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Cutting sequences on translation surfaces

Diana Davis

Abstract. We analyze the cutting sequences associated to geodesic
flow on a large class of translation surfaces, including Bouw–Möller sur-
faces. We give a combinatorial rule that relates a cutting sequence
corresponding to a given trajectory, to the cutting sequence correspond-
ing to the image of that trajectory under the parabolic element of the
Veech group. This extends previous work for regular polygon surfaces
to a larger class of translation surfaces. We find that the combinatorial
rule is the same as for regular polygon surfaces in about half of the cases,
and different in the other half.
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7. Results for Bouw–Möller surfaces 424
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1. Introduction

We are interested in translation surfaces, which are created by identifying
opposite congruent edges of polygons. This creates a flat cone surface, a
compact surface having a locally Euclidean metric away from finitely many
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points; these points are conical singularities whose angles are integer multi-
ples of 2π. Such surfaces often contain distinguished graphs: The surfaces
are built by identifying the edges of a union of polygons, and the edges of
the polygons form the graph.

The simplest example of a translation surface is the flat torus, where the
left and right edges of a square are identified, and the top and bottom edges
are identified, in the usual way. The torus has been extensively studied
and is well understood [6], [7]. Recently, John Smillie and Corinna Ulcigrai
studied the regular octagon surface, where the four pairs of parallel edges
are identified [8], [9]. Subsequent work investigated the double pentagon
surface, made by gluing the five pairs of parallel edges of a pair of regular
pentagons [2], [3].

A translation surface always has a group of locally affine automorphisms,
and this group has a natural homomorphism to a subgroup of SL2(R). The
surface is called Veech if the image of this homomorphism is a lattice. Even
when the surface is not Veech, it has some interesting automorphisms.

We are interested in cutting sequences on translation surfaces. To gener-
ate a cutting sequence, one chooses a direction on a surface, and considers
the straight-line flow in that direction. One records the labels of the edges
hit by an infinite geodesic, which gives us a bi-infinite sequence of edge la-
bels, called the cutting sequence. The purpose of this paper is to describe
the effect of the parabolic element of the Veech group on cutting sequences
on several families of translation surfaces.

One question of interest is to characterize all possible cutting sequences
for a given translation surface. Applying the parabolic element of the Veech
group can help us to do this, by generating new valid cutting sequences from
a known cutting sequence. Cutting sequences are also interesting because
on the square torus, they give a continued fraction expansion for the slope
of the associated trajectory [7]. John Smillie and Corinna Ulcigrai found a
construction for the regular octagon surface that gives something analogous
to a continued fraction sequence ([8], Theorem 2.3.1).

When the image of an affine automorphism is a parabolic element of
SL2(R), the element is called a shear. We consider the composition of
a vertical reflection with this shear, an action that we call the flip-shear.
Our main result characterizes the relationship between a cutting sequence
corresponding to a trajectory, and the cutting sequence corresponding to
the image of that trajectory under the flip-shear.

In general, the shear performs a twist in each cylinder of a surface’s cylin-
der decomposition (Definition 2.1). Each cylinder must be twisted a whole
number of times for the shear to be an automorphism, so the magnitude of
the twist must be an integer multiple of the modulus of each cylinder. In
particular, all the cylinders must have commensurable moduli.

Square-tiled surfaces are the simplest examples of translation surfaces
with commensurable moduli. It turns out (Lemmas 5.3 and 5.4) that the
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cylinders of regular polygon surfaces also have commensurable moduli. John
Smillie and Corinna Ulcigrai gave a rule for the effect of the flip-shear on
cutting sequences on the regular octagon surface, and on all regular 2n-gon
surfaces [8], [9]. Using the same methods, we showed that the same rule
holds for all double regular n-gon surfaces for odd n [3].

Irene Bouw and Martin Möller [1] gave algebraic models for a family of
translation surfaces, which we now call Bouw–Möller surfaces, whose Veech
groups are (m,n,∞)-triangle groups for most m and n. This generalized
earlier work of William Veech [10] and Clayton Ward [11].

Motivated by the goal of understanding Bouw and Möller’s work, Pat
Hooper [5] and independently Ronen Mukamel defined a doubly-indexed
family of translation surfaces by more geometric means. In [5], Hooper
described several inequivalent ways of presenting these surfaces, both in
terms of grid graphs and in terms of polygon gluings. In particular, he
gave a polygon decomposition for the (m,n)-indexed surface consisting of
m polygons that each have 2n edges, which we study in §6−§7. In each of
these surfaces, all the cylinders have the same modulus. Hooper proved that
his surfaces are usually the same as those constructed by Bouw and Möller,
with possible exceptions when m = n or when m and n are both even. Later,
Alex Wright [12] showed that the Bouw–Möller and Hooper surfaces are in
fact the same for all m and n. In this paper, we give a rule (Theorem 7.1)
for the effect of the flip-shear on cutting sequences corresponding to certain
trajectories on Bouw–Möller surfaces.

Results presented in this paper. We characterize the effect of the flip-
shear on certain trajectories on all perfect translation surfaces with common
modulus M (Definition 2.18). These include many families of surfaces, such
as regular polygon surfaces, Bouw–Möller surfaces, and many rectilinear
surfaces.

The results for regular polygon surfaces were already known [3], [8],
but the results for Bouw–Möller surfaces and rectilinear surfaces are new.
Roughly speaking, given a cutting sequence corresponding to a geodesic
trajectory on a perfect translation surface, and the new cutting sequence
corresponding to image of that trajectory under the flip-shear, to get from
the original sequence to the new sequence, we keep the sandwiched letters,
and also keep certain other letters. The kept letters are sandwiched in about
half of the cases (see Table 1).

In §2, we give the general definitions. In §3, we discuss the action of the
flip-shear in detail. In §4, we prove the main result. In the remainder of the
paper, we discuss how the result applies to the regular polygon surfaces (§5)
and Bouw–Möller surfaces (§6−§7). For a discussion of rectilinear surfaces,
including certain L-shaped tables, see ([4], Chapter 8).

Acknowledgements. Many thanks to my advisor, Richard Schwartz, gen-
erally for his excellent guidance throughout my time in graduate school, and
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specifically for the multitude of insightful suggestions he made for improv-
ing this paper (a subset of my thesis). Corinna Ulcigrai, John Smillie and I
spent an enlightening three days in Bristol, UK in February 2012. We had
extensive discussions about many aspects of the Bouw–Möller project, and
I benefited from their insights. Sergei Tabachnikov and Pat Hooper shared
their questions and insights with me over the course of several years. Ronen
Mukamel taught me about cylinder decompositions and moduli.

2. Definitions

2.1. Translation surfaces.

Definition 2.1. Let S be a translation surface. A cylinder decomposition
of S is a partition of S into finitely many flat parallel cylinders. (A flat
cylinder does not contain a singular point in its interior.) The interiors of
these cylinders are pairwise disjoint, and their union is S. Figure 1 shows a
cylinder decomposition for the regular octagon surface.
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A

Figure 1. A cylinder decomposition for the regular octagon
surface

Definition 2.2. A polygon is level if it never happens that there is a hor-
izontal line that both contains a vertex of the polygon and crosses an edge
of P at an interior point.

Definition 2.3. A polygon is vertically symmetric if it has a line of vertical
symmetry. This means that we may translate the polygon in the plane so
that the map (x, y) 7→ (−x, y) is a symmetry of the polygon.

Definition 2.4. A polygon is special if it is convex, level and vertically
symmetric.

A translation surface has a special decomposition if it can be obtained
by gluing together pairs of parallel edges of a finite union of special poly-
gons. We require that the gluing is compatible with the vertical reflection
symmetries of the polygons: Suppose that edge e1 of polygon P1 is glued to
edge e2 of polygon P2. Let I1 and I2, respectively, be the vertical reflections
preserving P1 and P2. Then I1(e1) is glued to I2(e2).
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If a given translation surface has a special decomposition, we call it a spe-
cial translation surface. Whenever we deal with a special translation surface,
we will assume that it is given to us by way of a special decomposition.

Figure 2. (a) A special decomposition, and (b) the horizon-
tal cylinder decomposition, of the (3, 4) Bouw–Möller surface

Figure 2 (a) shows a special decomposition of the (3, 4) Bouw–Möller sur-
face. It turns out that all Bouw–Möller surfaces have special decompositions
(Lemma 6.5).

Lemma 2.5. A special surface has a canonical cylinder decomposition, in
which all the cylinders are horizontal.

Proof. Consider the union of horizontal line segments connecting vertices of
polygons in the special decomposition. These line segments piece together
to give compact 1-manifolds without boundary, and hence circles. These
circles are horizontal on the surface, and divide it into cylinders. This is
clearly a cylinder partition. �

Figure 2 (b) shows how the special decomposition in Figure 2 (a) gives
rise to a horizontal cylinder decomposition on the surface. Each cylinder is
shaded a different color.

Definition 2.6. For us, an isosceles trapezoid is a vertically symmetric
trapezoid or a vertically symmetric isosceles triangle. We think of the tri-
angle as being a degenerate case of the trapezoid. The three main cases are
a generic isosceles trapezoid, an isosceles triangle, and a rectangle.
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Lemma 2.7. Let S be a special translation surface. Assume that we have
equipped S with its canonical cylinder decomposition. Each nonempty inter-
section of a cylinder with a special polygon is an isosceles trapezoid. Hence,
each cylinder in the cylinder decomposition has a partition into isosceles
trapezoids.

Proof. Referring to the proof of Lemma 2.5, Figure 2 (b) shows how each
region between two horizontal segments is an isosceles trapezoid (a rectangle,
isosceles triangle or isosceles trapezoid). The result of the lemma is clear
from this fact. �

Definition 2.8. A level automorphism of a translation surface is a locally
affine automorphism that preserves the horizontal direction.

Figure 3 shows two examples of level automorphisms on the regular oc-
tagon surface. One is known as a flip and the other is known as a shear.
The flip has order 2, and the shear has infinite order. The shear fixes each
of the drawn horizontal line segments pointwise; it performs a Dehn twist in
each horizontal cylinder. If R is the flip and S is the shear, then the middle
picture in Figure 3 uses the notation A′ = R(A), etc. and the right picture
uses the notation A′ = S(A), etc.
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Figure 3. The octagon surface, and its images under the
flip and the shear

Lemma 2.9. Let S be a special translation surface. Then S admits an
order-2 level automorphism.

Proof. One can separately reflect each polygon in the special decompo-
sition through its line of symmetry. The compatibility condition for the
gluings guarantees that these separate maps fit together to give a global
automorphism of S. �

Definition 2.10. Given a special translation surface, we call its order-2
affine element from Lemma 2.9 the flip and denote it by R.

We can use the existence of the flip R to give more information about
the nature of the trapezoid decompositions of the cylinders in the horizontal
cylinder decomposition.
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Lemma 2.11. Suppose that S is a special translation surface. Let C be one
of the cylinders in the horizontal cylinder decomposition of S. Then C is
partitioned into one or two trapezoids. In the case where C is partitioned
into one trapezoid, this trapezoid is a rectangle.

Proof. For the first claim, note that the flip R preserves each cylinder in
the cylinder decomposition. The restriction R|C is an orientation-reversing
isometry of C . Any such isometry fixes exactly two vertical line segments
in C . These two segments are diametrically opposed. At the same time, by
construction, R fixes the vertical segment of symmetry of each trapezoid in
the decomposition. Thus, there can be at most two such trapezoids.

For the second claim, suppose that C is decomposed into a single trape-
zoid. This means that opposite sides of the trapezoid are glued together.
Thus, by definition, they are parallel, so the trapezoid is a rectangle. �

So far, we have exhibited one level automorphism on a special translation
surface. We will exhibit two more. First, we need several more definitions.

Definition 2.12. The modulus of a horizontal cylinder is the ratio W
H .

Here H is the height of the cylinder and W is the length of the horizontal
translation needed to identify the opposite edges of a fundamental domain
for the cylinder.

Definition 2.13. Let S be a special translation surface equipped with its
canonical horizontal cylinder decomposition. We call the cylinder decompo-
sition perfect if there is some number M such that the following is true of
each cylinder C of the decomposition:

• C has modulus M and is decomposed into two isosceles trapezoids;
or
• C has modulus M/2 and is decomposed into a single rectangle.

We call M the common modulus of the decomposition. If the first case
occurs, we call C typical. If the second option occurs, we call C exceptional.

Remark 2.14. It might seem more natural to require that, in the excep-
tional case, the rectangle have modulus M . However, when we take the
double cover of the cylinder in this case, we get a cylinder of modulus M
that is decomposed into two trapezoids (rectangles). This turns out to be
more natural for our purposes.

Lemma 2.15. Let S be a special translation surface with a perfect horizontal
cylinder decomposition of common modulus M . Then S admits an infinite-
order level automorphism that fixes the tops and bottoms of the cylinders
pointwise, and has derivative [

1 M
0 1

]
.
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Proof. In each cylinder, there is a unique affine automorphism that has the
desired effect and has the desired derivative. These automorphisms piece
together to give the global automorphisms of the surface. �

Definition 2.16. Let S be a special translation surface whose horizontal
cylinder decomposition is perfect and has common modulus M . We call
the infinite-order level automorphism from Lemma 2.15 the shear, and we
denote it by SM .

Definition 2.17. Let S be a special translation surface whose horizontal
cylinder decomposition is perfect and has common modulus M . (This guar-
antees the existence of R and SM .) Then we define

VM = SM ◦R.
We call VM the flip-shear. Corresponding to these elements, we have the
composition of derivatives

V ′M = S′M ◦R′.
In terms of matrices, this is[

1 −M
0 1

]
=

[
1 M
0 1

]
◦
[
−1 0
0 1

]
.

Definition 2.18. A perfect translation surface is a special translation sur-
face whose cylinder decomposition is perfect.

A perfect translation surface admits the level automorphisms R,SM and
VM , where M is the common modulus of the cylinder decomposition. In the
next section, we will analyze how these elements act on certain distinguished
arcs in a perfect translation surface.

Remark 2.19. All regular polygon surfaces (with a horizontal edge), all
Bouw–Möller surfaces, and certain square-tiled surfaces are perfect transla-
tion surfaces. For regular polygon surfaces, the common modulus is M =
2 cotπ/n (Lemmas 5.3, 5.4). For the (m,n) Bouw–Möller surface, the com-

mon modulus is M = 2 cotπ/n+ 2 cosπ/m
sinπ/n (see Lemma 6.6 or [4], Lemma

6.6).

2.2. Trajectories and cutting sequences. The purpose of this paper is
to describe the action of VM on cutting sequences associated to geodesic
trajectories on perfect translation surfaces. We analyze VM because VM ,
rotations, and reflections generate all the symmetries of the surface. The
actions of rotations and reflections are easy to describe, but the action of
VM takes more work.

Since VM = SM ◦ R, it is also true that SM , rotations and reflections
generate the group of symmetries of the surface. So instead of describing
the action of VM , we could choose to describe the action of SM . However,
the action of VM turns out to be more elegant than that of SM : The rule
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for the effect of SM is essentially “apply the rule given in this paper for VM ,
and then permute the edge labels in a certain way.” So in this paper we
give the rule for VM , and from there it is easy to deduce the effect of SM .

If we know something about a certain trajectory, we can apply the sym-
metries of the surface to learn something about other trajectories on the
surface. Ideally, we would be able to analyze all the trajectories in some set,
and also be able to use the symmetries of the surface to transform all pos-
sible trajectories into the set we can analyze, thereby analyzing all possible
trajectories. This is possible for regular polygon surfaces, because we can
analyze trajectories with θ ∈ [0, π/n) and then apply the n-fold rotational
symmetry of the surface to rotate any trajectory into that sector. This is
not possible for Bouw–Möller surfaces using our methods, because the (m,n)
Bouw–Möller surface has n-fold rotational symmetry, and yet we can only
analyze trajectories with θ ∈ [0, θS) (see Definition 3.2), where θS is at most
π/(2n). So we cannot analyze trajectories with θ ∈ [π/(2n), π/n), which is a
limitation of the method. We hope to exploit the surfaces’ other symmetries
in the future to analyze all possible trajectories.

The main Theorem 4.2 proves the result for perfect translation surfaces
in general, and the rest of the paper applies the result to several families of
perfect translation surfaces: regular polygon surfaces (§5) and Bouw–Möller
surfaces (§6–§7). For an application to rectilinear surfaces, see ([4], Chapter
8).

We will now define some notation for geodesic trajectories and their as-
sociated cutting sequences.

Definition 2.20. Given a geodesic trajectory on a perfect translation sur-
face, the cutting sequence associated to the trajectory is the bi-infinite se-
quence of polygon edges that the trajectory crosses. (By convention, if a
trajectory hits a vertex, it stops. In that case, the associated cutting se-
quence is not bi-infinite.) The derived trajectory is the image of the trajec-
tory under the flip-shear VM . The derived sequence is the cutting sequence
associated to the derived trajectory.

Lemma 2.21. V −1M = VM , i.e., VM is an involution.

Proof. By definition, VM = SM ◦R. So

VM ◦ VM = SM ◦R ◦ SM ◦R = SM ◦ (R ◦ SM ◦R) = SM ◦ (R ◦ SM ◦R−1).

We have R = R−1 because R is a reflection, and thus has order 2. Also,
R◦SMR−1 = S−1M , because a reflection composed with a perpendicular shear
composed with a reflection is a shear in the opposite direction. Hence,

VM ◦ VM = SM ◦ (R ◦ SM ◦R−1) = SM ◦ S−1M = Id. �

We use the following notations only in Lemma 2.22: Let τ be a geodesic
trajectory on a perfect translation surface with common modulus M , and
let VMτ be the image of τ under VM , i.e. the derived trajectory. Let



408 DIANA DAVIS

L = {A,B, . . .} be the set of polygon edges, and let L′ = {A′, B′, . . .} be
their transformed images. Let c(τ) be the cutting sequence associated to τ ,
i.e. the sequence of polygon edges that τ crosses, so c(τ) ∈ LZ. Let c′(τ) be

the sequence of transformed edges that τ crosses, so c′(τ) ∈ L′Z. Let c(VMτ)
be the cutting sequence associated to VMτ , i.e. the derived sequence.

Lemma 2.22. c(VMτ) = c′(τ).

In words: Determining the derived cutting sequence for a given trajectory
is equivalent to determining which sheared edges the trajectory crosses.

Proof. Consider V −1M τ , the transformed trajectory, and the sequence of
polygon edges c(VMτ) that it crosses. When we apply VM , it acts on both the
trajectory and on the polygon edges, so the intersection points are preserved.
By Lemma 2.21, the image of VMτ under VM is VM (V −1M τ) = τ , and the
images of the polygon edges under VM are the transformed edges, so the
intersection points are then the intersection between the trajectory τ and
the transformed edges. Symbolically,

c(VMτ) = c(V −1M τ) = V −1M τ ∩L = VM (V −1M τ) ∩ VM (L) = τ ∩L′ = c′(τ). �

Given a trajectory, the derived sequence is the cutting sequence corre-
sponding to the derived trajectory, which is the image of the original trajec-
tory under VM . The main Theorem 4.2, and its applications Theorems 5.6
and 7.1 to various families of surfaces, give a combinatorial rule for deter-
mining the derived sequence from the original cutting sequence. It is useful
to introduce the following notation to keep track of various types of edge
crossings, which we use in the statement and proof of the main Theorem 4.2.

Definition 2.23. On a perfect translation surface S, a trajectory with θ ∈
[0, θS) cuts through an edge on the left side (which includes the bottom
edge) of a polygon and then an edge on the right side (which includes the
top edge) of a given polygon. If the left and right edges are on the same
level, we call it type (0). If the right edge is a level above, we call it type (1).
Each three-letter sequence in the cutting sequence corresponds to crossing
two polygons, which give us four cases (see Figure 4): (00), (10), (01), and
(11).

Figure 4. Examples of (00), (11), (01), and (10) cases, with
example trajectories (dotted) for each.
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3. The action on edges

Definition 3.1. Let S be a perfect translation surface. A gluing edge of
S is an arc in S that is the image of a pair of polygon edges under the
identification map. Within each cylinder, the gluing edges are the non-
horizontal edges of the trapezoids in the trapezoid partition. Figure 5 shows
a typical cylinder with the gluing edges labeled A and B. In an exceptional
cylinder that is decomposed into a single rectangle, there is just one gluing
edge.

A AB

Figure 5. A typical cylinder with its gluing edges A and B

Definition 3.2. The horizontal edges are the tops and bottoms of the cylin-
ders in the horizontal cylinder decomposition.

The slanted edges are the diagonals of positive slope in the trapezoids of
the trapezoid decomposition. In terms of the special polygons, each slanted
edge joins a vertex on the left side of a polygon to the vertex on the right
that is one level above.

In a perfect translation surface S, we let θS be the smallest angle between
any slanted edge and the positive horizontal. An example of slanted edges,
their associated angles, and θS is in Figure 6.

Figure 6. For the (5, 4) Bouw–Möller surface shown, θS is
the minimum of the marked angles.

The main Theorem 4.2 analyzes a geodesic on a perfect translation sur-
face, where the geodesic’s angle is between 0 and θS .

We are interested in the action of VM on the edges within a cylinder.
First, we will describe what happens for a typical cylinder. The degenerate
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case (when one or more of the trapezoids degenerates to a triangle) is a
limiting case of the typical case. The exceptional case (when the cylinder is
one rectangle) is a special case of the typical case, using a double cover of
the exceptional cylinder.

Figure 7 shows a portion of the universal cover of the cylinder C . The
universal cover itself is an infinite strip. The cylinder C is the quotient of
the strip by the minimal label-preserving horizontal transformation, which
is the generator of the deck transformation group.

H

E F

G G

E

A DB B

A

C C

Figure 7. Part of the universal cover of a typical cylinder

We will persistently abuse terminology by saying things like “The edges
labeled A and B in Figure 7 are the gluing edges,” when we really mean
that these edges are lifts to the universal cover of the gluing edges.

In Figure 7, C is decomposed into two trapezoids, one shaded and one
unshaded:

• Edges A and B are the gluing edges.
• Edges C and D are the slanted edges.
• Edges E,F,G and H are the horizontal edges.

Figure 8 (a) shows the action of R on our cylinder. The action of R does
not lift to an action on the universal cover, so here we are moving the objects
in the cylinder by R and then lifting to the universal cover. In Figure 8,
a = R(A), b = R(B), and so on.

In the cylinder, R acts as a symmetry on each of the trapezoids, swapping
the left and right boundaries of each. The effect from Figure 7 to Figure 8
(a) on the non-horizontal trapezoid boundaries is that the edge labels A and
B have been swapped. R preserves each top and bottom boundary of each
trapezoid. The effect from Figure 7 to Figure 8 (a) on the top and bottom
boundaries is that the edge labels E,F,G and H are preserved.

Figure 8 (b) shows the action of VM on C , as depicted in the universal
cover. As was the case with R, VM does not lift to an action on the universal
cover. Instead, there are two equivalent descriptions of what Figure 8 (b)
shows:

• We let VM act on A,B,C,D,E, F,G,H in the cylinder C (Figure 7),
and then lift their images to the universal cover.
• We lift the action of SM to the universal cover and let it act on the

picture in Figure 8 (a). On the universal cover, SM is a shear, fixing



CUTTING SEQUENCES ON TRANSLATION SURFACES 411

the bottom boundary and shifting the top boundary to the right by
a full modulus distance, indicated by the horizontal arrow.

Since VM = R ◦ SM , these produce the same picture.

g g

A B

E’ F’ E’

H’ G’G’

A’C’

B’

A B
D’ D’

e f

d
a

e

a

h

bb cc

Figure 8. The action of (a) R and (b) VM , depicted in the
universal cover

In Figure 8 (b), we have used the notation

A′ = SM (a) = SM ◦R(A) = VM (A),

and so on.
The original gluing edges A and B are shown in a lighter color. This is

important, because the proof of the main Theorem 4.2 analyzes the configu-
ration of an edge with respect to its image under VM . Here, we can observe
that A′ intersects A, and B′ intersects B.

The shaded trapezoid in Figure 8 is (a lift of) VM (T ), where T is the
shaded trapezoid in the decomposition of C . This trapezoid is not particu-
larly interesting. More interesting are the slanted trapezoids:

Definition 3.3. We partition each cylinder into two slanted trapezoids, each
of which is the region between two slanted edges.

Figure 9 shows a typical cylinder, depicted in the universal cover. It has
two gluing edges (A and B), so it has two slanted edges (C and D), so it has
two slanted trapezoids (CFDG and DECH). This is a copy of Figure 7,
with different trapezoids shaded.

We will use slanted trapezoids extensively in proving the main theorem in
§4. In particular, because we can partition a perfect translation surface into
cylinders, and each cylinder into slanted trapezoids, we can partition any
perfect translation surface into slanted trapezoids. We will use this partition
to partition a geodesic trajectory into finite segments, whose behavior we
can easily analyze.
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D
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Figure 9. A typical cylinder, partitioned into two slanted
trapezoids (shaded), depicted in the universal cover

The action is similar in a typical cylinder where one or both of the trape-
zoids degenerates to a triangle, or where one of the trapezoids degenerates
to a slanted edge.

In an exceptional cylinder, there is only one gluing edge A, rather than
two gluing edges A and B, and the gluing edge is vertical. There is only
one slanted edge C. We use two copies of the rectangle (one shaded and one
unshaded, as in Figure 8), which form a double cover of the cylinder, and
then the rest of the construction is the same. For expanded details, see ([4],
Chapter 3).

4. The main result

Recall (Definition 2.20) that the cutting sequence associated to a geodesic
trajectory on a translation surface is the bi-infinite sequence of polygon
edges that the trajectory crosses. The derived trajectory is the image of the
trajectory under the flip-shear VM , and the derived sequence is the cutting
sequence associated to the derived trajectory. The purpose of this paper
is to determine the relationship between the original cutting sequence and
the derived sequence for perfect translation surfaces. Theorem 4.2 gives the
relationship when θ ∈ [0, θS): The derived sequence is a subsequence of the
original cutting sequence, obtained by keeping certain letters and removing
the rest. It turns out that to determine if a given letter survives into the
derived sequence, we only need to look at the letters that precede and follow
it, i.e. at the three-letter word for which it is the middle letter:

Definition 4.1. Recalling Definition 2.23, a (11 ) word is a three-letter
sequence corresponding to a trajectory cutting through three edges that
form a (11) case. A (00 ) word, a (01 ) word and a (10 ) word are defined
analogously.

Theorem 4.2 (Main Theorem). Let S be a perfect translation surface with
common modulus M .

Consider a geodesic trajectory on the surface whose angle θ satisfies 0 ≤
θ < θS, and its associated cutting sequence. Mark a letter in the cutting
sequence if:

• It corresponds to a gluing edge, and it is the middle letter of a (00)
or (11) word, or
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• it corresponds to a horizontal edge.

Then the derived sequence consists precisely of the marked letters, read from
left to right.

Outline of Proof. Lemma 2.22 shows that determining the derived cutting
sequence for a given trajectory is equivalent to determining which sheared
edges the trajectory crosses. To determine which sheared edges a trajec-
tory crosses, we partition the trajectory into disjoint segments whose union
is the entire trajectory: We partition the translation surface into finitely
many disjoint slanted trapezoids (Definition 3.3), and each finite segment
of the trajectory that we analyze is the part of the trajectory that lies in
a particular slanted trapezoid. Then we analyze what happens on each of
those segments, and then pool the information to determine what happens
for the entire infinite trajectory.

To determine the derived sequence from the original cutting sequence, the
key question is whether a line segment that passes through edges E1E2E3

must cross edge E′2 = VM (E2), or not. This is a topological question, based
on the location of edge E′2 in relation to the edges E1, E2, E3. The location
of the segment E′2 depends on the configuration of the cylinder for which
the edge E2 is a gluing edge: whether it is typical, degenerate or excep-
tional. Lemma 4.3 and its Corollary 4.4 are simple topological observations
about configurations of line segments in quadrilaterals and trapezoids. Lem-
mas 4.5-4.8 apply these observations to each of the disjoint segments of the
trajectory.

The local analysis allows us to locally determine the effect of VM on each
segment, and thus the effect on its associated three-letter word in the cutting
sequence, telling us if the middle letter survives into the derived sequence.
We then move across the sequence from left to right, looking at the middle
letter in each overlapping three-letter word and marking those indicated in
Theorem 4.2. After we have done this, the derived sequence is the marked
letters, read from left to right.

Lemma 4.3. Consider a convex quadrilateral with its two diagonals, and
a trajectory that intersects the quadrilateral (Figure 10 (a)). The trajectory
crosses both diagonals if and only if the edges it crosses are non-adjacent. In
the adjacent case, a diagonal is crossed if and only if it shares the common
vertex of the two edges.

Proof. Trivial. �

Corollary 4.4. Let the the top, left, bottom and right edges be as in Fig-
ure 10 (b), and define the positive and negative diagonals according to
whether their slope is positive or negative when the vertices of the trapezoid
are horizontally shifted to transform the trapezoid into a rectangle. Then on
a trapezoid, a trajectory passing from the left edge to the top edge, the left
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Figure 10. (a) A convex quadrilateral, and (b) a trapezoid,
with trajectories intersecting their diagonals

edge to the right edge, the bottom edge to the top edge, or the bottom edge
to the right edge crosses the negative diagonal. Of these, only trajectories
passing from the left edge to the right edge, or from the bottom edge to the
top edge, cross the positive diagonal.

The key question, to determine the derived sequence from the original
cutting sequence, is whether a trajectory that crosses edges E1E2E3 crosses
E′2 = VM (E2). Lemmas 4.5 and 4.6 establish that this happens if and only if
the word E1E2E3 is in a (00) or (11) case. Each lemma proves one direction.

Lemma 4.5. Assume that E2 is the gluing edge for a typical cylinder. Con-
sider the word E1E2E3 and the corresponding portion of the trajectory that
lies between the intersections with edges E1 and E3. Consider the shorter
segment s that is the intersection of that segment with the slanted trapezoid
that has E2 as a negative diagonal. If s crosses E′2, then E1E2E3 is a (00)
or (11) word.

Proof. Refer to Figure 11. The hypothesis states that s crosses the shaded
trapezoid’s positive diagonal B′. By Corollary 4.4, there are two ways for
this to occur: Either s passes from the left edge C to the right edge D, or
from the bottom edge G to the top edge F . From this, we wish to recover
the information about which of the gluing edges, which are the bold edges
I,K,A,B,L,N , are hit by the extension of s to a trajectory. This will
determine which case the word is in.

Suppose that s passes from the left edge to the right edge of the shaded
trapezoid, so from edge C to D. The angle restriction θ ∈ [0, θS) requires
that the trajectory is less steep than all of the slanted edges. So a trajectory
intersecting edge C must hit edge A just before it hits C, because the angle
restriction prevents its coming from edge L. By Corollary 4.4, a trajectory
intersecting edge C and then edge D must intersect edge B in between.
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Figure 11. A typical cylinder with a slanted trapezoid
shaded, and parts of two adjacent cylinders

Similarly, because of the angle restriction, a trajectory intersecting edge D
must then intersect edge A, because it is not steep enough to intersect edge
K. So a trajectory passing from edge C to D must cut through gluing edges
ABA. This is a (00) case.

Suppose that s passes from the bottom edge to the top edge of the shaded
trapezoid, so from edge G to edge F . Because the trajectory must be less
steep than slanted edge M , it must intersect L just before edge G. By
Corollary 4.4, between its intersections with edges G and F , it must pass
through edge B. Again, because the trajectory must be less steep than the
slanted edge J , it must intersect K just after F . So a trajectory passing from
edge G to F must cut through gluing edges LBK. This is a (11) case. �

Lemma 4.6. Assume that E2 is the gluing edge for a typical cylinder. Con-
sider the word E1E2E3 and the corresponding portion of the trajectory that
lies between the intersections with edges E1 and E3. Consider the shorter
segment s that is the intersection of that segment with the slanted trapezoid
that has E2 as a negative diagonal. If E1E2E3 is a (00) or (11) word, then
s crosses E′2.

Proof. Suppose that E1E2E3 is a (00) word. Referring to Figure 11, this
means that the corresponding trajectory passes from edge A to B to A. In
so doing, s crosses edge C and then D. This means that s goes from the
left edge of the slanted trapezoid to the right edge, so by Corollary 4.4, s
intersects the positive diagonal B′ of the slanted trapezoid, which is E′2 as
desired.

Now suppose that E1E2E3 is a (11) word. In Figure 11, this means that
the corresponding trajectory passes from edge L to B to K. In so doing,
s crosses edge G and then F . This means it goes from the bottom edge of
the slanted trapezoid to the top edge, so by Corollary 4.4, s intersects the
positive diagonal B′ of the slanted trapezoid, which is E′2 as desired. �

Most of the cylinders in the surfaces we discuss in this paper are the union
of two trapezoids, covered in Lemma 4.7. Sometimes, as on each end of a
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Bouw–Möller surface, one of the trapezoids is degenerate and is a triangle,
and other times, as in a double (2n+1)-gon, both of the trapezoids in the
cylinder decomposition degenerate to triangles. We consider these to be
special cases of two trapezoids, so we cover these as part of Lemma 4.7.
Sometimes, as in a regular 4n-gon, the middle cylinder is a rectangle, but
a double cover (two rectangles) is two trapezoids, so we cover this in Lem-
ma 4.7 as well. Finally, horizontal edges are not the gluing edges for any
cylinder, so we consider them in Lemma 4.8.

Lemma 4.7. Let A be a gluing edge of a typical cylinder of a perfect trans-
lation surface of common modulus M . Consider a trajectory with θ ∈ [0, θS)
that crosses A, and let s be the segment that is the intersection of the tra-
jectory with the slanted trapezoid that has A as its negative diagonal. Then
s crosses A′ = VM (A) if and only if the corresponding A in the cutting
sequence occurs as the middle letter of a (11) or (00) word.

Proof. This is a direct corollary of Lemmas 4.5 and 4.6.
Because this is the key result of the paper, we will draw several pictures

to carefully work through why this is true.
There are three cases of a typical cylinders: A cylinder that is the union

of two isosceles trapezoids, and then the two limiting cases, where one of the
trapezoids is an isosceles triangle, or where both trapezoids are isosceles tri-
angles. We will treat the general case first, and then give further arguments
for the limiting cases.

E F

G

E

H G

A D

B

BC

A C

B

H’ G’G’

B’
D’ D’

A’
C’

A

A B

E’ F’ E’

Figure 12. A typical cylinder, and the result of applying
VM , depicted in the universal cover. The slanted trapezoid
with A,A′ as diagonals is shaded

Consider a cylinder C of modulus M that is the union of two isosceles
trapezoids glued along edges A and B. The top half of Figure 12 shows a
portion of the universal cover of the cylinder C . This is a copy of Figure 7.
The bottom half of Figure 12 shows the action of VM on C , again depicted
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in the universal cover. This is a copy of Figure 8 (b), except that we have
shaded a different trapezoid.

In a perfect translation surface, each cylinder is partitioned into two
isosceles trapezoids (in a typical case) or one rectangle (in an exceptional
case), divided by the gluing edges. Now, we use a different partition, into
slanted trapezoids, where the two trapezoids are divided by the slanted
edges.

Consider a trajectory with θ ∈ [0, θS) crossing the shaded slanted trape-
zoid in Figure 12. By Corollary 4.4, every such trajectory crosses A. By
Lemmas 4.5–4.6, the trajectory crosses A′ if and only if it is a (00) or (11)
case.

The same analysis applies to the other slanted trapezoid in the cylinder
(shaded in Figure 13): Every trajectory with θ ∈ [0, θS) that crosses the
shaded slanted trapezoid crosses B, but only those in the (00) or (11) cases
cross B′.

B

G’

C’

B’
D’

A’
A D’ B

A

E’ F’ E’

H’ G’

Figure 13. A typical cylinder, and the result of applying
VM , depicted in the universal cover. The slanted trapezoid
with B,B′ as diagonals is shaded

To spell things out in detail, we will discuss the limiting cases where one
or two of the trapezoids are triangles.

If one of the trapezoids degenerates to a triangle, this means that edge
E′ (without loss of generality) is contracted to a point, and edge D′ is not
needed.

Consider edge A. The top edge has been contracted to a point, so only
the cases (00) and (10) are possible. A trajectory in the (10) case crosses
edge H ′ and then edge A. Such a trajectory clearly cannot cross edge A′. A
trajectory in the (00) case crosses BAB, so by Corollary 4.4, it crosses A′.
So indeed, the trajectory crosses A′ if and only if it is in a (00) or (11) case,
because the (11) case is not possible. For edge B, the analysis is the same
as in the two-trapezoid case.

If both of the trapezoids degenerate to triangles, this means that both
edges E′ and H ′ contract to a point. Edges A,A′, C ′, D′ all coincide, so
edges C ′ and D′ are not needed and edge A′ coincides with edge A.

Thus, trivially, a trajectory crosses A′ if and only if it crosses A. The
only way to cross edge A is in the (00) word BAB, so again, the trajectory
crosses A′ if and only if it is in a (00) or (11) case. For edge B (looking
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at the slanted trapezoid whose diagonals are B and B′), the analysis is the
same as in the two-trapezoid case.

Finally, we will consider an exceptional cylinder. We take a double cover
of the exceptional cylinder, so in Figure 13 this means that gluing edges A
and B have the same label (say, A) and are vertical. Similarly, each pair of
edge labels C and D, E and F , and G and H is given the first label (C,E,G).
We consider the slanted trapezoid CE′CG′, with positive diagonal A′ and
negative diagonal A, and then the analysis is the same as in the typical case.

For an expanded discussion of the degenerate and exceptional cases, see
([4], Chapter 3 and Lemma 4.8). �

Lemma 4.8. A trajectory crosses a horizontal edge A if and only if it crosses
its image A′ = VM (A).

Proof. The horizontal shear SM is an isometry on horizontal segments, and
R is a reflection, so VM = SM ◦ R is an isometry on horizontal segments.
This means that A = A′, so the result is trivial. �

Lemma 4.9. The derived sequence consists of the edge labels of the “primed”
edges crossed by the trajectory, in the same order.

Proof. We partitioned the infinite trajectory into countably many finite
segments, each of which is the intersection of the trajectory with a slanted
trapezoid. Lemma 2.22 tells us that the derived sequence consists of the
crossed edge labels. These are a subset of the full sequence of edge labels,
in the same order, so the order does not change. �

Now we may prove the theorem:

Proof of Theorem 4.2. By Lemma 2.22, determining the derived cutting
sequence for a given trajectory is equivalent to determining which sheared
edges the trajectory crosses. Lemmas 4.7–4.8 prove that the trajectory
crosses the sheared edges as stated in the theorem. Lemma 4.9 tells us
that their order does not change. This proves the result. �

5. Regular polygon surfaces

We will prove a corollary of Theorem 4.2, that the combinatorial rule for
obtaining the derived sequence from the original cutting sequence for regular
polygon surfaces is to keep only the sandwiched edge labels:

Definition 5.1. A sandwiched label is one that is preceded and followed by
the same label, as A is in the sequence . . . CBABDAC . . ..

This result was already known for even polygon surfaces [8] and double
odd polygon surfaces [3] but this is a new method of proof.

Definition 5.2. A regular n-gon surface is a double regular n-gon for n
odd, and may be a single or double regular n-gon for n even. For a single
n-gon, identify opposite parallel edges to obtain a translation surface (this
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is only possible when n is even). For a double n-gon, take two copies of the
regular n-gon, one of which is a reflection of the other, and identify opposite
parallel edges. We assume that an edge of the polygon is horizontal.

John Smillie and Corinna Ulcigrai analyzed the even cases and showed,
among many other results for these surfaces, that the combinatorial rule for
obtaining the derived sequence from the original cutting sequence for regular
2n-gon surfaces is to keep only the sandwiched edge labels ([8], Proposition
4.1.1). They used “transition diagrams,” which we explore further in Sec-
tion 7.2. We subsequently showed that Smillie and Ulcigrai’s transition
diagram method extends to double odd regular polygons as well ([3], Theo-
rem 6.4). Note that Smillie and Ulcigrai proved many results for the regular
octagon surface, and for even regular polygon surfaces in general, and we
only extend a few of their results to other surfaces.

The two rules in Theorem 4.2 are reduced to this one simple rule (“keep
only the sandwiched edge labels”) in the case of regular polygon surfaces.
The key insight is that because of the surfaces’ symmetry, sandwiching oc-
curs exactly in the (00) and (11) cases.

In Lemmas 5.3 (double) and 5.4 (single), we prove that regular n-gon
surfaces are perfect, with common modulus 2 cotπ/n, so that we may apply
the Main Theorem 4.2 to them. We will need the following trigonometric
identities:

1 + 2 cos θ + . . .+ 2 cos kθ + cos(k + 1)θ = 2 cot(θ/2) sin((k + 1)θ);(1)

1 + 2 cos θ + . . .+ 2 cos kθ =
sin((k + 1/2)θ)

sin(θ/2)
.(2)

Equation (1) is proven in ([3], Lemma 2.1). To prove Equation (2), write

the sum as
∑k

j=−k cos jθ and then rewrite cos jθ = eijθ+e−ijθ

2 and simplify

the expression. For details, see [4].

Lemma 5.3. A double regular n-gon surface is perfect, with common mod-
ulus 2 cotπ/n.

Proof. We will prove that each cylinder of a double regular n-gon surface
(a) is the union of two isosceles trapezoids or two isosceles triangles, and (b)
has modulus 2 cotπ/n.

(a) The interior of the polygon that lies between horizontal levels k and
k+1 is an isosceles trapezoid for k = 0, . . . , n−2 and is an isosceles triangle
for k = n − 1 when n is odd. A cylinder consists of gluing together two
congruent copies of such pieces, one from each polygon.

(b) Assume that the edges of a regular polygon have length 1. The exterior
angle of the polygon is θ = 2π/n. In a regular polygon, the horizontal
segment connecting the vertices at level 0 is 1 (the horizontal edge), at level
1 is 1 + 2 cos θ, and at level k 6= 0 in general is 1 + 2(cos θ + . . .+ cos(kθ))
(see Figure 14).
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Figure 14. Two regular polygons, with opposite parallel
edges identified

When we glue two regular polygons together to make a surface, two copies
of the trapezoid or triangle between level k and level k+1 are glued together
to make the kth cylinder. So the width of the kth cylinder is

1 + 2(cos θ + . . .+ cos(kθ)) + 1 + 2(cos θ + . . .+ cos((k + 1)θ))

= 2 (1 + 2 cos θ + . . .+ 2 cos kθ + cos(k + 1)θ) = 2 cot(θ/2) sin((k + 1)θ),

by applying Equation (1).
The vertical distance between level k and level k + 1 is sin(k + 1)θ.
The modulus of the kth cylinder is then

2 cot(θ/2) sin(k + 1)θ

sin(k + 1)θ
= 2 cot θ/2 = 2 cotπ/n. �

Lemma 5.4. A regular 2n-gon surface is perfect, with common modulus
2 cotπ/n.

Proof. We will prove that each cylinder of a single regular 2n-gon surface
is the union of two isosceles trapezoids (typical), or is one rectangle (ex-
ceptional). In the typical case, the cylinder has modulus 2 cotπ/n. In the
exceptional case, the cylinder has modulus cotπ/n.

The region that lies between a pair of non-horizontal, non-vertical edges
of an even-gon is an isosceles trapezoid. It is not a triangle, because 2n-
gons have top and bottom horizontal edges. For the cylinders that are the
union of two trapezoids, the calculation is the same as in Lemma 5.3, so the
modulus is 2 cotπ/n.

A 4m-gon with horizontal edges also has two vertical edges, which are
identified. The cylinder glued along the vertical edge consists of a single
rectangle. The rectangle’s horizontal edges are between (using the same
notation as in Lemma 5.3) levels m− 2 and m− 1, so the width is

1 + 2(cos θ + . . .+ cosmθ)

and its height is 1, so its modulus is just the width:

1 + 2 cos θ + . . .+ 2 cos(mθ) =
sin((m+ 1/2)θ)

sin(θ/2)
,

by applying Equation (2).
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Applying the angle-addition formula, we can rewrite this as

sin(mθ) cos(θ/2) + cos(mθ) sin(θ/2)

sin(θ/2)
= cot θ/2 = cotπ/n,

since mθ = m(2π/(4m)) = π/2, so sin(mθ) = 1, cos(mθ) = 0. This is a
single rectangle of modulus 1

2(2 cotπ/n), so the surface is perfect. �

Lemma 5.5. For a regular n-gon surface, θS = π/n.

Proof. A regular polygon is cyclic. The angle of each slanted edge can be
taken as the angle between two of the polygon’s diagonals. Each of these
pairs of diagonals spans a chord of the circle. The Central Angle Theorem
says that this angle is half that of the central angle spanned by the same
chord. The result follows. �

Theorem 5.6. Consider a regular n-gon surface, and let M = 2 cotπ/n.
Consider a geodesic trajectory on the surface whose angle θ satisfies θ ∈
[0, π/n), and its associated cutting sequence. Then the derived sequence
consists precisely of the sandwiched letters, read from left to right.

To streamline the proof, we introduce the following terminology:

Definition 5.7. If a given letter in the cutting sequence survives into the
derived sequence, we say that it is kept.

Theorem 4.2 says that an gluing edge label is kept if and only if it is the
middle letter of a (00) or (11) word. We must show that this happens for
regular polygon surfaces if and only if the edge label is sandwiched. We
will show this for gluing edges and for horizontal edges. This will prove the
result.

Proof. By Lemmas 5.3 and 5.4, regular polygon surfaces are perfect with
common modulus M , and by Lemma 5.5, θS = π/n. So the hypotheses of
Theorem 4.2 are satisfied, and we may apply it.

Suppose that a given gluing edge label is sandwiched. Then it occurs in
the middle of a three-label sequence E1E2E1 for some edge labels E1, E2

(not necessarily distinct). If E1 and E2 are at the same level, then the
transition E1E2 is type (0), and the transition E2E1 is also case (0), so it
is case (00) and by Theorem 4.2, E2 is kept. Similarly, if E1 and E2 are on
different levels, then both transitions are type (1), so it is case (11) and by
Theorem 4.2, E2 is kept.

Suppose that a given gluing edge label is not sandwiched. Then it occurs
in the middle of a three-label sequence E1E2E3 for some edges E1, E2, E3

not necessarily all distinct, but E1 6= E3. Because regular polygon surfaces
are perfect, each cylinder has at most two gluing edges, so at least two of
the edges must be in different levels. If E1, E3 are in the same level and E2

is in a different level, then E1 = E3 by symmetry, so E2 is sandwiched, a
contradiction. If E1, E2 are in the same level and E3 is in a different level,
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or if E2, E3 are in the same level and E1 is in a different level, these are
cases (01) and (10), respectively, so by Theorem 4.2, E2 is not kept.

Theorem 4.2 says that a horizontal edge label is always kept. By symme-
try, a horizontal edge label is always sandwiched in regular polygon surfaces.
So a horizontal edge label is kept if and only if it is sandwiched. �

6. Introduction to Bouw–Möller surfaces

In Lemmas 5.3 and 5.4, we showed that for the n-indexed family of regular
n-gon surfaces, the cylinder moduli are equal, or in a 2 : 1 ratio. It turns
out that there is an (m,n)-indexed family of surfaces whose cylinder moduli
are all equal, called Bouw–Möller surfaces.

As discussed in the introduction, after Irene Bouw and Martin Möller
gave algebraic models for their Bouw–Möller surfaces [1], Pat Hooper gave
a polygon decomposition for them [5], which we will use here. The polygon
decomposition gives a family of translation surfaces created by identifying
opposite parallel edges of a collection of m “semi-regular” polygons that
each have 2n edges.

In Definitions 6.1 and 6.4, we define Bouw–Möller surfaces. In Lemmas
6.2 and 6.6, we show that they are perfect translation surfaces, so we can
apply the main Theorem 4.2, which we do in Chapter 7.

The language of Definitions 6.1 and 6.4 is taken directly from [5].

Definition 6.1. The (a, b) semi-regular 2n-gon has edge vectors given by:

vi =

{
a [cos iπn , sin

iπ
n ] if i is even

b [cos iπn , sin
iπ
n ] if i is odd

for i = 0, . . . , 2n − 1. Denote this 2n-gon by Pn(a, b). The edges whose
edge vectors are vi for i even are called even edges. The remaining edges
are called odd edges. We restrict to the case where at least one of a or b is
nonzero. If a or b is zero, Pn(a, b) degenerates to a regular n-gon.

Lemma 6.2. Semi-regular polygons are special.

Proof. Recall Definition 2.4, that a polygon is special if it is convex, level
and vertically symmetric.

Semi-regular polygons are convex because the exterior angle increases
monotonically from 0 to (2n− 1)/n.

To show that they are level, we must show that vector vi has the same
y-value as vector v2n−i. To show that they are vertically symmetric, we
will show that the region of a semi-regular polygon between two levels is an
isosceles trapezoid or triangle. To do this, we will show that the x-values of
vi and v2n−i have the same magnitude. If i is even,

v2n−i = a

[
cos

(2n− i)π
n

, sin
(2n− i)π

n

]
= a

[
− cos

(
iπ

n

)
, sin

(
iπ

n

)]
.

Since vi = a
[
cos
(
iπ
n

)
, sin

(
iπ
n

)]
, this proves both results.
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For i odd, a is replaced with b. �

Corollary 6.3. Each Bouw–Möller surface admits the Veech element R,
whose derivative is a vertical flip. This follows from the vertical symmetry.

Definition 6.4. The (m,n) Bouw–Möller surface is made by identifying the
edges of m semi-regular polygons P (0), . . . , P (m− 1). Define P (k) by

P (k) =


Pn

(
sin (k+1)π

m , sin kπ
m

)
if m is odd

Pn

(
sin kπ

m , sin
(k+1)π
m

)
if m is even and k is even

Pn

(
sin (k+1)π

m , sin kπ
m

)
if m is even and k is odd.

We form a surface by identifying the edges of the polygon in pairs. For k
odd, we identify the even edges of P (k) with the opposite edge of P (k+ 1),
and identify the odd edges of P (k) with the opposite edge of P (k− 1). The
cases in the definition of P (k) are chosen so that this gluing makes sense.

The (m,n) Bouw–Möller surface is a collection of m polygons, where the
first and mth are regular n-gons, and the m− 2 middle polygons are semi-
regular 2n-gons (see Figure 15). If m is odd, the central polygon is regular,
and if m is even, the two central polygons are regular.

Figure 15. The Bouw–Möller surface M(6,4). Edges of the
square P (0) on the far left are glued to oppositely-oriented
parallel edges of the semi-regular octagon P (1). The remain-
ing edges of P (1) are glued to the regular octagon P (2), and
so on.

Bouw–Möller surfaces are translation surfaces because each surface is a
collection of polygons with opposite parallel edges identified. Each 2n-gon
has n of its edges glued to the polygon on its left, and the other n edges
glued to the polygon on its right. Each of the n-gons on the ends is only
glued to one other polygon.

Corollary 6.5 (to Lemma 6.2). Bouw–Möller surfaces are special.

Proof. Lemma 6.2 shows that semi-regular polygons are special, and Defi-
nition 6.4 gives a decomposition of a Bouw–Möller surface into semi-regular
polygons. �

Lemma 6.6. Bouw–Möller surfaces are perfect.
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Proof. Recall (Definition 2.18) that a perfect translation surface is a special
translation surface that has a perfect cylinder decomposition with some
common modulus M . Corollary 6.5 shows that Bouw–Möller surfaces are
special. Showing that Bouw–Möller surfaces have a perfect decomposition
requires that:

(a) Every cylinder is the union of two isosceles trapezoids.
(b) Every cylinder has the same modulus.

(a) We showed in Lemma 6.5 that Bouw–Möller surfaces are special, so
the only way a cylinder could fail to be the union of two isosceles trapezoids
is if it consisted of a single rectangle with just one gluing edge. This occurs
when a vertical edge of a polygon is identified with an opposite parallel edge
of the same polygon. By the gluing rules in Definition 6.4, each polygon edge
is glued to an edge of another polygon, not an edge of the same polygon, so
this cannot occur, and every cylinder is the union of two isosceles trapezoids.

(b) In fact, the edge lengths of Bouw–Möller surfaces are chosen precisely
so that the modulus is the same; see [1], Theorem 8.1. The calculation is a
elementary but lengthy trigonometric result: First, we calculate the length
of the horizontal segment connecting the two vertices of polygon P (k) at
each level, and then add two of these together to find the width of each
cylinder. A simple calculation gives the height of the cylinder, and then the
modulus of the cylinder is the ratio of width to height. It turns out that

the modulus of every cylinder is 2 cotπ/n+ 2 cosπ/m
sinπ/n . For details, see ([4],

Lemma 6.6). �

7. Results for Bouw–Möller surfaces

In Lemma 6.6, we showed that Bouw–Möller surfaces are are perfect. This
tells us that we may apply the main Theorem 4.2 to them, which is what
we do in this chapter. In § 7.1, we prove Theorem 7.1, which describes
how to determine the derived sequence from a cutting sequence on a Bouw–
Möller surface, and we work through an example. In § 7.2, we describe
the transition diagrams for Bouw–Möller surfaces, extending some of John
Smillie and Corinna Ulcigrai’s ideas for regular polygons ([8], § 2.1.2) to
these surfaces.

7.1. Cutting sequences on Bouw–Möller surfaces.

Theorem 7.1. Let M = 2 cotπ/n+ 2 cosπ/m
sinπ/n , the modulus of the cylinders

of the (m,n) Bouw–Möller surface S. Consider a geodesic trajectory with
0 ≤ θ < θS, and its associated cutting sequence. Mark a letter in the cutting
sequence if:

• It corresponds to a gluing edge, and it is the middle letter of a (00)
or (11) word, or
• it corresponds to a horizontal edge.
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Then the derived sequence consists precisely of the marked letters, read from
left to right.

Proof. By Lemma 6.6, Bouw–Möller surfaces are are perfect with common
modulus M , so we may apply Theorem 4.2 to them, and the same result
holds. �

Example 7.2. We will determine the derivation rule for cutting sequences
on the (3, 4) Bouw–Möller surface, shown in Figure 16. (The ordering of the
edge numbers may seem arbitrary, but it is chosen to simplify the transition
diagrams in Section 7.2.)

7

3’

7’

7’

2 1

5=5’

4’ 4
4 3

6’ 6
7

2’

1’
1 2

2’

8=8’

5=5’

8=8’

Figure 16. The (3, 4) Bouw–Möller surface (a) showing the
three cylinders, and (b) with edge labels, sheared edges (dot-
ted lines) and auxiliary edges (thin)

We will consider the gluing edges one cylinder at a time, and then the
horizontal edges.

First, we consider the cylinder with gluing edges 1 and 2. By Theorem 7.1,
1 and 2 are kept if and only if they are the middle numbers of a (00) or (11)
word.

The (00) word with 1 as the middle number is 212. The (00) and (11)
cases with 2 as the middle number are 121 and 723. The middle numbers
are removed in the remaining (01) and (10) cases, which are 218, 123 and
721.

By the same reasoning on the cylinder with gluing edges 3 and 4, 3 is
kept in the (00) and (11) cases 434 and 236, and removed in the other (01)
and (10) cases 436 and 234. 4 is kept in the (00) case 343 and removed in
the (10) case 543.

The gluing edges of the central cylinder are 6 and 7. The (00) cases are
767 and 676. The (11) cases are 365 and 872. By Theorem 7.1, the middle
numbers are kept in these cases. The (01) cases are 765 and 672. The (10)
cases are 367 and 876. By Theorem 7.1, the middle numbers are removed
in these cases.

By Theorem 7.1, horizontal edges 5 and 8 are always kept. Possible
three-number transitions with middle numbers 5 or 8 are 654 and 187, so
the middle number is kept in these cases.
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The numbers that are kept and removed are summarized in Table 1. Of
the 12 three-letter transitions where the middle letter is kept, in the six (00)
cases the middle letter is sandwiched, and in the six (11) cases, it is not.

kept (00) kept (11) removed (01), (10)
212 218
121 723 123, 721
434 236 436, 234
343 543

654
767 365 765, 367
676 872 672, 876

187

Table 1. All possible three-number transitions for the (3, 4)
Bouw–Möller surface, indicating when the middle number is
kept. The table is sorted by middle number

7.2. Transition diagrams for Bouw–Möller surfaces. To determine
the derived sequence from a cutting sequences on a regular 2n-gon surface,
John Smillie and Corinna Ulcigrai used transition diagrams ([8], § 2.1.2).
In this section, we will describe the form of transition diagrams for Bouw–
Möller surfaces. Using the transition diagrams may yield a new proof for
Theorem 7.1, more similar to the proofs used in [3], [8] and [9].

Definition 7.3. A transition diagram for a translation surface S is a di-
rected graph whose vertices are edge labels, and whose arrows connect two
edge labels if a trajectory with θ ∈ [0, θS) can intersect the first edge and
then the second edge.

Example 7.4. We construct the transition diagram for the regular octagon
surface (Figure 17). For the regular octagon, θS = π/8, so we consider
trajectories with θ ∈ [0, π/8). A trajectory crossing horizontal edge 1 must
next cross edge 2, so we connect 1 to 2 with an arrow. A trajectory crossing
edge 2 may next cross edge 1 or edge 3, so we connect 2 to 1 and to 3. The
rest of the transition diagram is constructed similarly.

Example 7.5. We construct the transition diagram for the (3, 4) Bouw–
Möller surface (Figure 18). For this surface, θS = π/8, so we again consider
trajectories with θ ∈ [0, π/8). A trajectory crossing edge 1 then crosses edge
2 or 8, so we connect these with arrows. A trajectory crossing edge 2 then
crosses edge 1 or 3, so we connect these with arrows. The rest of the diagram
is constructed similarly.

Arranging the edge labels in numerical order in a straight line, as we did
in Example 7.4, gives us the transition diagram shown at the top right of
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1

2

1

44

3

32

1 32 4

Figure 17. The regular octagon surface, and its transition
diagram

7 6 58

1 2 43

1 2 43 5 76 8

7

2 1

5

4
4

6
7

1 2

8

5

8

3

Figure 18. The (3, 4) Bouw–Möller surface, and its transi-
tion diagram in two forms

Figure 18. We can rearrange the transition diagram into a rectangle, as
shown at the bottom right of Figure 18.

It turns out that the rectangular form of the transition diagram in Figure
18 extends, and holds for Bouw–Möller surfaces in general. Figure 19 shows
the polygon decomposition and the transition diagram for the m = 6, n = 5
Bouw–Möller surface.

There are n numbers on each row, snaking back and forth, with m − 1
rows in all. The edge labels in the kth row correspond to the edge labels that
appear for the first time in P (k−1). For example, in the (3, 4) Bouw–Möller
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Figure 19. The (6, 5) Bouw–Möller surface and its transi-
tion diagram

surface, 1, 2, 3, 4 appear in the first tilted square P (0), 5, 6, 7, 8 appear in the
octagon P (1), and no new edge labels appear in the final square P (2).

The transition diagram for the (m,n) Bouw–Möller surface, with m ≥
2, n ≥ 3, always follows the pattern of Figure 19, with the upper-left corner
the same and the diagram expanding (or contracting) down and to the right.
Showing that the transition diagrams always have this form is tedious, so
we omit the proof.

References
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