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Critical percolation on certain nonunimodular
graphs

Yuval Peres, Gábor Pete and Ariel Scolnicov

Abstract. An important conjecture in percolation theory is that almost sure-
ly no infinite cluster exists in critical percolation on any transitive graph for
which the critical probability is less than 1. Earlier work has established this for
the amenable cases Z

2 and Z
d for large d, as well as for all nonamenable graphs

with unimodular automorphism groups. We show that the conjecture holds for
the basic classes of nonamenable graphs with nonunimodular automorphism
groups: for decorated trees and the nonunimodular Diestel–Leader graphs.
We also show that the connection probability between two vertices decays
exponentially in their distance. Finally, we prove that critical percolation on
the positive part of the lamplighter group has no infinite clusters.

Contents

1. Introduction and preliminaries 1
2. Decorated trees 4
3. Diestel–Leader graphs 8
4. The lamplighter group 14
References 17

1. Introduction and preliminaries

1.1. Introduction. We will focus on the following general conjecture of Benjamini
and Schramm [BS96] on critical percolation (see Subsection 1.2 for definitions):

Conjecture 1.1. Let G be a transitive graph. If pc < 1, then almost surely critical
percolation on G has no infinite clusters.
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Earlier work of Harris [Har60] and Kesten [Kes80] established that for the graph
Z

2 critical percolation almost surely has no infinite cluster at p = pc. Later, Hara
and Slade [HS94] established the same for Z

d, when d ≥ 19. However, Conjec-
ture 1.1 remains open for Z

d where 3 ≤ d ≤ 18, along with many other amenable
graphs.

For regular trees, the conjecture is just the classical result that a critical Galton–
Watson tree dies out. Wu [Wu93] showed the conjecture for products of regular
trees and Z, when the degree of the regular tree was large enough.

Benjamini, Lyons, Peres and Schramm, see [BLPS99a] or [BLPS99b], proved the
conjecture for nonamenable graphs when the automorphism group of the graph is
unimodular. However, their “Mass Transport Principle” does not adapt to the case
when the action is not unimodular, leaving that case open, as well.

In this paper, we prove the conjecture for the best-known examples of transitive
graphs with nonunimodular automorphism groups.

Section 2 deals with trees “decorated” by adding edges, where this decoration
retains transitivity. A typical example is the “grandparent tree” (see Figure 2), due
to Trofimov [Tro85], and also appearing in Soardi and Woess [SW90].

Section 3 proves the conjecture for a class of graphs due to Diestel and Leader
[DL01], see Figure 3. Such a graph Γα,β is the “horocyclic product” of an (α + 1)-
regular tree Tα and a (β + 1)-regular tree Tβ ; see Subsection 3.1 for a formal
definition.

When α �= β, the graph Γα,β is nonunimodular. Theorem 3.1 proves Conjec-
ture 1.1 for these graphs Γα,β .

If α = β, the graph Γα,β turns out to be a Cayley graph of the “lamplighter
group” of Kăımanovich and Vershik (Example 6.1 of [KV83]). As such, it is uni-
modular, moreover, it is amenable, which means that we are unable to prove the
conjecture in this case. However, in Section 4 we show that critical percolation on
the positive part of this graph, and also of another natural Cayley graph of the
lamplighter group, has no infinite components. This is analogous to the case of
half-space percolation in Z

d, see [BGN91].
We also show that, in critical percolation on any of our nonunimodular graphs,

the connection probability between two vertices decays exponentially in their dis-
tance. The importance of such an exponential decay is discussed in [BS99]; for
example, it might help in proving the existence of the nonuniqueness phase. For
the Diestel–Leader graphs Γα,β , the standard methods give the existence of this
phase only when β is sufficiently large compared to α (or vice versa); see at the end
of Section 3.

Note that the method of [AL91], see also [BLPS99b, Corollary 5.5], shows that
if the automorphism group of a transitive graph is nonamenable (which is stronger
than the nonamenability of the graph), then there can not be a unique infinite
cluster in critical percolation. However, our examples have amenable automorphism
groups, hence our proofs have to rule out the possibility of a unique infinite cluster,
as well, which is nontrivial in the case of the Diestel–Leader graphs. A very recent
preprint of Ádám Timár [Tim05], together with an unpublished result of Lyons,
Peres and Schramm, show that there cannot exist infinitely many infinite clusters
in critical percolation on any nonunimodular transitive graph.
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1.2. Background: amenability, unimodularity, and percolation. Let G =
(V, E) be a locally finite infinite graph. Denote by AutG its group of automor-
phisms, i.e., the group of bijective maps g : V (G) −→ V (G) such that {u, v} ∈ E(G)
iff {gu, gv} ∈ E(G). G is called transitive if any pair of vertices of G has an auto-
morphism that maps the first vertex to the second one.

If we equip Γ = AutG with the topology of pointwise convergence on G, then
it becomes a locally compact topological group. Therefore it has both left- and
right-invariant Haar measures, and we can consider the Banach space L∞(Γ) of
measurable essentially bounded real valued functions on Γ w.r.t. the left-invariant
Haar measure. A linear functional m : L∞(Γ) −→ R is called an invariant mean if
it maps nonnegative functions to nonnegative reals, the constant 1 function to 1,
and m(Lgφ) = m(φ) for any g ∈ Γ and φ ∈ L∞(Γ), where Lg(φ)(h) := φ(gh).

Definition 1.2.
• The edge-isoperimetric constant of a graph G is

ιE(G) := inf
{ |∂EK|
|K| : K ⊂ V (G), |K| <∞

}
,

where ∂EK := {{u, v} ∈ E(G) : u ∈ K, v /∈ K}. G is amenable if ιE(G) = 0.
• A locally compact topological group Γ is amenable if it has an invariant

mean. If Γ is finitely generated, then this is equivalent to saying that it has
an amenable Cayley graph, see [Pat88].
• A locally compact topological group is called unimodular if its left- and

right-invariant Haar-measures coincide.

Schlichting [Sch79] and Trofimov [Tro85] give a combinatorial characterization of
unimodularity, which is made explicit by Soardi and Woess [SW90] for the action of
a group of graph automorphisms on the graph. According to this characterization,
the action of a group of automorphisms Γ on a graph G is unimodular if and only
if for any pair x, y of vertices, |Stab(x) · y| = |Stab(y) · x|, where Stab(x) = {g ∈
Γ : gx = x} is the stabilizer of x. We say that a transitive graph G is unimodular
if the action of the full group AutG is unimodular.

There are basic connections between nonamenability of a graph and the non-
amenability of its automorphism group. A useful lemma, see, e.g., Lemma 3.3 of
[BLPS99b], allows us to take invariant means on any appropriate graph, instead of
on the group itself. If G is a countable graph, and Γ is a closed subgroup of AutG,
then Γ acts on the Banach space L∞(V (G)) of real valued bounded functions by
Lg(φ)(v) := φ(gv), and we can define a Γ-invariant mean on G analogously to how
we did above.

Lemma 1.3 (Characterization of group-amenability). Let G be a graph and Γ be
a closed subgroup of AutG. Then Γ is amenable if and only if G has a Γ-invariant
mean. �

There is also a characterization of graph amenability in terms of the amenability
of closed transitive groups of automorphisms, due to Soardi and Woess [SW90]. See
also Theorem 3.4 of [BLPS99b].

Lemma 1.4 (Corollary 1 of [SW90]). Let G be a graph and Γ a closed transitive
subgroup of AutG. Then G is amenable if and only if Γ is amenable and its action
is unimodular. �
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Given a graph G and 0 ≤ p ≤ 1, percolation on G is a measure Pp{·} on subsets
E ⊆ E(G), where the events {e ∈ E}, e ∈ E(G), are all independent and occur with
probability p. Edges e ∈ E are called open, and edges e ∈ Ec closed ; paths shall be
called open if all edges are open. The cluster of a vertex o ∈ V (G) is

C(o) = {v : o←→ v by an open path}.
By Kolmogorov’s 0-1 law, for any value of p an infinite cluster exists with probability
0 or 1. So, define the critical probability pc for percolation by

pc = inf{p : Pp{∃ ∞ cluster} = 1}.
When the value of p is clear from the context, and especially when p = pc, we

write P{·} for Pp{·}.
For nonamenable graphs with bounded degree it is known [BS96] that 0 < pc < 1,

hence Conjecture 1.1 poses a real question in this case.
For nonamenable transitive graphs there is a second critical value of interest,

pu = inf{p : Pp{∃ a unique ∞ cluster} = 1}.
Another famous conjecture of [BS96] is the strict inequality pc < pu for these
graphs. The standard references for percolation are [Gri99] and [LP05].

1.3. The general strategy. The main steps of the proof are shared by all the
examples we deal with. First, we shall use the tree structure underlying the graph to
construct a Galton–Watson process and bound the expected number of vertices at
level k that can be reached from a fixed vertex o at level 0 via certain restricted paths
that stay in the “downwards half-graph” from o. Then a Fatou lemma argument
will imply that the component is a.s. finite in this downwards half-graph. Moreover,
as the combinatorial characterization of nonunimodularity suggests, the component
of a vertex has more ways to grow “downwards” than “upwards”, so the component
cannot directly reach infinitely far upwards, either. In a decorated tree there is no
“sideways” direction, so it follows easily that the entire component must be finite.
For the Diestel–Leader graphs the specific combinatorial structure helps in showing
that the “exponentially unlikely” upward growth makes it impossible that there is
a cluster oscillating infinitely up and down.

2. Decorated trees

2.1. Definition and examples. Let T be a d + 1-regular tree. T is a transitive
nonamenable graph, AutT is nonamenable, and its action on T is unimodular. We
shall examine a class of nonamenable transitive graphs G derived from T by adding
edges to it for which AutG will be amenable (and therefore, by Lemma 1.4, will
act on G in a nonunimodular manner).

Two rays (half-infinite simple paths) in T are called equivalent if they differ only
in finitely many edges. An end of the tree is an equivalence class of rays. Pick an
end ξ of T and direct all edges of T towards ξ. If there is an edge from v to u, we say
that v is the child of u, and u is its parent. We shall use the terms sibling, grandchild
and grandparent in their obvious meaning. We say that v is a descendant of u and
that u is an ancestor of v if there is a directed path from v to u. The downwards
subtree Sv of a vertex v is the graph on the vertices descended from v. Distinguishing
some vertex o ∈ T , we may define a level function � : V (T ) → Z by �(o) = 0 and
�(v) = �(u) + 1 whenever v is a child of u. Note that large values of this level
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function mean large depths in T , while negative values correspond to being higher
than o. When considering the cluster of a given vertex o, we shall frequently make
use of the level sets (relative to o), defined for k ∈ Z by Lk := {v : �(v)− �(o) = k}.
For example, the visually clear expression that a path v1, . . . , vn does not go above
level Lk can be written as �(vi) ≥ k for all 0 ≤ i ≤ n.

Let K = {α ∈ AutT : αξ = ξ} be the group of ξ-preserving automorphisms
of T . Then K is an amenable group (any Banach limit on ξ is a K-invariant mean,
which suffices by Lemma 1.3), which acts on T transitively.

Now let L be some subgroup of K (possibly K itself) which acts transitively on T .
Any locally finite graph G = (V (T ), E(T ) ∪ E′) with L · E′ = E′ will be called a
decorated tree (or L-decorated tree). The graph G itself is always nonamenable,
since it results from the nonamenable graph T by adding edges. Considering the
action of L on the vertices of G, we may regard it as a subgroup of AutG; however,
AutG might still be nonamenable.

u
v

w

Figure 1. “Triangles” tree.

Example 2.1 (AutG nonamenable, unimodular action). Take d = 2 and L = K,
and let E′ = {{u, v} : u, v are siblings}, see Figure 1. Then AutG is nonamenable,
and its action is unimodular.

u
v

w

Figure 2. “Grandparent” tree.

Example 2.2 (AutG amenable, nonunimodular action). Take L = K, and E′ =
{{u, w} : u is the grandparent of w}, see Figure 2. The action of AutG on G is not
unimodular, and it is an amenable group.

For the remainder of this section, we shall fix some graph G which is a decorated
tree, and prove that critical percolation on G almost surely has no infinite com-
ponents. While all the results hold for AutG with unimodular action, this case is
covered by [BLPS99b]; the result is new only for AutG with nonunimodular action.

Theorem 2.3. Let G be a decorated tree. Then critical percolation on G a.s. has
no infinite components.
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Note 2.4. It is easy to check directly, and also follows from our proof of The-
orem 2.3 below, that for any p < 1, percolation on a decorated tree satisfies
Pp{x ←→ y} ≤ e−c dist(x,y) for some c = cp > 0. The same result at p = pc

for the Diestel–Leader graphs is not that easy, and will be proven in Section 3.

We will follow the strategy outlined in Subsection 1.3.

2.2. Bounding branches.

Definition 2.5. Consider percolation on a decorated tree G. The forward cluster
C+(o) of a vertex o ∈ V (G) is defined by

C+(o) :=
{

v : v ←→ o by an open path (o = v0, v1, . . . , vn = v) inside the
downwards subtree So, with �(vi) ≤ �(v) for all 0 ≤ i < n

}
.

Note that C+(o) is not necessarily connected. We start by showing that C+(o)
is “narrow”, in the sense that it contains few branches.

Lemma 2.6. Consider critical percolation on a decorated tree G at pc(G). Let
o ∈ V (G) be a vertex, and define V +

k := C+(o) ∩ Lk. Then ek := E|V +
k | ≤ 1 for

all k ≥ 0.

Proof. Suppose to the contrary that ek0 > 1 for some k0 ≥ 0. We shall use this
to find subsets of the vertices of {V +

j·k0
}∞j=0 which will form a supercritical Galton–

Watson process:
• The root of the process shall be the vertex Y0,1 = {o}.
• If at level j − 1 of the process we picked vertices vj−1,1, . . . , vj−1,Nj−1 ∈

V +
(j−1)k0

, we shall pick at level j as descendants of each vj−1,i the vertices
Yj,i = C+(vj−1,i) ∩ Ljk0 .

Due to the construction, for any fixed j, if we condition on the previous genera-
tion {Yj−1,i : i = 1, . . . , Nj−1}, then the sets Yj,i are independent. Also, |Yj,i| has
the same distribution as |Y1,1|, so this is indeed a Galton–Watson process.

Since Y1,1 = V +
k0

, this is a supercritical process. But ek0 is a polynomial in p, and
in particular is continuous. Thus, we may decrease p below pc keeping ek0(p) > 1.
This would give a positive probability for

|C(o)| ≥
∞∑

j=0

|V +
j·k0
| =∞,

contradicting criticality at pc. �

2.3. Clusters are finite. Define r as the maximal length of a path in T connect-
ing the two endpoints of an edge of G. Since G is locally finite and transitive, r is
well-defined and finite. Furthermore, let D be the common degree of the vertices
of G.

Lemma 2.7. In critical percolation on a decorated tree G, for any o ∈ V (G), the
forward cluster C+(o) is a.s. finite.

Proof. Consider the band of levels Hk := ∪k+r
j=kLj . Recall the random variables

|V +
k | from Lemma 2.6. For a percolation configuration ω, let Ek be the set of edges

in open paths leading from o to Lk, staying in So and not going below Lk. Define
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Fk := ∪k+r
j=kEj and W+

k := ∪k+r
j=kV +

j . Then Lemma 2.6 and Fatou’s lemma give us
that

E

{
lim inf
k→∞

|W+
k |
}
≤ lim inf

k→∞
E|W+

k | ≤ r + 1.

Thus the random variable lim infk→∞ |W+
k | is almost surely finite.

The event Ak(n) := {|W+
k | = n} is clearly determined by Fk. Furthermore,

given Fk and Ak(n) with some n ≥ 1, the probability of the event

Gk :=
{
all edges incident to W+

k and not in Fk are closed
}

is at least (1 − pc)Dn > 0. This means that if Ak(n) happens for infinitely many
k values, then there is almost surely a K such that GK occurs. But note that if
u ∈ V +

m for some m > k + r, then any open simple path from o to u that shows
this, when it first enters Hk, goes through some vertex v ∈W+

k , and it leaves W+
k

the last time through an edge not in Fk. Hence, GK implies that V +
m = ∅ for all

m > K + r, which means that Ak(n) could not happen infinitely often.
Therefore, we must have |W+

k | = 0 infinitely often a.s. But the above argument
also shows that W+

k = ∅ implies V +
m = ∅ for all m > k + r, hence |C+(o)| < ∞

a.s. �
In the case of a decorated tree it is particularly easy to use the tree-like structure

of G to show that clusters cannot extend infinitely far “up” or “sideways”.

Lemma 2.8. In independent p-percolation with any p < 1, the cluster C(o) is
a.s. contained in some downwards subtree.

Proof. Call the subtree Sv of any vertex v isolated if no open edges remain con-
necting Sv with V (G) \ Sv; define the events Iv = {Sv is isolated}.

Recall the bound r on the “maximal length in T” of an edge of G. It follows
that Iv depends only on a constant finite number of edges. Consider now the
events Iv1 , Iv2 , . . . for some vertices v1, v2, . . . on the path upwards from o, which
are sufficiently far apart so that these events are all independent. Then a.s. one (in
fact, infinitely many) of the Ivi will occur, and C(o) is contained in the downwards
subtree of this vi. The probability that the distance of vi from o is larger than t
decays exponentially in t. �
Proof of Theorem 2.3. Almost surely, the conclusions of Lemmas 2.7 and 2.8
hold for all vertices of G. Similarly, it is enough to show that C(o) is finite a.s.

Assume that C(o) is infinite. Let v be a vertex such that C(o) ⊆ Sv. There
are finitely many (no more than (d�(o)−�(v)+1 − 1)/(d − 1)) vertices ui in Sv such
that �(ui) ≤ �(o), and the downwards cluster C+(ui) of each such vertex is finite
a.s. On the other hand, C(o) can be infinite only if o is connected to vertices w
on arbitrarily deep levels in Sv. If we consider an open path from o to such a w,
then the first vertex on this path which is on the level of w is actually an element
of C+(ui) for one of the vertices ui. But this is impossible if w is located deep
enough, hence C(o) must be finite. �
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3. Diestel–Leader graphs

3.1. Definition. Diestel and Leader [DL01] give the following example of a graph
with nonunimodular automorphism group. They conjecture that this transitive
graph is not quasi-isometric to any Cayley graph.

Fix integers α, β ≥ 2. Let Tα and Tβ be an (α + 1)-regular and a (β + 1)-
regular tree, respectively. Choose an end of Tα and an end of Tβ , and orient
the edges of each tree towards its distinguished end. Now construct the graph
Γ′

α,β = (V ′
α,β , E′

α,β) with vertices V ′
α,β = V (Tα)× V (Tβ) and edges

E′
α,β =

{{(u1, u2), (v1, v2)}
∣∣ {u1, v1} ∈ E(Tα) and {u2, v2} ∈ E(Tβ)

are oriented in opposite directions.
}
.

Note that if �1 : Tα → Z and �2 : Tβ → Z are level functions for Tα and Tβ

respectively, then �1(u1) + �2(u2) = �1(v1) + �2(v2) for any edge {(u1, u2), (v1, v2)}
of Γ′

α,β . Thus, Γ′
α,β has infinitely many connected components, all isomorphic.

Define Γα,β to be one such connected component.
Figure 3 illustrates a portion of Γα,β when α = 3 and β = 2, along with a path

in it.

t

u u′

v

w

z

a a′

b b′

c

Nodes in Γα,β are pairs of vertices at the same level; edges must follow both trees’ edges.

Sample path: (u, a), (v, b), (w, c), (v, b′), (u, a′), (t, z), (u′, a′).

Figure 3. The Diestel–Leader graph Γ3,2

We also define the two projections onto the first and second components of Vα,β ,
labelled π1 : Γα,β → Tα and π2 : Γα,β → Tβ , and note that if {x, y} is an edge of
Γα,β , then {π1(x), π1(y)} and {π2(x), π2(y)} are edges of Tα and Tβ respectively.
Also, define a level function � := �1 ◦ π1. The level sets Lk for k ∈ Z are defined
relative to this function �. We shall refer to an edge in Γα,β from x to y as going
up if �(y) = �(x)− 1, and going down if �(y) = �(x) + 1.

Here are some standard facts concerning Γα,β , which appear in [DL01] and
[Woe00].
• Γα,β is clearly a transitive graph.
• Aut Γα,β is unimodular iff α = β, as the combinatorial characterization is

easily checked.
• Aut Γα,β is always amenable. This is because Aut Γα,β is a subgroup of the

direct product of the groups of those automorphims of Tα and Tβ that pre-
serve the distinguished end. As we have seen, these two groups are amenable,
and group amenability is preserved by direct sums and by going to a sub-
group.
• Γα,β is amenable iff α = β. This follows from the facts above and Lemma 1.4.
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We will prove the following:

Theorem 3.1. If α > β, then critical percolation on Γα,β almost surely has no

infinite clusters. Furthermore, Ppc
{x ←→ y} ≤ Cρdist(x,y) for any ρ ∈

(
β
α , 1

)
and

suitable C = C(ρ) <∞.

Many of the lemmas used in the proof are primarily combinatorial, and hold also
when α = β. So we shall not assume α �= β unless it is explicitly stated in a lemma.
The unimodular case α = β will be discussed in Section 4. The main help in the
proofs will be that the geometry of the graph Γα,β has some similarities with that
of a tree:

Note 3.2. Let x0, x1, . . . be a path in Γα,β , such that the edge from x0 to x1 goes
down, and ∀i ≥ 0 : �(xi) ≥ �(x0). Then the path π1(x0), π1(x1), . . . stays within
the downwards subtree of π1(x0).

This motivates the following definitions:

Definition 3.3. The forward subcluster of a vertex o ∈ V (Γα,β) is the set

C+(o) = C+(o, ω) := {v : o←→ v by an open path (o = v0, v1, . . . , vn = v)

such that �(o) ≤ �(vi) ≤ �(v) for all i}.
Furthermore, the downwards subcluster of o is

C ′(o) = C ′(o, ω) := {v : o←→ v by an open path (o = v0, v1, . . . , vn = v)

such that �(o) ≤ �(vi) for all i}.
3.2. Finiteness downwards. As before, the first step of the proof is to bound
the rate of growth of the forward part of the critical cluster, and to conclude that
the cluster cannot directly go down infinitely deeply.

Lemma 3.4. Let o ∈ V (Γα,β) and consider critical percolation on Γα,β. Define
V +

k = V +
k (o) := {x : x ∈ C+(o), �(x)− �(o) = k}. Then the values ek = ek(pc) :=

E|V +
k | satisfy ek ≤ 1.

Proof. We can copy the proof of Lemma 2.6. The only difference is that the
independence of the number of offspring of any two vertices on the same level of the
Galton–Watson process we are building is now provided by Note 3.2, as opposed
to the earlier explicit restriction that the paths in C+(o) should stay inside the
subtree So. �

Lemma 3.5. In critical percolation on Γα,β, we have that π1[C ′(o)] is finite a.s.

Proof. Exactly as in the proof of Lemma 2.7, we can use Fatou’s lemma and the
sequence of events Gk to conclude that there is a random integer K such that V +

k (o)
is empty for all k > K. In other words, π1(C+(o)) is finite almost surely. Now note
that, unlike C+(o), the set C ′(o) is necessarily connected. Hence, if π1(C ′(o)) was
infinite, then for any k > 0, there would be a simple open path in C ′(o) between o
and some vertex of Lk. The first time this path enters Lk, at vertex, say, v ∈ Lk,
then v ∈ C+(o) would also hold. Since k was arbitrary, π1(C+(o)) would be infinite,
too. �
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The last result can be strengthened by the following simple lemma, which shows
that the structure of Γα,β ensures that a connected set C with finite π1(C) cannot
be infinite.

Lemma 3.6. Let C be a connected component of Γα,β such that there exists an
integer k with �(q) ≤ k for any q ∈ C. Then for all u ∈ Tα, the projection π1 maps
only finitely many elements of C to u, and indeed |π−1

1 [u] ∩ C| ≤ βk−�1(u).

Proof. If �1(u) > k, then π−1
1 [u] ∩C = ∅. Now suppose that this set is nonempty,

with k − �1(u) = j ≥ 0, and take some (u, a) ∈ π−1
1 [u] ∩ C, with a ∈ Tβ . Consider

the unique ancestor b ∈ Tβ of a which has �2(b) = �2(a) − j, and let T ⊂ Tβ be
the infinite subtree of descendants of b. Denote the jth descendants of b by a1 =
a, a2, . . . , aβj ∈ T . Note that any open path γ ⊆ C starting from (u, a), because of
�(q) ≤ k for all q ∈ γ, satisfies π2(γ) ⊆ T . Hence π−1

1 [u]∩C ⊆ {(u, a1), . . . , (u, aβj )},
and the claim follows. �

3.3. Finiteness upwards. Next we prove that almost surely no vertex can con-
nect to vertices unboundedly “upwards” of it in the tree.

Lemma 3.7. Consider critical percolation on Γα,β, and fix a vertex o. For all
k ∈ N, define

V −
k (o) := {x : �(o)− �(x) = k, o ∈ C+(x)}.

Then E|V −
k | ≤

(
β
α

)k

.

Proof. There are βk vertices in Γα,β that have a positive probability to appear in
V −

k , and all these probabilities are the same, also equaling to

qi := Ppc{∃u ∈ C+(o) with π1(u) = ai},
where the ai, i = 1, . . . , αk, are the k’th generation descendants of π1(o) in Tα.
Now, rewriting ek from Lemma 3.4 as

1 ≥ ek =
αk∑
i=1

qi = αkq1

gives qi ≤ α−k, and the desired bound follows from the linearity of expectation. �

Lemma 3.8. Suppose α > β, and for all k ∈ N, define

U−
k (o) = {x : �(o)− �(x) = k, o ∈ C ′(x)}.

Then ak := E|U−
k | <∞.

Proof. First we prove that a0 ≤ α
α−β <∞, then that ak+1 ≤ ak(β/α)a0 <∞ for

all k ∈ N.
Consider a simple open path γ connecting o to x and showing x ∈ U−

0 . Let y
be the last lowest vertex on the path. Write j = �(y) − �(o). Then the portion of
γ between y and x shows that x ∈ V −

j (y), with the definition of Lemma 3.7, while
the portion of γ between y and o shows that y ∈ C+(o). Now, such an open path
γ, going through these vertices o, y, x, though with y not being necessarily the last
lowest vertex, exists if and only if both events {x ∈ V −

j (y)} and {y ∈ C+(o)} occur,
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due to disjoint sets of open edges; i.e., iff {x ∈ V −
j (y)}� {y ∈ C+(o)} happens,

with the notation of the van den Berg–Kesten inequality, see [vdBK85] or [Gri99].
This BK inequality says that for increasing measurable events A and B in inde-

pendent p-percolation, Pp{A�B} ≤ Pp{A}Pp{B}. Therefore, at pc,

a0 = E|U−
0 | ≤

∞∑
j=0

∑
x

∑
y

P{{x ∈ V −
j (y)}� {y ∈ C+(o)}}

≤
∞∑

j=0

∑
x

∑
y

P{x ∈ V −
j (y)}P{y ∈ C+(o)}

≤
∞∑

j=0

(
β

α

)j

· 1 =
α

α− β
<∞,

where the sums are over {x : �(x) = �(o)} and {y : �(y) = �(o) + j}, and we used
Lemmas 3.7 and 3.4 to get the third line.

Now take a simple open path γ from o to x and showing x ∈ U−
k+1(o). Let z be

the first vertex on this path that lies in U−
k+1(o), and let t be previous vertex on

the path. Then the portion of γ between o and t shows that t ∈ U−
k (o), while the

portion of γ between z and x shows that x ∈ U−
0 (z). Similarly as above, such an

open path γ, going through these vertices o, t, z, x, exists if and only if the three
events {t ∈ U−

k (o)}, {(t, z) is open} and {x ∈ U−
0 (z)} occur on disjoint sets of open

edges. Hence the BK inequality now gives

ak+1 ≤ ak · (βpc) · a0.

Since Tα is a subgraph of Γα,β , we have pc ≤ 1/α. Therefore, by induction,

ak ≤ (β/α)kak+1
0 ≤

(
β

α− β

)k
α

α− β
<∞. �

Now plugging the finiteness of the ak’s into a similar, but more refined argument,
we get for all α > β that ak → 0 exponentially, as k →∞.

Lemma 3.9. Suppose α > β. Define the event

Ak = {o is connected by an open path to a vertex k levels above it}.
Then, in critical percolation, limk→∞ P{Ak} = 0, decaying exponentially.

Proof. Note that Ak = {U−
k �= ∅}. Thus, by Markov’s inequality, it is enough to

show that for ak := E|U−
k | we have limk→∞ ak = 0 exponentially quickly.

Consider a simple open path γ connecting o to x and showing x ∈ U−
k . Let y

be the last lowest vertex on the path. Write j = �(y) − �(o). Then the portion
of γ between y and x shows that x ∈ V −

j+k(y), with the definition of Lemma 3.7.
Now let z be the last highest vertex on the portion of γ between o and y, and write
i = �(o) − �(z). Clearly, 0 ≤ i ≤ k, and z ∈ U−

i (o). The path γ also shows that
y ∈ C+(z).

The existence of such an open path γ, going through these vertices x, y, z, is
equivalent to the occurrence of the three events {x ∈ V −

j+k(y)}, {y ∈ C+(z)} and
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{z ∈ U−
i (o)} on disjoint edge sets. Hence the BK inequality gives that, at pc,

E|U−
k | ≤

k∑
i=0

∞∑
j=0

∑
x

∑
y

∑
z

P{{x ∈ V −
j+k(y)}� {y ∈ C+(z)}� {z ∈ U−

i (o)}}

≤
k∑

i=0

∞∑
j=0

∑
x

∑
y

∑
z

P{x ∈ V −
j+k(y)}P{y ∈ C+(z)}P{z ∈ U−

i (o)}

≤
k∑

i=0

∞∑
j=0

ai · 1 ·
(

β

α

)j+k

=
α

α− β

(
β

α

)k k∑
i=0

ai,

where the sums are over {x : �(x) = �(o)− k}, {y : �(y) = �(o)+ j}, and {z : �(z) =
�(o)− i}, and we used the definition of ai and Lemmas 3.7 and 3.4 to get the third
line.

The finiteness of the ai’s is known from Lemma 3.8. Now suppose

lim sup
i→∞

ai ≥ δ > 0.

Because of the exponential decay of the factor
(

β
α

)k

in the previous inequality,
this can happen only if lim supi→∞ ai = ∞. But then there are infinitely many
indices m for which am = max{a0, a1, . . . , am}, and for such an m our inequality

implies am ≤ α
α−β (m + 1)am

(
β
α

)m

. But this is impossible if m is large enough.
Hence limk→∞ ak = 0. Moreover, convergence implies boundedness, ak ≤ A for

some A, hence we actually have ak ≤ α
α−β (k + 1)A

(
β
α

)k

, which is less than Bρk

for β
α < ρ < 1 and B > 0 large enough. �

Iterating further our argument gives the following:

Lemma 3.10. Suppose α > β, and for all k ∈ N, define

W−
k (o) := L−k ∩ C(o).

Then, in critical percolation, E|W−
k (o)| <∞, and they decay exponentially in k.

Proof. Consider an open path γ from o to x ∈ W−
k . Let w1 be the last highest

vertex on γ, and v1 be the last lowest vertex on the portion of γ from w1 to
x. Then, for t ≥ 2, let wt be the last highest vertex on the portion of γ from
vt−1 to x, and vt be the last lowest vertex on the portion of γ from wt to x.
We make these definitions for all t ≥ 1, but there will certainly be a smallest
T ≥ 1 such that wt = vt = x for all t ≥ T . Writing jt = �(x) − �(wt) and
it = �(vt) − �(x), we have j1 > j2 > · · · > jT−1 > jT = jT+1 = · · · = 0 and
i1 > i2 > · · · > iT−1 ≥ iT = iT+1 = · · · = 0. Note that w1 ∈ U−

k+j1
(o) and

wt+1 ∈ V −
it+jt+1

(vt), while vt ∈ C+(wt). The BK inequality now gives
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E|W−
k | ≤

∑
j1>j2>···
i1>i2>···

∑
w1,w2,...
v1,v2,...

P{w1 ∈ U−
k+j1

(o)}

·
∞∏

t=1

(
P{wt+1 ∈ V −

it+jt+1
(vt)}P{vt ∈ C+(wt)}

)

≤
∑

j1>j2>···
i1>i2>···

Bρk+j1

∞∏
t=1

(
β

α

)it+jt+1

= Bρk 1
1− ρ

( ∑
j2>j3>···

(
β

α

)j2+j3+···)( ∑
i1>i2>···

(
β

α

)i1+i2+···)

= Bρk 1
1− ρ

( ∞∑
n=0

(
β

α

)n

q(n)

)2

,

where, to get the second line, we again used Lemmas 3.7 and 3.4 and wrote ak ≤
Bρk from the proof of Lemma 3.9, while, in the last line, we wrote q(n) for the
number of partitions of n ∈ N with all distinct parts, with the convention q(0) = 1.
It is easy to see that q(n) has subexponential growth,

q(n) ≤
√

2n∑
k=1

(
n

k

)
≤ exp(C

√
n log n),

but very precise estimates exist: it is well-known [And76] that q(n) is also the
number of partitions of n into odd parts, and we have

q(n) ∼ eπ
√

n/3

4 · 31/4n3/4
,

see [Ise61, HJ63]. We thus conclude that the last infinite series converges to a finite
value Qα,β for any β < α. That is,

E|W−
k | ≤ Bρk 1

1− ρ
Q2

α,β ,

and the proof is complete. �
Proof of Theorem 3.1. Consider a component C = C(o) of critical percolation
on Γα,β . In view of Lemma 3.6, it suffices to show that a.s. π1(C) is finite to
conclude that a.s. C is finite.

By Lemma 3.9, a.s. every component C has a highest level, which contains a
finite number of vertices. By Lemmas 3.5 and 3.6, a.s. each vertex has a finite
downwards subcluster. But C is just the union of the downwards subclusters of its
vertices at the highest level, hence is (a.s.) finite.

The exponential decay of the connection probabilities follows immediately from
Lemma 3.10 and the fact that as a function of t ∈ N, there is an exponentially large
number of vertices v with the properties that dist(o, v) = t, all v’s are on the same
level of Γα,β , and, moreover, their connection probabilities to o are the same. �

The characterization of pu due to Schonmann [Sch99] and the amenability of
Γβ,β imply that

pu(Γα,β) ≤ pu(Γβ,β) = pc(Γβ,β) ≤ 1/β
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for β ≤ α. A condition on α and β for pc(Γα,β) < pu(Γα,β) can be easily given
using a result of Schramm, see [LP05, Theorem 6.28]. If we denote by an(G)
the number of simple loops of length n containing a fixed vertex o ∈ V (G), and
γ(G) := lim supn an(G)1/n, then pu(G) ≥ 1/γ(G). For G = Γα,β it is not difficult
to see that

γ ≤
√

αβ +
√

(α− 1)(β − 1),

by the following argument.
First of all, Γα,β is a bipartite graph, so a2n+1(Γα,β) = 0, while a2n(Γα,β) is

bounded from above by the number of simple nonbacktracking paths of length 2n
ending on the starting level. (Note that in this estimate we do not lose much by
relaxing the loop-condition; however, excluding immediate backtracks is quite far
from ensuring that the path be simple.) In such a path, we have n upwards and
n downwards moves, in an arbitrary order, with k instances of changing direction
from upwards to downwards, where k ∈ {0, 1, . . . , n}. Then, the number of changes
in direction from downwards to upwards is between k−1 and k+1. The number of
such sequences with a given k value is at most Cn

(
2n
2k

)
When such a path changes

direction, to avoid backtracking, it has α − 1 or β − 1 ways to continue; when it
does not change direction, it has α or β ways. Therefore,

a2n(Γα,β) ≤
n∑

k=0

C ′n
(

2n

2k

)
αn−kβn−k(α− 1)k(β − 1)k

< C ′n(αβ)n
2n∑

k=0

(
2n

k

)
xk, with x =

√
(α− 1)(β − 1)

αβ
,

= C ′n
(√

αβ
)2n

(1 + x)2n.

Taking the (2n)th root of the last line gives the claimed bound on γ.
On the other hand, it is clear that pc ≤ 1/α. (By considering small cycles, this

inequality, as well as the above bound on γ, can be improved.) Hence√
αβ +

√
(α− 1)(β − 1) ≤ α implies pc(Γα,β) < pu(Γα,β).

This is the case, e.g., for Γ6,2, and for α ≥ 4β, in general.
If one could deduce from the uniform exponential decay of connection proba-

bilities at pc (which we have verified for all α < β) that for some p > pc, the
connection probabilities still tend to 0, it would follow that pc(Γα,β) < pu(Γα,β) by
the Harris–FKG inequality.

4. The lamplighter group

Recall that when α = β, the graph Γα,β is amenable and unimodular. The first
half of our proof of Theorem 3.1 still holds, but the bound of Lemma 3.7 does not
mean exponential decay, and so this method breaks down.

Take the “positive part” Γ+
α,α defined by taking the subgraph induced by the

vertices

V (Γ+
α,α) = {v ∈ V (Γα,α) : π1(v) is a descendant of π1(o)}.

Clearly, pc(Γα,α) ≤ pc(Γ+
α,α), and our proof above shows that pc(Γ+

α,α)-percolation
on Γ+

α,α has no infinite clusters. This remains true for pc(Γα,α)-percolation on Γ+
α,α,
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so any infinite path in pc(Γα,α)-percolation on Γα,α would have to cross the plane
{v : �(v) = �(o)} infinitely many times.

A special interest in the graphs Γα,α comes from the fact that they also arise as
Cayley graphs of the so-called “lamplighter groups”, introduced by Kăımanovich
and Vershik (Example 6.1 of [KV83]), and further studied from a probabilistic point
of view, e.g., by Lyons, Pemantle and Peres [LPP96] and Woess [Woe05].

Definition 4.1 (Example 6.1 of [KV83]). Consider the direct sum
∑

Zk Z2, which
can also be viewed as the additive group F0(Zk, Z2) of finitely supported {0, 1}-
configurations on Z

k, with the operation of pointwise addition mod 2. The value of
a configuration f ∈ F0(Zk, Z2) on an element x ∈ Z

k will be denoted by f(x) and
the support {x ∈ Z

k : f(x) �= 0} of f by supp f . Let

Gk = Z
k

� F0(Zk, Z2)

be the semidirect product of the groups Z
k and F0(Zk, Z2), where the lattice Z

k

acts naturally on F0(Zk, Z2) by shifts.

The group G1 was named the lamplighter group because of the following inter-
pretation. Imagine a lamplighter standing on an infinite street, with lamps at every
integer coordinate. Any element (j, f) describes a configuration: the lamplighter is
next to lamp j, and f is the indicator function of the finite set F of lamps which
are lit. For convenience, we shall also denote this element by (j, F ). Define the
left and right flag functions by L((j, F )) := minF and R((j, F )) := maxF , with
min{} := +∞, max{} := −∞ for the empty set {}, and the lamplighter position
by �((j, F )) := j. See Figure 4.

jL R

0 1 2 3

1 1 1 1 1 1 1 1 1 1 1 111 1000 0 0000000 0

−1

Figure 4. A configuration of lamps and the lamplighter in G1.

The group operation is given by (j, F ) ·(j′, F ′) = (j+j′, F �(j+F ′)), where � is
symmetric set difference: the lamplighter flips the lamps F ′ relative to her current
position, and advances j′ lamps.

Recall the construction of the graph Γ2,2 by orienting two 3-regular trees in
opposite directions. Label the edges of each tree ‘0’ or ‘1’, to satisfy these conditions:

(1) The two “downwards” edges from each vertex are labelled ‘0’ and ‘1’;
(2) The edges of every “upwards” path v0, v1, . . . are eventually all labelled ‘0’.

Then, given any vertex v at level �(v) = k, we may identify v with the element
(k, f) of G1 as follows: Let a0, a1, . . . and b0, b1, . . . be the labels of the edges
along the paths upwards from π1(v) and π2(v), respectively. For j ≥ 0, define
f(k + j) = bj and f(k − 1 − j) = aj . Then f has finite support, so (k, f) is in
G1 indeed. In fact, Γ2,2 is the Cayley graph of the lamplighter group G1 with
generators {(±1, {0}), (±1, {})}.



16 Yuval Peres, Gábor Pete and Ariel Scolnicov

Another natural Cayley graph G is given by the generators (0, {0}) (the lamp-
lighter flips the state of the current lamp and stays in place) and (±1, {}) (the
lamplighter advances one lamp). Consider again the “positive half” G+ of G, de-
fined by taking only the vertices

{(j, F ) : j ≥ 0,∀k ∈ F : k ≥ 0}.
This is the portion of the graph accessible to the lamplighter if she is limited to the
nonnegative portion of the street. The subset of V (G+) given by {v : R(v) ≤ �(v)}
induces a tree F , the so-called Fibonacci tree, identified in [LPP96]. See Figure 5.

(2,{1})

(0,{})

(0,{0}) (1,{})

(1,{0}) (1,{1}) (2,{})

(1,{0,1}) (3,{})(2,{2})

(4,{})(2,{0,1}) (2,{0,2}) (3,{3})

(2,{0})

Figure 5. The Fibonacci tree in the lamplighter group.

We again have pc(G) ≤ pc(G+), and will consider pc(G+)-percolation on G+. For
a vertex o ∈ V (F), define the forward cluster C+(o) = C+(o, ω) as the set of vertices
v ∈ V (F) accessible by open paths o = v0, v1, . . . , vn = v inside G+ (not necessarily
inside F) in a pc(G+)-percolation configuration ω, such that �(o) ≤ �(vi) ≤ �(v),
and the lamp at R(o) is never adjusted in the path.

It is easy to see that we have the required independence in order to make our
usual Galton–Watson argument work, therefore

ek(pc) := Epc |C+(o) ∩ {v : �(v) = k}| ≤ 1

for all k ≥ 0. Again, as in Lemmas 2.6 and 3.5, we can conclude that C+(o) must be
finite. Moreover, any open infinite simple path from o in G+ would have infinitely
many vertices inside C+(o), therefore the whole cluster of o is almost surely finite
in critical percolation on G+.

We have shown two transitive amenable graphs for which we know that critical
percolation on the “positive part” almost surely has no infinite clusters, but we can-
not prove this for the whole graph. Analogously, Barsky, Grimmett and Newman
[BGN91] proved that critical percolation on the half-space graphs of the integer
lattices Z

d has no infinite clusters.
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