1, . . . ,m,

u∗rGj(ω(r))∗G�(ω(i))ui = φj�
ri for j, � = 1, . . . , q; r, i = 1, . . . ,m.

(7.26)

The first condition in (7.26) is understood in the sense that xr(S(z(r))e) = yr(e)
for every vector e ∈ E and every r ∈ {1, . . . , k}. In (7.26), x∗i is the vector in E∗
uniquely defined by xi = 〈· , x∗i 〉E∗ , whereas u∗r := 〈· , ur〉E .

The latter problem can be derived directly from Problem 1.6 upon taking K =
C

k, K′ = C
m and setting

Tj =


z
(1)
j

. . .
z
(k)
j

 , T ′
j =


ω

(1)
j

. . .
ω

(k)
j

 (j = 1, . . . , n),(7.27)
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XL =

x1

...
xk

 , YL =

y1...
yk

 ,(7.28)

XR =
[
v1 . . . vm

]
, YR =

[
u1 . . . um

]
,(7.29)

and

Ψj� =
[
ψj�

ri

]
∈ C

k×k, Λj� =
[
λj�

ri

]
∈ C

k×m, Φj� =
[
φj�

ri

]
∈ C

m×m.

Indeed, by definitions of left and right evaluation maps in (2.3) and (2.4) and in
view of diagonal structure of matrices in (7.25),

(XLS)∧L (T ) =

x1S(z(1))
...

xkS(z(k))

 ,
(SYR)∧R (T ′) =

[
S(ω(1))u1 . . . S(ω(m))um

]
and thus, due to the choice of YL and YR in (7.28) and (7.29), interpolation condi-
tions (1.14) reduce to Nevanlinna–Pick interpolation conditions (7.25). Similarly,

(XLHj)
∧L (T ) =

x1Hj(z(1))
...

xkHj(z(k))

 (j = 1, . . . , p),

(G�YR)∧R (T ′) =
[
G�(ω(1))u1 . . . G�(ω(m))um

]
(� = 1, . . . , q)

and conditions (1.26)–(1.28) take the formx1Hj(z(1))
...

xkHj(z(k))

 [H�(z(1))x∗1 . . . H�(z(k))x∗k
]

= Ψj�,

x1Hj(z(1))
...

xkHj(z(k))

 [G�(ω(1))u1 . . . G�(ω(m))um

]
= Λj�,

 u
∗
1Gj(ω(1))

...
u∗mGj(ω(m))

 [G�(ω(1))u1 . . . G�(ω(m))um

]
= Φj�,

which are equivalent to (7.26). The advantage of the “finite” case is that the
coefficients of the linear fractional transformation parametrizing the solution set can
be written down explicitly. We illustrate this possibility by a numerical example.
For simplicity we consider the scalar-valued case with one interpolation node.

Example 7.4. Let Q(z) =
[
z1 z2
z3 z4

]
so that DQ is a Cartan domain of type I

in C
4. Thus, p = q = 2 and n = 4. By Theorem 1.1, a scalar-valued function
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S belongs to the corresponding class SAQ if and only if there exist an auxiliary
Hilbert space H and a function

H(z) =
[
H1(z) H2(z)

]
(7.30)

analytic on DQ with values in L(C2 ⊗H, C) so that

1 − S(z)S(w)∗ = H(z) (IH⊕H − Q(z)Q(w)∗)H(w)∗.(7.31)

We consider the following interpolation problem: find all functions S ∈ SAQ

satisfying condition

S(0) =
1
2
.(7.32)

The latter problem can be viewed as a very particular case of Problem 1.3 with
K = C, K′ = {0}, E = E∗ = C,

Tj = 0 (j = 1, 2, 3, 4), X = X∗
L = 1, Y = Y ∗

L =
1
2
,(7.33)

and the formulas (1.18) and (1.19) now take the form

M1 =
[
1
0

]
, M2 =

[
0
1

]
, N1 = N2 =

[
0
0

]
.(7.34)

By Theorem 1.4, the above problem has a solution if and only if there exists a

positive semidefinite 2×2 matrix P = PL =
[
p11 p12

p∗12 p22

]
satisfying the Stein identity

(1.20):

M∗
1PM1 +M∗

2PM2 −N∗
1PN1 +N∗

2PN2 =
3
4

= X∗X − Y ∗Y.

By the choice of (7.33) and (7.34), this identity simplifies to

p11 + p22 =
3
4
.(7.35)

Now positivity of P is equivalent to

0 ≤ p11 ≤ 3
4

and |p12|2 ≤ 3
4
p11 − p2

11.(7.36)

Theorem 1.7 allows us to make the following three conclusions. First, there are
functions S ∈ SAQ satisfying condition (7.32). Secondly, for every such function
and for each of its representations (7.31), it holds that

H1(0)H1(0)∗ +H2(0)H2(0)∗ =
3
4
.

Finally, for every choice of the numbers p11, p12 and p22 meeting the requirements
(7.35), (7.36), there is a solution S of problem (7.32) with the additional property
that, for some choice of H of the form (7.30) in the representation (7.31), it holds
that

H1(0)H1(0)∗ = p11 and H1(0)H2(0)∗ = p12(7.37)

and there is a linear fractional parametrization of all S satisfying (7.32) and (7.37).
We consider a particular choice of p11 and p12 to demonstrate how the explicit
formula (6.17) works.
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Let p11 = 1
2 and p12 = 1

4 . Then conditions (7.35), (7.36) are satisfied with
p22 = 1

4 . Thus,

P =
1
4
·
[
2 1
1 1

]
, P

1
2 =

1
2
√

5

[
3 1
1 2

]
and by formulas (6.2),

W1 =
1

2
√

5


3
1
1
2

 and W2 =


0
0
0
0

 .
The formula (6.16) now gives D(z) ≡ 1 and we get from (6.17)

Σ(z) =
[

1
2 π +W ∗

1 Q(z)γ
β∗ α∗Q(z)γ

]
.(7.38)

By (6.7)–(6.9),
[
α
β

]
and

[
γ
π

]
are 5 × 4 isometric matrices such that

[
W ∗

1 Y ∗] [α
β

]
=
[
W ∗

2 X∗] [γ
π

]
= 0.

One can take for example,

α =


0 2 6 3

−1 −3 2 1
1 −3 2 1
0 0 −11 2
0 0 0 −3

√
5

 · diag
(

1√
2
,

1√
22
,

1√
165

,
1

2
√

15

)
,

β =
[
0 0 0 −

√
3

2

]
, γ = I4 π = 0.

Substituting the latter entries into (7.38) we conclude by Theorem 6.6 that a func-
tion S belongs to the class SAQ and satisfies conditions (7.33) and (7.37) (with
p11 = 1

2 and p12 = 1
4 ) if and only if it is of the form

S(z) =
1
2

+
1

2
√

5

[
3 1 1 2

]
Q(z) (I4 − T (z)α∗Q(z))−1 T (z)β∗,

where α and β are as above, where Q(z) =
[
z1I2 z2I2
z3I2 z4I2

]
and T is any 4× 4 matrix

valued function of the class SAQ.

Remark 7.5. The hypotheses of Theorems 1.4 and 1.7 can be weakened as follows.
Given the interpolation data set D as in (1.13) or (1.29), rather than assuming that
T and T ′ have Taylor spectrum equal to a compact subset of DQ, assume instead
that T and T ′ have diagonal direct sum decompositions

Tj = diagω∈Ω Tj,ω, T ′
j = diagω∈Ω′ T ′

j,ω′

for some index sets Ω and Ω′, where the operator d-tules Tω = (T1,ω, . . . , Tn,ω)
and T ′

ω′ = (T ′
1,ω′ , . . . , T ′

n,ω′) have Taylor spectrum inside DQ for each ω ∈ Ω and
ω′ ∈ Ω′. Thus the space K is expressed as K = ⊕ω∈ΩKω and K′ = ⊕ω∈Ω′K′

ω′ for
some Hilbert spaces Kω and K′

ω′ and Tω and T ′
ω′ are operators on Kω and Kω′ ,

respectively, for each ω ∈ Ω and ω′ ∈ Ω′. The case considered in [17] is exactly this
situation with Ω = ΩL ⊂ DQ and Ω′ = ΩR ⊂ DQ, with Kω = EL and K′

ω′ = ER
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for some fixed auxiliary Hilbert spaces EL and ER, and with Tj,ω = ωjIEL
and

T ′
j,ω′ = ω′

jIER
for ω ∈ ΩL, ω′ ∈ ΩR and j = 1, . . . , d. By using the results of

the present paper (for the case where T and T ′ have Taylor spectrum contained
compactly in DQ), one can see that the construction in [17] can be extended to the
more general setting described in the present Remark to arrive at the analogues of
Theorems 1.4 and 1.7 for this more general situation. These more general versions
of Theorem 1.4 and 1.7 then contain the results of [17] in full generality — without
the special assumption that ΩL and ΩR are contained in compact subsets of DQ as
was required in the discussion above.

8. Some further examples

The operator argument formulation of Problems 1.3 and 1.6 can be viewed as
a way to treat various interpolation problems in a unified way. A natural ques-
tion would be to clarify what specific problems can be included into this general
scheme. In the previous section we showed that the case when the n-tuples T and
T ′ consist of diagonal (and therefore commuting) matrices, Problem 1.6 reduces
to Problem 7.3 of Nevanlinna–Pick type. Thus, the question is to classify what
problems arise in this way from some choice of commuting (possibly nondiago-
nal) n-tuples of operators. We will focus on the left-sided (the first) condition in
(1.14); the right-sided condition in (1.14) and supplementary two-sided conditions
(1.26)–(1.28) can be treated quite similarly.

Example 8.1. Let us consider the classical case p = q = n = 1 and Q(z) = z. Let
us also suppose that K, K′, E and E∗ are all finite-dimensional Hilbert spaces, and
that (T,XL, YL) is a data set for a left operator-argument interpolation condition.
It is easily seen that (T̃ , X̃L, ỸL) = (STS−1, SXL, SYL) is also a left interpolation
data set which generates the same aggregate of interpolation conditions:

(X̃LF )∧L(T̃ ) = ỸL ⇐⇒ (XLF )∧L(T ) = YL.

Thus, without loss of generality, we may assume that T is in Jordan form. Consider
first the case where T is a Jordan block:

T =


ω
1 ω

. . . . . .
1 ω

 , XL =


x0

x1

...
xm

 , YL =


y0
y1
...
ym

 .
Then the interpolation condition (XLF )∧L(T ) = YL amounts to the aggregate of
conditions

dj

dzj
(x(z)F (z))|z=ω =

dj

dzj
y(z)|z=ω for j = 0, 1, . . . ,m(8.1)

where we have set

x(z) =
m∑

j=0

xj(z − ω)j , y(z) =
m∑

j=0

yj(z − ω)j .

When T has several Jordan blocks, one then gets a finite collection of sets of inter-
polation conditions of this type at each eigenvalue ω of T . Since any finite matrix
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T can be brought to Jordan form via a similarity transformation, by the discus-
sion above we see that such sets of interpolation conditions give the most general
such expressible through the left-tangential operator-argument formalism presented
here (for the finite-dimensional, classical case). Complete details can be found in
Chapter 16 of [18].

Just as in the single variable case, two left-sided conditions

(XL,1S)∧L (T1) = YL,1 and (XL,2S)∧L (T2) = YL,2

imposed for the same interpolant S can be written as just one condition

(XLS)∧L (T ) = YL with T =
[
T1 0
0 T2

]
, XL =

[
XL,1

XL,2

]
, YL =

[
YL,1

YL,2

]
.(8.2)

Thus, if certain conditions can be included into the general scheme of Problem 1.3,
then the problem with several conditions of this type can be also included into the
scheme. Moreover, if (T,XL, YL) is the (multivariable) data set for a left operator-
argument interpolation condition (XLF )∧L(T ) = YL, then, as in the one-variable
case, if S is any invertible bounded linear operator on K, we have that (T̃ , X̃L, ỸL) =
(STS−1, SXL, SYL) is the data set for the very same left interpolation condition,
i.e.:

(X̃LF )∧L(T̃ ) = ỸL ⇐⇒ (XLF )∧L(T ) = YL.

Here T̃ = STS−1 refers to the operator-tuple

STS−1 = (ST1S
−1, . . . , STnS

−1).

However, in case n > 1, there is no canonical form for equivalence of operator-tuples
up to similarity, even in the finite-dimensional case. We therefore are content here
to discuss a couple of possible generalizations of the chain of interpolation conditions
(8.1) to the multivariable situation. We focus on the case where dimK < ∞ and
the joint spectrum of T consists of a single point ω = (ω1, . . . , ωn) ∈ DQ, as the
general case is a direct sum of cases of this form.

Example 8.2. Let us take

Tj =


ωj

1 ωj

. . . . . .
1 ωj

 for j = 1, . . . , n, XL =


x0

x1

...
xm

 , YL =


y0
y1
...
ym

 .
Then the left tangential interpolation condition with operator argument

(XLS)∧L(T ) = Y

assumes the form

(8.3) x0

 ∑
j : |j|=i

1
i!
∂iS

∂jz
(ω)

+ x1

 ∑
j : |j|=i−1

1
(i− 1)!

∂i−1S

∂jz
(ω)

+ · · · + xiS(ω)

= yi for i = 0, 1, . . . ,m.

Here we use the standard multivariable notation

|j| = j1 + · · · + jn if j = (j1, . . . , jn),
∂|j|S
∂zj

=
∂|j|S

∂zj1
1 ∂z

j2
2 · · · ∂zjn

n

.
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Note that in the one variable case this collection of interpolation conditions reduces
to (8.1).

Example 8.3. Let E ⊂ Z
n
+ be a subset of indices in Z

n
+ (n-tuples of nonnegative

integers) which is lower inclusive, i.e.: whenever n ∈ E and n− ei ∈ Z
d
+ (where ei

is the unit vector with i-th component equal to 1 and all other components equal
to 0), then it is the case that also n− ei ∈ E. We assume that the space K has the
form K = K̃ ⊗ �2(E) for some other auxiliary Hilbert space K̃, i.e., vectors k ∈ K
can be written as k = coln∈E [kn] where kn ∈ K̃ for each n ∈ E. Define operators
Tj on K for j = 1, . . . , n via block matrices: Tj = ωjIK + [tjn′,n] where

tjn′,n =

{
IK̃ if n′ = n + ej ,

0 otherwise

for n′,n ∈ E. Define operators XL : E∗ → K and YL : E → K by

XL = coln∈E [xn], YL = coln∈E [yn]

where xn : E∗ → K̃ and yn : E → K̃ are given operators for n ∈ E. Then the left
tangential interpolation condition with operator argument (XLS)∧L(T ) = YL in
this case becomes the aggregate of interpolation conditions

∂|n|

∂zn
{x(z)S(z)} |z=ω =

∂|n|y
∂zn

(ω) for all n ∈ E(8.4)

where we have set

x(z) =
∑
n∈E

xnz
n, y(z) =

∑
n∈E

ynz
n

and we use the standard multivariable notation

zn = zn1
1 zn2

2 · · · znn
n if n = (n1, n2, . . . , nn).

Note that the set of interpolation conditions (8.4) also collapses to (8.1) in the one-
variable case. The interpolation problem for the class SAQ(E , E∗) with interpolation
conditions of this form (with K̃ = E∗ and x(z) = IE∗) was solved in [8] as an
application of a commutant lifting theorem. We mention that a even more general
commutant lifting theorem of a more operator-algebra flavor has recently appeared
in [42]. The interpolation problem with interpolation conditions of the form (8.4)
has been worked out earlier for various special settings: the Herglotz–Agler class
on the polydisk in [53], contractive multipliers between general reproducing kernel
Hilbert spaces in [25], and contractive multipliers of the Arveson space in [6].
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[6] D. Alpay and C. Dubi, Carathéodory Fejér interpolation in the ball with mixed derivatives,
Linear Algebra and its Applications 382 (2004), 117–135, MR 2050101.

[7] C.-G. Ambrozie, Remarks on the operator-valued interpolation for multivariable bounded
analytic functions, Indiana Univ. Math. J. 53 (2004), no. 6, 1551–1578, MR 2106336.

[8] C. Ambrozie and J. Eschmeier, A commutant lifting theorem on analytic polyhedra, Proceed-
ings of operator theory conference dedicated to Prof. Wieslaw Zelazko, Banach Center Publ.,
Warszawa, to appear.

[9] C.-G. Ambrozie and D. Timotin, A von Neumann type inequality for certain domains in Cn,
Proc. Amer. Math. Soc. 131 (2003), 859–869, MR 1937424 (2003h:47016).

[10] A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J.
Math. 115 (2000), 205–234, MR 1749679 (2001i:47021), Zbl 0967.47045.

[11] D. Z. Arov and L. Z. Grossman, Scattering matrices in the theory of unitary extensions
of isometric operators, Soviet Math. Dokl. 270 (1983), 17–20, MR 0705184 (85c:47008),
Zbl 0543.47010.

[12] D. Z. Arov and L. Z. Grossman, Scattering matrices in the theory of unitary exten-
sions of isometric operators, Math. Nachr. 157 (1992), 105–123. MR 1233051 (94i:47019),
Zbl 0777.47007.

[13] W. Arveson, Subalgebras of C∗-algebras III: Multivariable operator theory, Acta Math. 181
(1998), 159–228, MR 1668582 (2000e:47013), Zbl 0952.46035.

[14] J. A. Ball and V. Bolotnikov, On a bitangential interpolation problem for contractive val-
ued functions on the unit ball, Linear Algebra Appl. 353 (2002), 107–147, MR 1919632
(2003h:47028), Zbl 1037.47011.

[15] J. A. Ball and V. Bolotnikov, A tangential interpolation problem on the distinguished bound-
ary of the polydisk for the Schur–Agler class, J. Math. Anal. Appl. 273 (2002), no. 2, 328–348,
MR 1932492 (2003i:47016), Zbl 1015.47004.

[16] J. A. Ball and V. Bolotnikov, A bitangential interpolation problem on the closed unit ball
for multipliers of the Arveson space, Integral Equations Operator Theory 46 (2003), no. 2,
125–164, MR 1983018 (2004c:47033), Zbl 1038.47009.

[17] J. A. Ball and V. Bolotnikov, Realization and interpolation for Schur–Agler class functions
on domains with matrix polynomial defining function in Cn, J. Funct. Anal. 213 (2004),
45–87, MR 2069781.

[18] J. A. Ball, I. Gohberg and L. Rodman, Interpolation of rational matrix functions, Birkhäuser,
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[44] N. K. Nikol’skĭı, Treatise on the shift operator. Spectral function theory, Grundlehren der
Mathematischen Wissenschaften, 273, Springer, Berlin, 1986, MR 0827223 (87i:47042),
Zbl 0587.47036.

[45] G. Popescu, Interpolation problems in several variables, J. Math. Anal. Appl. 227 (1998),
no. 1, 227–250, MR 1652931 (99i:47028), Zbl 0920.47015.

[46] G. Popescu, Poisson transforms on some C∗-algebras generated by isometries, J. Funct.
Anal. 161 (1999), 27–61, MR 1670202 (2000m:46117), Zbl 0933.46070.

http://www.emis.de/cgi-bin/MATH-item?0933.46070
http://www.ams.org/mathscinet-getitem?mr=1670202
http://www.emis.de/cgi-bin/MATH-item?0920.47015
http://www.ams.org/mathscinet-getitem?mr=1652931
http://www.emis.de/cgi-bin/MATH-item?0587.47036
http://www.ams.org/mathscinet-getitem?mr=0827223
http://www.emis.de/cgi-bin/MATH-item?1005.47017
http://www.ams.org/mathscinet-getitem?mr=1893425
http://www.ams.org/mathscinet-getitem?mr=2089431
http://www.emis.de/cgi-bin/MATH-item?0973.47003
http://www.ams.org/mathscinet-getitem?mr=1800795
http://www.emis.de/cgi-bin/MATH-item?0832.47013
http://www.ams.org/mathscinet-getitem?mr=1284929
http://www.emis.de/cgi-bin/MATH-item?0776.32001
http://www.ams.org/mathscinet-getitem?mr=1162310
http://www.emis.de/cgi-bin/MATH-item?0837.47012
http://www.ams.org/mathscinet-getitem?mr=1310362
http://www.emis.de/cgi-bin/MATH-item?0997.47013
http://www.ams.org/mathscinet-getitem?mr=1630655
http://www.emis.de/cgi-bin/MATH-item?0948.41003
http://www.ams.org/mathscinet-getitem?mr=1473260
http://www.emis.de/cgi-bin/MATH-item?0593.93031
http://www.ams.org/mathscinet-getitem?mr=0870854
http://www.emis.de/cgi-bin/MATH-item?0605.46043
http://www.ams.org/mathscinet-getitem?mr=0833217
http://www.emis.de/cgi-bin/MATH-item?0246.47019
http://www.ams.org/mathscinet-getitem?mr=0306951
http://www.emis.de/cgi-bin/MATH-item?0583.00020
http://www.ams.org/mathscinet-getitem?mr=0902600
http://www.emis.de/cgi-bin/MATH-item?0332.93072
http://www.ams.org/mathscinet-getitem?mr=0414239
http://www.emis.de/cgi-bin/MATH-item?0377.47016
http://www.ams.org/mathscinet-getitem?mr=0480362
http://www.emis.de/cgi-bin/MATH-item?0917.47017
http://www.ams.org/mathscinet-getitem?mr=1627901
http://www.emis.de/cgi-bin/MATH-item?0827.47005
http://www.ams.org/mathscinet-getitem?mr=0976843


290 Joseph A. Ball and Vladimir Bolotnikov

[47] P. Quiggin, For which reproducing kernel Hilbert spaces is Pick’s theorem true? Inte-
gral Equations Operator Theory 16 (1993), no. 2, 244–266, MR 1205001 (94a:47026),
Zbl 0779.30026.

[48] R. P. Roesser, A discrete state-space model for linear image processing, IEEE Trans. Au-
tomat. Control AC–20 (1975), 1–10, MR 0434507 (55 #7473), Zbl 0304.68099.

[49] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970),
172–191, MR 0268706 (42 #3603), Zbl 0233.47024.

[50] J .L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math.
125 (1970) 1–38, MR 0271741 (42 #6622), Zbl 0233.47025.

[51] F.-H. Vasilescu, A Martinelli type formula for the analytic functional calculus, Rev. Roum.
Math. Pures Appl. 23 (1978), no. 10, 1587–1605, MR 0530689 (80j:47020), Zbl 0402.47011.

[52] F.-H. Vasilescu, A multidimensional spectral theory in C∗-algebras, Spectral theory, Banach
Center Publ. 8, PWN-Polish Sci. Publ., Warszawa, 1982, 471–491, MR 0738312 (85g:46069).
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