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Positive Schatten–Herz class Toeplitz
operators on the ball

Boo Rim Choe, Hyungwoon Koo
and Young Joo Lee

Abstract. On the harmonic Bergman space of the ball, we give charac-
terizations for an arbitrary positive Toeplitz operator to be a Schatten–
Herz class operator in terms of averaging functions and Berezin trans-
forms.
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1. Introduction

For a fixed integer n ≥ 2, let B = Bn denote the open unit ball in
Rn. For 0 < p ≤ ∞, let Lp = Lp(V ) be the Lebesgue spaces on B where
V denotes the Lebesgue volume measure on B. The harmonic Bergman
space b2 is a closed subspace of L2 consisting of all complex-valued harmonic
functions on B. By the mean value property of harmonic functions, it is
easily seen that point evaluations are continuous on b2. Thus, to each x ∈ B,
there corresponds a unique R(x, ·) ∈ b2 which has the following reproducing
property:

f(x) =
∫

B
f(y)R(x, y) dy, x ∈ B(1.1)
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for all f ∈ b2. The explicit formula of the kernel function R(x, y) is well
known:

R(x, y) =
1
|B|

· 1
[x, y]n

{(
1− |x|2|y|2

[x, y]

)2

− 4|x|2|y|2

n

}
for x, y ∈ B where [x, y] =

√
1− 2x · y + |x|2|y|2. Here, as elsewhere, we

write x · y for the dot product of x, y ∈ Rn and |E| = V (E) for the volume
of Borel sets E ⊂ B. Hence the kernel function R(x, y) is real and hence
the complex conjugation in the integral of (1.1) can be removed. See [2] for
more information and related facts.

Let R be the Hilbert space orthogonal projection from L2 onto b2. The
reproducing property (1.1) yields the following integral representation of R:

(1.2) Rψ(x) =
∫

B
ψ(y)R(x, y) dy, x ∈ B

for functions ψ ∈ L2. It is easily seen that the projection R can be extended
to an integral operator via (1.2) from L1 into the space of all harmonic
functions on B. It even extends to M, the space of all complex Borel
measures on B. Namely, for each µ ∈M, the integral

Rµ(x) =
∫

B
R(x, y) dµ(y), x ∈ B

defines a function harmonic on B. For µ ∈M, the Toeplitz operator Tµ with
symbol µ is defined by

Tµf = R(fdµ)

for f ∈ b2 ∩ L∞. Note that Tµ is defined on a dense subset of b2, because
bounded harmonic functions form a dense subset of b2.

A Toeplitz operator Tµ is called positive if µ is a positive finite Borel
measure (hereafter we simply write µ ≥ 0). For positive Toeplitz operators
on harmonic Bergman spaces, basic operator theoretic properties such as
boundedness, compactness and the membership in the Schatten classes have
been studied on various settings; see [5], [7], [11], [12] and references therein.
Another aspect of positive Toeplitz operators has been recently studied.
Namely, notion of the so-called Schatten–Herz classes Sp,q (see Section 3)
was introduced and studied in [10] in the holomorphic case on the unit disk.
Harmonic analogues were subsequently studied in [6]. However, these earlier
works are restricted to the case of 1 ≤ p, q ≤ ∞. In this paper we extend the
characterization in [6] for Schatten–Herz class positive Toeplitz operators to
the full range of parameters p and q.

To state our results we briefly introduce some notation. Given µ ≥ 0,
µ̂r denotes the averaging function over pseudohyperbolic balls with radius r
and µ̃ denotes the Berezin transform. See Section 2 for relevant definitions.
Also, we let λ denote the measure on B defined by

dλ(x) = (1− |x|2)−n dx
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and Kp
q(λ) denote the so-called Herz spaces (see Section 3).

The next theorem is the main result of this paper. In case 1 ≤ p < ∞,
Theorem 1.1 (with slightly different averaging functions) below has been
proved in [6]. In case 0 < p < 1, the authors [4] have recently obtained
the corresponding results on the harmonic Bergman space of the upper half-
space. The cut-off point n−1

n is sharp in the theorem below.

Theorem 1.1. Let 0 < p ≤ ∞, 0 ≤ q ≤ ∞, 0 < r < 1 and µ ≥ 0. Then the
following two statements are equivalent:

(a) Tµ ∈ Sp,q;
(b) µ̂r ∈ Kp

q(λ).
Moreover, if n−1

n < p ≤ ∞, then the above statements are also equivalent to
(c) µ̃ ∈ Kp

q(λ).

In Section 2 we investigate known results on weighted Lp-behavior of
averaging functions and Berezin transforms. In Section 3, we first prove
Theorem 1.1 and then provide examples indicating that the parameter range
required in Theorem 1.1 is best possible.

2. Basic lemmas

In this section we collect several known results which will be used in our
characterization.

We first recall Möbius transformations on B. All relevant details can be
found in [1, pp. 17–30]. Let a ∈ B. The canonical Möbius transformation
φa that exchanges a and 0 is given by

φa(x) = a+ (1− |a|2)(a− x∗)∗

for x ∈ B (note φa = −Ta in the notation of [1]). Here x∗ = x/|x|2 denotes
the inversion of x with respect to the sphere ∂B. Avoiding x∗ notation, we
have

φa(x) =
(1− |a|2)(a− x) + |a− x|2a

[x, a]2
.

The map φa is an involution of B, i.e., φ−1
a = φa.

The hyperbolic distance β(x, y) between two points x, y ∈ B is given by

β(x, y) =
1
2

log
1 + |φy(x)|
1− |φy(x)|

.

As is well-known, β is Möbius invariant. Let ρ(x, y) = |φy(x)|. This ρ is also
a Möbius invariant distance on B. We shall work with this pseudohyperbolic
distance ρ.

For a ∈ B and r ∈ (0, 1), let Er(a) denote the pseudohyperbolic ball with
radius r and center a. A straightforward calculation shows that Er(a) is a
Euclidean ball with

(center) =
(1− r2)

1− |a|2r2
a and (radius) =

(1− |a|2)r
1− |a|2r2

.(2.1)
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Given µ ≥ 0 and r ∈ (0, 1), the averaging function µ̂r and the Berezin
transform µ̃ are defined by

µ̂r(x) =
µ[Er(x)]
|Er(x)|

and
µ̃(x) = (1− |x|2)n

∫
B
|R(x, y)|2 dµ(y)

for x ∈ B. While it is customary to put R(x, x)−1 in place of (1 − |x|2)n

in the definition of the Berezin transform, we adopted the above definition
for simplicity. For measurable functions f , we define f̂r and f̃ similarly,
whenever they are well defined.

Given α real, we let Lp
α = Lp(Vα) where Vα denotes the weighted measure

defined by dVα(x) = (1 − |x|2)α dx. For α = 0, we have Lp
0 = Lp. Note

λ = V−n. Also, given a sequence a = {am} in B, we let `p,α(a) denote the
p-summable sequence space weighted by {(1 − |am|2)α}. For α = 0, we let
`p = `p,0(a).

Given an integer k ≥ 0, we let Rk(x, y) be the reproducing kernel for
the weighted harmonic Bergman space with respect to the weight (1−|x|)k.
So, R0 = R is the harmonic Bergman kernel mentioned before. Explicit
formulas for these kernels are given in [8, (3.1)].

The following lemma taken from [5, Lemma 3.1] shows that averaging
functions, when radii are small enough, are dominated by Berezin trans-
forms.

Lemma 2.1. For an integer k ≥ 0 and µ ≥ 0, there exists some rk ∈ (0, 1)
with the following property: If 0 < r ≤ rk, then there exists a constant
C = C(n, k, r) such that

µ̂r(a) ≤ C(1− |a|2)n+2k

∫
B
|Rk(x, a)|2 dµ(x), a ∈ B.

In particular, µ̂r ≤ Cµ̃ for 0 < r ≤ r0.

We also need the fact that the Lp
α-behavior of averaging functions of

positive measures is independent of radii. In what follows, L0 denotes the
space of all functions f bounded on B and f(x) → 0 as |x| → 1.

Lemma 2.2. Let 0 < p ≤ ∞, r, δ ∈ (0, 1) and α be real. Assume µ ≥ 0.
Then the following statements hold:

(a) µ̂r ∈ Lp
α if and only if µ̂δ ∈ Lp

α;
(b) µ̂r ∈ L0 if and only if µ̂δ ∈ L0.

Proof. See [5, Proposition 3.6]. �

Let {am} be a sequence in B and r ∈ (0, 1). We say that {am} is r-
separated if the balls Er(am) are pairwise disjoint or simply say that {am}
is separated if it is r-separated for some r. Also, we say that {am} is an r-
lattice if it is r

2 -separated and B = ∪mEr(am). One can explicitly construct
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an r-lattice by using the same argument as in [8]. Note that any ‘maximal’
r
2 -separated sequence is an r-lattice.

The following lemma taken from [5, Theorem 3.9] gives an information on
weighted Lp-behavior of averaging functions, as well as its discrete version,
and Berezin transforms.

Lemma 2.3. Let 0 < p ≤ ∞, r, δ ∈ (0, 1) and α be real. Let µ ≥ 0 and
a = {am} be an r-lattice. Then the following two statements are equivalent:

(a) µ̂δ ∈ Lp
α;

(b) {µ̂r(am)} ∈ `p,n+α(a).

Moreover, if

max
{

1 + α, 1 +
α

n
,−α+ 1

n

}
< p ≤ ∞,

then the above statements are also equivalent to

(c) µ̃ ∈ Lp
α.

For a positive compact operator T on a separable Hilbert space H, there
exist an orthonormal set {em} in H and a sequence {λm} that decreases to
0 such that

Tx =
∑
m

λm〈x, em〉em

for all x ∈ H where 〈 , 〉 denotes the inner product on H. For 0 < p < ∞,
we say that a positive operator T belongs to the Schatten p-class Sp(H) if

‖T‖p :=

{∑
m

λp
m

}1/p

<∞.

More generally, given a compact operator T on H, we say that T ∈ Sp(H)
if the positive operator |T | = (T ∗T )1/2 belongs to Sp(H) and we define
‖T‖p = ‖ |T | ‖p. Of course, we will take H = b2 in our applications below
and, in that case, we put Sp = Sp(b2). Also, for 0 < q ≤ ∞, we use the
notation `q for the q summable sequence space.

We need the following characterization of Schatten class positive Toeplitz
operators which is taken from [5, Theorem 4.5].

Lemma 2.4. Let 0 < p < ∞, µ ≥ 0 and assume that {am} is an r-lattice.
Then the following three statements are equivalent:

(a) Tµ ∈ Sp;
(b) {µ̂r(am)} ∈ `p;
(c) µ̂r ∈ Lp(λ).

Moreover, if n−1
n < p, then the above statements are also equivalent to

(d) µ̃ ∈ Lp(λ).
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3. Schatten–Herz class Toeplitz operators

In this section we prove Theorem 1.1. To introduce the Herz space, we
first decompose B into the disjoint union of annuli Ak given by

Ak = {x ∈ B : 2−(k+1) ≤ 1− |x| < 2−k}

for integers k ≥ 0. For each k, we let χk = χAk
. Recall that χE denotes the

characteristic function of E ⊂ B. Also, given µ ∈ M, we let µχk stand for
the restriction of µ to Ak. For 0 < p, q ≤ ∞ and α real, the Herz space Kp,α

q

consists of functions ϕ ∈ Lp
loc(V ) for which

‖ϕ‖Kp,α
q

:=
∥∥∥{

2−kα‖ϕχk‖Lp

}∥∥∥
`q
<∞.

Also, we let Kp,α
0 be the space of all functions ϕ ∈ Kp,α

∞ such that{
2−kα‖ϕχk‖Lp

}
∈ `0;

recall that `0 denotes the subspace of `∞ consisting of all complex sequences
vanishing at ∞. Note that Kp,α

q ⊂ Kp,α
0 for all q <∞. For more information

on the Herz spaces, see [9] and references therein.
Let 0 < p <∞ and α be real. Then, since 1− |x|2 ≈ 2−k for x ∈ Ak and

k ≥ 0, we have

2−kαp‖ϕχk‖p
Lp ≈

∫
Ak

|ϕ(x)|p(1− |x|2)αp dx

and thus

‖ϕ‖Kp,α
q
≈

∥∥∥{
‖ϕχk‖Lp

αp

}∥∥∥
`q

(3.1)

for 0 < q ≤ ∞. In particular, we have

‖ϕ‖
K

p,−n
p

q

≈
∥∥∥{
‖ϕχk‖Lp(λ)

}∥∥∥
`q

and this estimate is valid even for p = ∞, because −n/p = 0 if p = ∞. For
this reason, we put

Kp
q(λ) = K

p,−n
p

q

for the full ranges 0 < p ≤ ∞ and 0 ≤ q ≤ ∞. Note that Kp
p(λ) ≈ Lp(λ)

for 0 < p ≤ ∞. That is, these two spaces are the same as sets and have
equivalent norms.

Next, we introduce a discrete version of Herz spaces. Let a = {am}
be an arbitrary lattice. Given a complex sequence ξ = {ξm} and k ∈ N,
let ξχk denote the sequence defined by (ξχk)m = ξmχk(am). Now, given
0 < p, q ≤ ∞ and α real, we let `p,α

q (a) be the mixed-norm space of all
complex sequences ξ such that

‖ξ‖`p,α
q (a) :=

∥∥∥{2−kα‖ξχk‖`p}
∥∥∥

`q
<∞.
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So, we have

‖ξ‖q
`p,α
q (a)

=
∑

k

2−kαp
∑

am∈Ak

|ξm|p


q
p

, 0 < p, q <∞.

Also, we say ξ ∈ `p,α
0 (a) if {‖2−kαξχk‖`p} ∈ `0. Finally, we let `p,0

q (a) = `pq(a).
We now introduce the so-called Schatten–Herz class of Toeplitz operators.

Let S∞ denote the class of all bounded linear operators on b2 and ‖ ‖∞
denote the operator norm. Given 0 < p, q ≤ ∞, the Schatten–Herz class
Sp,q is the class of all Toeplitz operators Tµ such that Tµχk

∈ Sp for each k
and the sequence {‖Tµχk

‖p} belongs to `q. The norm of Tµ ∈ Sp,q is defined
by

‖Tµ‖p,q =
∥∥∥{‖Tµχk

‖p}
∥∥∥

`q
.

Also, we say Tµ ∈ Sp,0 if Tµ ∈ Sp,∞ and {‖Tµχk
‖p} ∈ `0. Note that Sp,q ⊂

Sp,0 for all q <∞.
The following observation plays a key role in proving that Kp,α

q -behavior
or `p,α

q -behavior of averaging functions are independent of radii.

Theorem 3.1. Let 0 < p, q ≤ ∞, r ∈ (0, 1) and α be real. Then the
following statements hold for µ, τ ≥ 0:

(a)
{
2−kα‖µ̂rχk‖Lp(τ)

}
∈ `q if and only if

{
2−kα‖(µ̂χk)r‖Lp(τ)

}
∈ `q;

(b)
{
2−kα‖µ̂rχk‖Lp(τ)

}
∈ `0 if and only if

{
2−kα‖(µ̂χk)r‖Lp(τ)

}
∈ `0.

Before proceeding to the proof, we note the following covering property
which is a simple consequence of (2.1): if r ∈ (0, 1) and N = N(r) is a
positive integer such that

2N−1 ≤ 1 + r

1− r
< 2N ,(3.2)

then

Er(z) ⊂
k+N⋃

j=k−N

Aj , z ∈ Ak.(3.3)

Here and in the proof below, we let Aj = ∅ if j < 0.

Proof. Let µ, τ ≥ 0 be given. We prove the proposition only for q < ∞;
the case q = ∞ is implicit in the proof below. Choose N = N(r) as in (3.2)
and put γp = γp,N = max{1, (2N + 1)1−p}. By (3.3) we note

µ̂rχk ≤
k+N∑

j=k−N

(µ̂χj)r

for all k. Thus, we have

‖µ̂rχk‖Lp(τ) ≤ γ
1
p
p

k+N∑
j=k−N

‖(µ̂χj)r‖Lp(τ)
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for all k. Since 2−kα ≤ 2N |α|2−jα for k −N ≤ j ≤ k +N , it follows that

2−kα‖µ̂rχk‖Lp(τ) .
k+N∑

j=k−N

2−jα‖(µ̂χj)r‖Lp(τ)

for all k. This implies one direction of (b). Also, it follows that

2−kαq‖µ̂rχk‖q
Lp(τ) . γq

k+N∑
j=k−N

2−jαq‖(µ̂χj)r‖q
Lp(τ)

for all k. Thus, summing up both sides of the above over all k, we have
∞∑

k=0

2−kαq‖µ̂rχk‖q
Lp(τ) . (2N + 1)

∞∑
j=0

2−jαq‖(µ̂χj)r‖q
Lp(τ),

which gives one direction of (a).
We now prove the other directions. Note that Er(z) can intersect Ak with

k ≥ 0 only when z ∈ ∪k+N
j=k−NAj by (3.3). Thus we have

(̂µχk)r =
k+N∑

j=k−N

(̂µχk)rχj ≤
k+N∑

j=k−N

µ̂rχj .

Thus, a similar argument yields the other directions of (a) and (b). The
proof is complete. �

As an immediate consequence of Lemma 2.2 and Theorem 3.1 (with τ =
V ), we have the following Herz space version of Lemma 2.2.

Corollary 3.2. Let 0 < p ≤ ∞, 0 ≤ q ≤ ∞, δ, r ∈ (0, 1) and α be real. Let
µ ≥ 0. Then µ̂r ∈ Kp,α

q if and only if µ̂δ ∈ Kp,α
q .

Also, applying Theorem 3.1 with discrete measures τ =
∑

m δam where
δx denotes the point mass at x ∈ B, we have the following.

Corollary 3.3. Let 0 < p, q ≤ ∞, r ∈ (0, 1) and α be real. Let µ ≥ 0 and
assume that a = {am} is an r-lattice. Put ξk = 2−kα‖{(̂µχk)r(am)}m‖`p for
k ≥ 0. Then the following statements hold:

(a) {µ̂r(am)} ∈ `p,α
q (a) if and only if {ξk} ∈ `q;

(b) {µ̂r(am)} ∈ `p,α
0 (a) if and only if {ξk} ∈ `0.

We need one more fact taken from [3].

Lemma 3.4. Let 1 ≤ p ≤ ∞, 0 ≤ q ≤ ∞ and α be real. Then the Berezin
transform is bounded on Kp,α

q if and only if −n < α+ 1/p < 1.

We now prove the Herz space version of Lemma 2.3. The restricted range
in (3.4) below can’t be improved; see Example 3.9.

Theorem 3.5. Let 0 < p ≤ ∞, 0 ≤ q ≤ ∞, r ∈ (0, 1) and α be real. Let
µ ≥ 0 and assume that a = {am} is an r-lattice. Then the following two
statements are equivalent:
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(a) µ̂r ∈ Kp,α
q ;

(b) {µ̂r(am)} ∈ `
p,α+n

p
q (a).

Moreover, if

−n− α <
1
p
< min

{
1− α, 1− α

n

}
,(3.4)

then the above statements are equivalent to

(c) µ̃ ∈ Kp,α
q .

Proof. (a) ⇐⇒ (b): Let ξk = 2−k(n
p
+α)‖{(̂µχk)r(am)}‖`p for each k. Note

that if (̂µχk)r(am) > 0, then Ak ∩ Er(am) 6= ∅ and thus 1 − |am| ≈ 2−k.
Thus, for p <∞, we have

ξk = ‖{(̂µχk)r(am)(1− |am|)
n
p
+α}‖`p(3.5)

= ‖{(̂µχk)r(am)}‖`p,n+αp(a)

≈ ‖(̂µχk)r‖Lp
αp

for all k by Lemma 2.3. It follows that

µ̂r ∈ Kp,α
q ⇐⇒ {‖µ̂rχk‖Lp

αp
} ∈ `q (3.1)

⇐⇒ {‖(̂µχk)r‖Lp
αp
} ∈ `q (Theorem 3.1)

⇐⇒ {ξk} ∈ `q (3.5)

⇐⇒ {µ̂r(am)} ∈ `
p, n

p
+α

q (a) (Corollary 3.3),

which completes the proof for p <∞. The proof for p = ∞ is similar.
(c) =⇒ (a): This follows from Lemma 2.1 and Lemma 2.2.
We now assume (3.4) and prove that (a) or (b) implies (c). For 1 ≤ p ≤ ∞,

one may use Lemma 3.4 and [5, Lemma 3.8] to see that (a) implies (c). So,
we may further assume p < 1 in the proof below.

(b) =⇒ (c): Assume (b). First, consider the case 0 < q < ∞. By the
proof of Lemma 2.3, we have

µ̃(x)p .
∑
m

(1− |am|)npµ̂r(am)p (1− |x|)np

[x, am]2np(3.6)

for x ∈ B. Let j and k be given. Note that by an integration in polar
coordinates and Lemma 2.4 of [5]∫

Aj

dx

[x, a]2np
.

2−j

[1− (1− 2−j−1)|a|]2np−n+1

≈ 2−j

(2−j + 2−k)2np−n+1
, a ∈ Ak;
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this estimate is uniform in j and k. Hence, if am ∈ Ak, then we have

(1− |am|)np

∫
Aj

(1− |x|)np

[x, am]2np
(1− |x|)αp dx

≈ 2−knp2−jp(n+α)

∫
Aj

dx

[x, am]2np

.
2−knp2−j(np+αp+1)

(2−j + 2−k)2np−n+1

=
2−knp2j(np−pα−n)

(1 + 2j−k)2np−n+1
.

Thus, setting ξp
k = 2−kp(n

p
+α) ∑

am∈Ak
µ̂r(am)p and integrating both sides of

(3.6) over Aj against the measure dVαp(x), we obtain∫
Aj

µ̃(x)p(1− |x|)αp dx .
∑

k

ξp
k ·

2(j−k)(np−pα−n)

(1 + 2j−k)2np−n+1
.

Note that
2(j−k)(np−n−αp)

(1 + 2j−k)2np−n+1
≤ 2(j−k)(np−n−αp) =

1
2(np−n−αp)|k−j| for k ≥ j

and
2(j−k)(np−n−αp)

(1 + 2j−k)2np−n+1
≈ 1

2(j−k)(np+αp+1)
=

1
2(np+αp+1)|k−j| for k < j.

Therefore, combining these estimates, we have∫
Aj

µ̃(x)p(1− |x|)αp dx .
∑

k

ξp
k

2γ|k−j|(3.7)

for all j where γ = min{np− n− αp, np+ αp+ 1}. Note γ > 0 by (3.4).
Now, for p < q ≤ ∞, we have by (3.7) and Young’s inequality

‖µ̃‖p
Kp,α

q
. ‖{ξp

k}‖`
q
p

= ‖{ξk}‖p
`q .

On the other hand, for 0 < q ≤ p, we have again by (3.7)

‖µ̃‖q
Kp,α

q
.

∑
j

{∑
k

ξp
k

2γ|k−j|

} q
p

.
∑

k

ξq
k

∑
j

1
2γq|k−j|/p

≈ ‖{ξk}‖q
`q

as desired. The case q = 0 also easily follows from (3.7). The proof is
complete. �

The following version of Theorem 1.1 is now a simple consequence of what
we’ve proved so far.

Theorem 3.6. Let 0 < p ≤ ∞, 0 ≤ q ≤ ∞ and µ ≥ 0. Assume that
a = {am} is an r-lattice. Then the following three statements are equivalent:

(a) Tµ ∈ Sp,q;
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(b) µ̂r ∈ Kp
q(λ);

(c) {µ̂r(am)} ∈ `pq.
Moreover, if n−1

n < p ≤ ∞, then the above statements are also equivalent to
(d) µ̃ ∈ Kp

q(λ).

Proof. The proof of Theorem 3.1 show that all the associated norms are
equivalent. We have (a) ⇐⇒ (b) by Lemma 2.4 and Corollary 3.3. Hence
the theorem follows from Theorem 3.5 (with α = −n

p ). �

In the rest of the paper, we show that the parameter range (3.4) is sharp.
Throughout the section we consider arbitrary 0 < p ≤ ∞ and α real, unless
otherwise specified.

We first recall the following fact which is a consequence of various exam-
ples in [3, Section 4];

If α + 1/p ≤ −n or α + 1/p ≥ 1, and 0 ≤ q ≤ ∞, then there
exists some f ≥ 0 such that f ∈ Kp,α

q but f̃ /∈ Kp,α
q .

Moreover, proofs in [3] show that examples of functions f above also
satisfy f̂r ∈ Kp,α

q for each r ∈ (0, 1). Note that the above take care of
examples we need for the case α ≥ 0. For α < 0, note that the parameter
ranges for which we need examples in (3.4) reduce as follows:

1− α

n
≤ 1
p
.(3.8)

Given δ > 1, let Γδ be the nontangential approach region with vertex
e := (1, 0, . . . , 0) consisting of all points x ∈ B such that

|x− e| < δ(1− |x|).
Also, given γ ≥ 0, let fγ be the function on B defined by

fγ(x) =
1

(1− |x|)n

(
log

2
1− |x|

)−γ

.

The source for our examples for the parameter range (3.8) will be functions of
the form fγχΓδ

with γ suitably chosen. We first note the following pointwise
estimates taken from [5, Lemma 5.2].

Lemma 3.7. Given δ > 1 and γ ≥ 0, the function g = fγχΓδ
has the

following properties:
(a) Given r ∈ (0, 1), fγχΓδ1

. ĝr . fγχΓδ2
for some δ1 and δ2;

(b) If γ > 1, then g̃ & fγ−1χΓδ3
for some δ3;

(c) If γ ≤ 1, then g̃ = ∞ on some open set.

Next, we note the precise parameters for fγχΓδ
to belong to Kp,α

q .

Lemma 3.8. Let 0 < p ≤ ∞, 0 ≤ q ≤ ∞ and α be real. Given δ > 1 and
γ ≥ 0, put g = fγχΓδ

. Then g ∈ Kp,α
q if and only if one of the following

conditions holds:
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(a) 1/p > 1− α/n;
(b) 1/p = 1− α/n and q = ∞;
(c) 1/p = 1− α/n and q = 0 < γ;
(d) 1/p = 1− α/n and γ > 1

q > 0.

Proof. Note |Ak ∩ Γδ| ≈ 2−kn for all k. Thus we have

2−kα‖gχk‖Lp ≈ 2−kα2kn|Ak ∩ Γδ|
1
p

(1 + k)γ
≈ 2−kn( 1

p
−1+α

n
)

(1 + k)γ

for all k, which gives the desired result. �

Now, using Lemmas 3.7 and 3.8, we have examples for the remaining
parameters in (3.8) as follows.

Example 3.9. Let 0 < p ≤ ∞, 0 ≤ q ≤ ∞ and α be real. Given δ > 1
and γ ≥ 0, put g = fγχΓδ

. Then the following statements hold for each
r ∈ (0, 1):

(a) Let 1/p > 1 − α/n. If 0 ≤ q ≤ ∞ and if 0 ≤ γ ≤ 1, then ĝr ∈ Kp,α
q

but g̃ = ∞ on some open set.
(b) Let 1/p = 1− α/n.

(b1) If q = 0 or 1 < q ≤ ∞ and if 0 < γ ≤ 1, then ĝr ∈ Kp,α
q but

g̃ = ∞ on some open set.
(b2) If 0 < q ≤ 1 and if 1 ≤ 1/q < γ ≤ 1 + 1/q, then ĝr ∈ Kp,α

q but
g̃ /∈ Kp,α

q .
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77. Soc. Math. France, Paris, 1980. MR0604369 (82j:32015), Zbl 0472.46040.

[9] Herenández, E.; Yang, D. Interpolation of Herz spaces and applications. Math.
Nachr. 205 (1999) 69–87. MR1709163 (2000e:46035), Zbl 0936.41001.

http://www.ams.org/mathscinet-getitem?mr=0725161
http://www.emis.de/cgi-bin/MATH-item?0517.30001
http://www.ams.org/mathscinet-getitem?mr=1805196
http://www.emis.de/cgi-bin/MATH-item?0959.31001
http://www.ams.org/mathscinet-getitem?mr=2314190
http://www.emis.de/cgi-bin/MATH-item?1140.47013
http://www.ams.org/mathscinet-getitem?mr=2443376
http://www.emis.de/cgi-bin/MATH-item?1155.47030
http://www.ams.org/mathscinet-getitem?mr=2066107
http://www.emis.de/cgi-bin/MATH-item?1167.47022
http://www.ams.org/mathscinet-getitem?mr=2066107
http://www.emis.de/cgi-bin/MATH-item?1067.47039
http://www.ams.org/mathscinet-getitem?mr=0604369
http://www.emis.de/cgi-bin/MATH-item?0472.46040
http://www.ams.org/mathscinet-getitem?mr=1709163
http://www.emis.de/cgi-bin/MATH-item?0936.41001


SCHATTEN–HERZ CLASS TOEPLITZ OPERATORS 125
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