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Adjoining an identity to a finite filial ring

R. R. Andruszkiewicz and K. Pryszczepko

Abstract. The aim of this paper is to investigate the problem of em-
bedding of filial ring into filial ring with an identity.
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1. Introduction and preliminary results

All considered rings are associative. To denote that I is an ideal of a ring
R we write I CR. A ring R is called filial if ACB and B CR imply ACR
for all subrings A, B of R. Filial rings were studied in many papers (cf.
[APr09, FP04, FP05]).

Recall that, a subring A of a ring R is n-accessible, if A = A0 C A1 C
· · ·C An = R for some subrings A0, A1, . . . , An of R. Moreover A is said to
be precisely n-accessible if it is not k-accessible in R for any positive integer
k < n.

The problem of construction of precisely n-accessible subrings in a given
ring plays a fundamental role in the theory of radicals. Such subrings are
closely connected with the problem of the termination of Kurosh’s chain (cf.
[APu90, APu97, Hei68, Bei82, AS13]). In [APu97], it was proved that, if a
commutative integral domain A is not filial, then it is possible to construct in
A precisely n-accessible subrings for every natural number n. Using this fact
one can construct Kurosh’s chains (in the class of associative, not necessarily
commutative rings) which terminate after an arbitrarily predetermined finite
number of steps ([Bei82], [APu97]). These studies initiated by Beidar in
[Bei82] and continued by Andruszkiewicz and Puczy lowski in [APu97], are
the most valuable and recognizable in the theory of radicals. Application
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of filial rings and their properties allowed to overcome enormous difficulties
related to this subject.

A ring R is strongly regular if a ∈ Ra2 for every a ∈ R. Obviously all
strongly regular rings are von Neumann regular, and for commutative rings
this two properties coincide. The class of all strongly regular rings S form a
radical in the sense of Kurosh and Amitsur. One can easily check that every
strongly regular ring is filial.

It is a well-known fact that any ring can be considered as an ideal in
a ring with unity. The simplest way to embed a ring into a ring with an
identity is to apply the Dorroh extension. A question for which rings R
having some property there exists a unit ring also having the same property
in which R is an ideal is important. In several papers, a few kinds of ring
extensions connected with the above question, were studied (see for instance
[FH64, Fun66]).

In [APr09], we have shown that every commutative torsion–free reduced
filial ring is an ideal in some commutative torsion–free reduced filial ring
with an identity. This nontrivial construction allowed us to obtain the clas-
sification theorem for reduced filial rings. At the conference “Radicals of
rings and related topics” in Warsaw, Poland in 2009, the second author
asked whether this was still true if all the above assumptions except filial-
ity were dropped (cf. [P09]). In this note we answer this question in the
negative. Namely, our main result can be stated as follows.

Theorem 1.1. Every filial ring R such that |Rp| ≤ p3 for all p ∈ P, is an
ideal in a filial ring S with an identity. Moreover, if the ring R is commuta-
tive (finite), then the ring S is also commutative (finite). Furthermore, for
every p ∈ P there exists a commutative filial ring I with p4 elements such
that p2I = 0, which is not an ideal in any filial ring with an identity.

In this paper we consider filial rings, not necessarily commutative. The
class of these rings is poorly investigated and little is known about their
structure. The obtained results and examples may be applied in the general
ring theory.

Throughout the paper, N and P stand for the set of all positive integers
and the set of all primes, respectively. The cardinality of the set X is denoted
by |X|.

For a ring R, we denote by R+ the additive group of R and for a prime
p let Rp = {x ∈ R : pkx = 0 for some k ∈ N}, R(p) = {x ∈ R : px = 0}. We
write o(x) for the order of an element x in the group R+, and we say that
the ring R is of bounded exponent if there exists M ∈ N such that Mx = 0
for every x ∈ R, otherwise we say that the ring R is of unbounded exponent.
If R+ is a p-group, then we say that R is a p-ring. For a subset S of R, we
denote by 〈S〉, [S], a(R), lR(S), (S)R the subgroup of R+ generated by S,
the subring of R generated by S, the two-sided annihilator of S in R, the
left annihilator of S in R and the ideal generated by S in R, respectively.
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Remark 1.2. Let C be a commutative ring with an identity 1 and let A be
a C-algebra. On the cartesian product C+ ×A+ we define a multiplication
by the formula

(c1, a1)(c2, a2) = (c1c2, c1a2 + c2a1 + a1a2)

for all c1, c2 ∈ C, a1, a2 ∈ A. In this way we obtain a new C-algebra, which
will be denoted by C�A. Instead of (c, a) we will write c+a. Identifying A
with its image in C�A, via the embedding mapping a 7→ (0, a), we see that
ACC�A and (C�A)/A ∼= C. It is also clear that if A is commutative, then
the algebra C�A is commutative too. Moreover, if A possesses an identity,
then C �A ∼= C ⊕A. Note that every ring is a Z-algebra in a natural way.

We start by recalling a well-known characterization of filial rings.

Lemma 1.3 ([APu88], Theorem 1). A ring S is filial if and only if

(a)S = (a)2S + 〈a〉

for every a ∈ S.

The Andrunakievich Lemma implies that subidempotent rings (i.e., rings
in which every ideal is idempotent) are filial (cf. [APu88]).

Lemma 1.4. Let I CR, R/I be a subidempotent ring, and for every J C I,
J CR. If I is a filial ring then R is also a filial ring.

Proof. Let A C B and B C R. Then (A + I)/I C (B + I)/I C R/I and
(A+ I)/I CR/I, by filiality of R/I. Since (A+ I)/I = (A2 + I)/I, A+ I =
A2+I. Intersecting both sides with A we get, by modularity of the subgroup
lattice in R+, A = A2 + (I ∩A). Now, since I ∩AC I ∩BC I, so I ∩ACR.
Moreover, RA ⊆ RA2 + R(I ∩ A) ⊆ BA + (I ∩ A) ⊆ A. The proof of the
opposite inclusion AR ⊆ A is similar. �

In what follows, β denotes the prime radical.

Proposition 1.5 ([FP05], Corollary 8). A β-radical ring is filial if and only
if all its subrings are ideals.

A ring in which all subrings are ideals is called an H-ring. Such rings
have been studied by a number of authors, for instance Andrijanov [And66],
[And67], Jones and Schäfer [JS57], Kruse [Kru68], [Kru64], Rédei [Red52.1],
[Red52.2]. Especially, the results obtained by Andrijanov and Kruse give
an advanced description of H-rings which are nil. We point out that their
classification of H-rings is not complete and can be improved. This classi-
fication does not describe nil-H-rings up to isomorphism, and requires too
many parameters to define these rings (cf. [And67], [Kru64]). Also Antipkin
and Elizarov point out [AntE82], (page 461) these gaps.

If a nil ring R is both a p-ring and an H-ring, we shall say that R is a
nil-H-p-ring. The following lemma was established by Kruse.
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Lemma 1.6 ([Kru68], Lemma 2.7). If R is a nil-H-p-ring, then a3 ∈ 〈a2〉
for every a ∈ R, and in particular [a] = 〈a〉+ 〈a2〉.

We start with some general, new observations concerning H-rings and
filial rings. Notice that a ring R is an H-ring if and only if every subring of
R generated by a single element is an ideal in R.

Proposition 1.7. Let R be a nil-H-p-ring and let N be a ring such that
N2 = pN = 0. Then the ring S = R⊕N is an H-ring.

Proof. Take any s ∈ S. Then s = (a, x) for some a ∈ R and x ∈ N . Clearly
s2 = a2. Note that ys = sy = 0 ∈ [s] for any y ∈ N , and by Lemma 1.6,
for every b ∈ R, ba = Ua + V a2 for some U, V ∈ Z. If p - U , then a ∈ Ra,
and since R is a nil ring, so a = 0. Hence, we can assume that p | U . Since
pN = 0, so bs = Us + V s2 ∈ [s]. Similarly, one can check that sb ∈ [s].
Consequently [s]C S and S is an H-ring. �

A ring R is called reduced if it has no nonzero nilpotent elements.

Lemma 1.8. If R is a commutative filial p-ring, which cannot be expressed
as a direct sum of two nonzero ideals, then R is a nil ring or R has an
identity.

Proof. Suppose that β(R) 6= R. Then R/β(R) is a nonzero commutative
reduced filial p-ring. Hence R/β(R) is a Zp-algebra, and by Theorem 4.1 of
[FP04], R/β(R) is a strongly regular ring. Hence, in the ring R/β(R) there
exists a nonzero idempotent, which can be lift to a nonzero idempotent
e ∈ R. Thus R = Re⊕ lR(e), but lR(e) = 0 and e is an identity of R. �

Lemma 1.9. Let A and B be p-rings such that A has an identity 1, β(A) 6= 0
and β(B) 6= 0. Then the ring A⊕B is not filial.

Proof. By assumption, there exist a ∈ A and b ∈ B such that a2 = pa = 0
and b2 = pb = 0. Set α = (a, b). Then α2 = 0 and pα = 0. Suppose that the
ring A⊕B is filial. Then β(A⊕B) = β(A)⊕β(B) is a filial ring. Hence, and
by Proposition 1.5, β(A⊕B) is an H-ring. Since 〈α〉 = [α]Cβ(A⊕B)CA⊕B,
we have 〈α〉CA⊕B. In particular (a, 0) = (1, 0)(a, b) ∈ 〈α〉 and there exists
k ∈ Z such that (a, 0) = k(a, b). Now, a = ka and 0 = kb, so p | k and this
implies that a = 0, a contradiction. �

Proposition 1.10. If R is a filial commutative noetherian p-ring without
identity, then R = S(R)⊕ β(R).

Proof. Since the ring R is noetherian, so R = R1 ⊕R2 ⊕ · · · ⊕Rs for some
nonzero ideals R1, R2, . . . , Rs of R. Moreover, we can assume that each Ri

cannot be expressed as a direct sum of two nonzero ideals. Applying Lemmas
1.8, 1.9 and Theorem 4.1 of [FP04] one can get that R = S(R)⊕ β(R). �

Lemma 1.11. Let R be a filial p-ring with an identity. Then β(R) =
β(R)(p) + p · 〈1〉, the group pR+ is cyclic, and y2 ∈ (β(R)(p))2 + 〈y〉 for
every y ∈ β(R).
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Proof. Since R+ is a p-group, so there exists n ∈ N such that o(1) = pn

in R+. Hence pnR = 0 and pR ⊆ β(R). By filiality of R and Proposition
1.5, β(R) is an H-ring. Obviously, 〈p · 1〉 = [p · 1] C β(R), so 〈p · 1〉 C R
and pR ⊆ p〈1〉. Consequently the group pR+ is cyclic and in particular
pβ(R) ⊆ p〈1〉.

If pβ(R) = 〈p · 1〉 then p · 1 = pi0 for some i0 ∈ β(R). Hence pi0 = i0 · pi0.
Consequently pi0 ∈ β(R)(pi0) and pi0 = 0. Thus pβ(R) = 0 and β(R) =
β(R)(p) + p · 〈1〉.

Now, assume that pβ(R) 6= 〈p ·1〉. Then pβ(R) = 〈ps ·1〉 for some positive
integer s > 1. Take any i ∈ β(R). Then pi = k(ps ·1) for some k ∈ Z. Hence
i−(kps−1)·1 ∈ β(R)(p), (kps−1)·1 ∈ p·〈1〉 and i = (i−(kps−1)·1)+(kps−1)·1.
This shows that β(R) = β(R)(p) + p · 〈1〉.

Fix any y ∈ β(R). From the first part of the proof there exist j ∈ β(R)(p)
and K ∈ Z such that y = j +Kp · 1. Next, y2 = j2 +K2p2 · 1 = j2 +Kpy ∈
(β(R)(p))2 + 〈y〉 and the result follows. �

2. Almost null rings

We start with the following definition, which is due to R. L. Kruse.

Definition 2.1 ([Kru68], Definition 2.1). A ring R is almost null if for every
a ∈ R:

1. a3 = 0.
2. Ma2 = 0 for some square-free integer M which depends on a.
3. aR ⊆ 〈a2〉 and Ra ⊆ 〈a2〉.

These rings play an important role in the study of certainH-rings. Clearly,
every almost null ring R is an H-ring such that R3 = 0. Moreover, every
homomorphic image and every subring of an almost null ring is almost null.
Immediately, from the definition of an almost null ring, we have the following
lemma.

Lemma 2.2. Let I, J be subrings of a ring R such that J2 = IJ = JI = 0.
Then I + J is an almost null ring if and only if I is an almost null ring.

The proof of the next auxiliary proposition is straightforward.

Proposition 2.3. Let R be a ring such that the group R+ is torsion. Then:

(i) R is an almost null ring if and only if Rp is an almost null ring for
every p ∈ P.

(ii) R is an H-ring if and only if Rp is an H-ring for every p ∈ P.
(iii) R is a filial ring if and only if Rp is a filial ring for every p ∈ P.

Proposition 2.4. Let R be a nil-H-ring satisfying any of the following
conditions:

(i) R is a p-ring and ab ∈ 〈a2〉 ∩ 〈b2〉 for any a, b ∈ R.
(ii) R is a p-ring of unbounded exponent.
(iii) There exists x ∈ R+ such that o(x) =∞.
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(iv) pR = 0 for some prime p.
(v) pR = p2R for every prime p.

Then R is an almost null ring.

Proof. (i). Take any a ∈ R. Let m be the smallest natural number such
that pma2 = 0. If m > 1, then m−1 ∈ N and pm−1a2 6= 0, pma2 = 0. Hence
(pm−1a)2 = 0, but 0 6= (pm−1a)a ∈ 〈(pm−1a)2〉 = 0, a contradiction. Thus
m = 1 and pa2 = 0. By Lemma 1.6, a3 = ka2 for some k ∈ Z. If p - k, then
a2 ∈ Ra2, which gives a2 = 0 and hence a3 = 0. If p | k, then ka2 = 0 and
a3 = 0, as well.

(ii). cf. Proposition 2.5 of [Kru68].
(iii). cf. Proposition 2.6 of [Kru68].
(iv). Follows from Corollary 2.3 of [FP04] and Theorem 3.3 of [FP09].
(v). Taking account of (iii) we may assume that the group R+ is torsion.

By Proposition 2.3, it is enough to prove that Rp is an almost null ring for
every prime p. According to (ii), we need to consider only the case when R+

p

is a group of bounded exponent, i.e., psRp = 0 for some s ∈ N. However, by
the assumption, psRp = pRp, so pRp = 0 and, by (iv), Rp is an almost null
ring. �

Proposition 2.5 ([Kru68], Proposition 2.10). Let S be a ring such that for
some prime p, pa2 = 0 for every a ∈ S. Then S is an almost null ring if
and only if one of the following conditions is satisfied:

(i) S2 = 0.
(ii) There exists x ∈ S such that x2 6= 0, px, x2 ∈ a(S) and

S = 〈x〉+ a(S).

(iii) There exist x, y ∈ S such that S = 〈x, y〉 + a(S), x2 6= 0, px2 =
0, px, py, x2 ∈ a(S), y2 = Ax2, xy = F1x

2, yx = F2x
2, where

A,F1, F2 ∈ Z and the congruence

(2.1) X2 + (F1 + F2)X +A ≡ 0 (mod p)

has no integer solution.

Remark 2.6.

(i) For rings S described in (i)–(iii) of Proposition 2.5, dimZp S/a(S)
equals 0, 1, 2, respectively. Hence, any ring described in the item (i)
is not isomorphic to any ring described in items (ii) or (iii) and any
ring described in the item (ii) is not isomorphic to any ring described
in the item (iii).

(ii) Let p ∈ P, F1, F2, A ∈ Z be as in Proposition 2.5. We now define a
multiplication which will make the additive group

S+ = Z+
p × Z+

p × Z+
p
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into a ring. For generators x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1) of
the group S+, let

xz = zx = zy = yz = 0, x2 = z, xy = F1z, yx = F2z, y
2 = Az.

It is not difficult to check that a(bc) = (ab)c = 0 for all a, b, c ∈
S, S = 〈x, y〉 + a(S), o(x2) = p in the group S+ and pS = 0.
Proposition 2.5 implies that S is an almost null ring.

The next proposition gives a useful example of nil-H-p-ring, which is not
almost null.

Proposition 2.7 (cf. [And67]). Let N be an almost null ring such that
pmN = 0 for some m ∈ N. Let R = [a] ⊕ N , where o(a) = pn for some
positive integer n > m and a2 = pma. Then R is an H-ring. Moreover, R
is an almost null ring if and only if N2 = 0 and n = m+ 1.

Proof. Notice that [a] is a nil ring because a3 = pma2 = p2ma and pna = 0.
From the assumptions, it follows that R is a nil ring such that pnR = 0. Let
r ∈ R. Then there exist k ∈ Z and x ∈ N such that r = (ka, x). For y ∈ N ,
yx = Ux2 for some U ∈ Z, so

(0, y)r = (0, Ux2) = U(0, x2) = Ur2 + (−U)kpmr ∈ [r].

Moreover, [a] = 〈a〉 and (a, 0)r = (ka2, 0) = (kpma, 0) = pmr ∈ [r]. Simi-
larly, one can show that r(0, y) ∈ [r] and r(a, 0) ∈ [r]. Consequently, [r]CR
and R is an H-ring.

Let R be an almost null ring. Then [a] is also an almost null ring as a
subring of R. Hence 0 = pa2 = pm+1a and pn | pm+1. But m < n, so
n = m + 1. If N2 6= 0, then there exists x0 ∈ N such that x20 6= 0. Since
(0, x0)(a, x0) = (0, x20) and (a, x0)

2 = (a2, x20) = (pma, x20), so there exists
V ∈ Z for which (0, x20) = V (pma, x20). Thus V pma = 0 and V x20 = x20. But
o(a) = pn > pm and V pma = 0, so p | V . Hence px20 = 0, V x20 = 0 and
x20 = 0, a contradiction.

If N2 = 0 and [a] is an almost null ring, then N ⊆ a(R) and R is an
almost null ring by Lemma 2.2. �

Below we give new important (see Theorem 1.1) example of an H-ring,
which is not almost null.

Example 2.8. Let I+ = 〈x1〉 ⊕ 〈x2〉 ⊕ 〈x3〉, where o(x1) = p2 and o(x2) =
o(x3) = p. On I we define a multiplication on the generators x1, x2, x3 of
the additive group I+ according to the following relations x21 = x2, x1x3 =
x3x1 = x23 = px1, xix2 = x2xi = 0 for i = 1, 2, 3.

One can easily check that (xy)z = x(yz) = 0 and xy = yx for all x, y, z ∈
I. So I is an associative ring such that I3 = 0. Take any i ∈ I. We
claim that [i] C I. It is enough to show that x1i, x3i ∈ I. Since i3 = 0, so
[i] = 〈i〉 + 〈i2〉. Moreover, i = ax1 + bx2 + cx3 for some a, b, c ∈ Z. Hence
i2 = (c2 + 2ac)px1 +a2x2, x1i = 2cpx1 +ax2, x3i = (a+ c)px1. Assume that
p | a. Then i2 = c2(px1), x1i = 2c(px1), x3i = c(px1), and since o(px1) = p,



702 R. R. ANDRUSZKIEWICZ AND K. PRYSZCZEPKO

so 〈c(px1)〉 = 〈c2(px1)〉 and x1i, x3i ∈ 〈i2〉. If p - a, then there exists V ∈ Z
such that aV ≡ 1 (mod p). Hence x1i = p(2cV − V 2(c2 + 2c))i + V i2 ∈ [i]
and x3i = pV (a + c)i ∈ [i]. Thus I is an H-ring, and consequently I is a
filial ring.

Notice that I is not an almost null ring, since for instance x1x3 = px1 6∈
〈x2〉 = 〈x21〉.

The next theorem was established, without proof and in a different form,
by Friedman in the short note [Fre60]. It is also deductible from Rédei’s
article [Red52.1].

Theorem 2.9. All, up to an isomorphism, nonzero nil-H-p-rings generated
by one element are:

(i) pmZpm+n for some m,n ∈ N, m ≤ n.

(ii) xZp[x]/(x3).
(iii) xZpm [x]/(px2, x3), m ∈ N, m ≥ 2.
(iv) xZpm+n [x]/(px2 − pmx, x3 − p2m−2x) for some m,n ∈ N, m ≥ 2.

By the above theorem and by Proposition 2.7, we get at once, the following
proposition.

Proposition 2.10. All, up to an isomorphism, almost null p-rings gener-
ated by a single element are rings of the form:

(i) pmZpm+n, m,n ∈ N and n = m or n = m+ 1.

(ii) xZp[x]/(x3).
(iii) xZpm [x]/(px2, x3), m ∈ N, m ≥ 2.

3. The Dorroh extension of filial β-radical rings

By Z(R) we denote the center of the ring R.

Theorem 3.1. Let R be a β-radical ring. The following conditions are
equivalent:

(i) The ring Z�R is filial.
(ii) R is an almost null ring such that pR = p2R for every p ∈ P.

Proof. Set S = Z�R. Then β(S) = R and k · 1 ∈ Z(S) for every k ∈ Z.
(i)⇒(ii). The ring R is filial as an ideal of the filial ring S. By Proposi-

tion 1.5, R is a nil-H-ring. Take any p ∈ P. By filiality of S and p ·1 ∈ Z(S)
we get

p · S = p2 · S + p · 〈1〉.
Therefore for every a ∈ R there exist x ∈ R. l1, l2 ∈ Z such that

pa = p2(l1 · 1 + x) + pl2 · 1.
Hence (p2l1 + pl2) · 1 = pa− p2x ∈ R∩ 〈1〉 = {0} and pa = p2x ∈ p2R. Thus
pR = p2R for every p ∈ P. Finally, by Proposition 2.4(v), R is an almost
null ring.
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(ii)⇒(i). By the assumptions, it follows that kR = k2R for every k ∈ Z.
The ring R is an almost null ring, so R3 = 0 and aR = Ra = 〈a2〉 for
every a ∈ R. By Lemma 1.3, it is enough to prove that (α)S ⊆ (α)2S + 〈α〉
for every α ∈ S. But α = k + a for some a ∈ R and k ∈ Z. Because
k · 1 ∈ Z(S), so k3 · 1 = k3 · 1 + a3 = α(k2 · 1 − ka + a2) ∈ (α)S . Hence,
k3R ⊆ (α)S . Moreover kR = k2R, so kR ⊆ (α)S . But aR = Ra = 〈a2〉 and
(α)S = RαR + Rα + αR + 〈α〉 = R(k + a)R + R(k + a) + (k + a)R + 〈α〉,
so RaR ⊆ R3 = 0 implies

(3.1) (α)S = kR+ 〈a2〉+ 〈α〉.
Next, a2 = α2 − ka− kα, so a2 ∈ (α)2S + kR+ 〈α〉. Moreover,

α2 = k2 · 1 + (a2 + 2ka),

so by (3.1) and kR = k2R, we see that

(α2)S = k2R+ 〈(a2 + 2ka)2〉+ 〈α2〉 = kR+ 〈α2〉.
Thus kR ⊆ (α)2S . Moreover, a2 = α2 − ka− kα, so a2 ∈ (α)2S + 〈α〉, and by
(3.1), we have (α)S ⊆ (α)2S + 〈α〉. �

Example 3.2. Let n ∈ N, p ∈ P and let N be an almost null ring such that
pN = 0. Then N is a Zpn-algebra with the multiplication

k ◦ a = ka for k ∈ Zpn , a ∈ N.
Moreover, the function f : Z � N → S = Zpn � N given by the formula
f(k+ a) = [k]pn + a, where [k]pn is the remainder of the division of k by pn,
is a surjective ring homomorphism. Hence, and by Theorem 3.1, the ring
Zpn �N is filial.

Proposition 3.3. Every almost null ring R is an ideal in a filial ring with
an identity.

Proof. Let A = a(R) and denote by B+ a divisible group in which A+ is
an essential subgroup. Denote by B the ring with zero multiplication on the
additive group B+. By Lemma 2.2, the ring R ⊕ B is an almost null and
I = {(x, x) : x ∈ A}CR⊕B. Moreover, I ⊆ a(R⊕B). Let S = (R⊕B)/I.
Then (R+ I)/I ∼= R/(R ∩ I) ∼= R and (R+ I)/I C S, so one can identify R
with (R+ I)/I. Moreover, S is an almost null ring as a homomorphic image
of the almost null ring R⊕B.

Note that (0, b) + I ∈ a(S) for all b ∈ B. If (r, b) + I ∈ a(S) for some
r ∈ R, b ∈ B, then for every y ∈ R, [(r, b)+I] · [(y, 0)+I] = (0, 0)+I. Hence
(ry, 0) ∈ I, so ry = 0. This shows that rR = 0, and similarly Rr = 0. Thus
r ∈ a(R) = A and (r, b) + I = [(r, r) + (0, b− r)] + I = (0, b− r) + I. Hence
a(S) = {(0, b) + I : b ∈ B}. Moreover, the function b 7→ (0, b) + I is a ring
isomorphism from B onto a(S). Hence the group a(S)+ is divisible.

Take any s ∈ S and any p ∈ P. Then there exists a squarefree integer M
such that Ms2 = 0. Hence (Ms)2 = 0, and directly by the definition of an
almost null ring, Ms ∈ a(S). Since (p2,M) | p, so there exist k, l ∈ Z such
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that p = kM + lp2. Thus ps = k(Ms) + p2(ls), and by divisibility of a(S)+,
ps ∈ p2S. Hence, pS = p2S. By Theorem 3.1, Z� S is a filial ring in which
R is an ideal. �

Remark 3.4. By Lemma 1.11, the ring Z0
p2 ⊕ Z0

p2 , where Z0
p2 is the ring

with zero multiplication on the additive group Z+
p2

, is not an ideal in any

filial p-ring with an identity, but by Proposition 3.3, the ring Z0
p2 ⊕ Z0

p2 is

an ideal in some filial ring with an identity.

4. Main Results

Lemma 4.1. If a nil-H-p-ring I is an ideal in a filial p-ring R with an
identity and I(p)2 6= 0, then y2 ∈ I(p)2 + 〈y〉 for every y ∈ I.

Proof. Notice that B = β(R) is a filial ring as an ideal of a filial ring R.
By Proposition 1.5, β(R) is an H-ring. From Corollary 4.6.9 of [KP69], I
is nilpotent. Hence I ⊆ B. Since I(p)2 6= 0, so B(p)2 6= 0. By Proposi-
tion 2.4(iv), B(p) is an almost null p-ring, so by Proposition 2.5, |B(p)2| = p.
Since 0 6= I(p)2 ⊆ B(p)2, so I(p)2 = B(p)2. Let y ∈ I. By Lemma 1.11,
y2 ∈ B(p)2 + 〈y〉, so y2 ∈ I(p)2 + 〈y〉. �

Proposition 4.2. Let R be a filial p-ring satisfying any of the following
conditions:

(i) The group R+ is cyclic.
(ii) pR = 0.

Then R is an ideal in some filial p-ring with an identity.

Proof. (i). Let R+ = 〈a〉 for some a ∈ R. Then o(a) = ps and a2 = pra for
some s ∈ N, r ∈ N ∪ {0}. Then 〈a〉 ∼= prZpr+s , but prZpr+s C Zpr+s , so R is
an ideal in a filial p-ring with an identity.

(ii). Since R is a Zp-algebra, so by Remark 1.2, Zp � R is a p-ring with
an identity in which R is an ideal and such that (Zp � R)/R ∼= Zp. From
Lemma 1.4, it follows that Zp �R is a filial ring. �

By Proposition 4.2, we get the following corollary.

Corollary 4.3. If R is a filial p-ring such that |R| ≤ p2, then R is an ideal
in some finite filial p-ring with an identity.

Proposition 4.4. Let R be a nil-H-p-ring generated by a single element
and let N be a ring such that N2 = pN = 0. Then the ring R ⊕ N is an
ideal in some filial p-ring with an identity.

Proof. By Theorem 2.9, R is isomorphic to one of the following rings:

(i) pmZpm+n for some m,n ∈ N, m ≤ n,

(ii) xZp[x]/(x3), p ∈ P,
(iii) xZpm [x]/(px2, x3), m ≥ 2, p ∈ P,
(iv) xZpm+n [x]/(px2 − pmx, x3 − p2m−2x) for some m,n ∈ N, m ≥ 2.
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In case (i), R ⊕ N is an ideal in the ring with an identity Zpm+n � N ,
which is filial by Example 3.2.

In case (ii), p(R⊕N) = 0, so it is enough to use Proposition 4.2(ii).
In case (iii), let S = Zp2m−1 � (yZp[y]/(y3) ⊕ N). The ring S has an

identity and S is filial by Example 3.2 and Lemma 2.2. One can check that
the function ϕ : xZpm [x]/I ⊕N → S given by the formula

ϕ(αX + βX2 + b) = αpm−1 + βp2m−2 + αY + βY 2 + b,

where X = x + (px2, x3), Y = y + (y3) for α, β ∈ Zpm and b ∈ N is an
embedding of ring. Moreover Imϕ ⊆ β(S), so ImϕC S.

In case (iv), let T = Zp2m+n−1 � (yZp[y]/(y3) ⊕ N). T is a filial ring by
Example 3.2. It is easy to check that the function

ψ : xZpm+n [x]/(px2 − pmx, x3 − p2m−2x)⊕N → T

given by the formula

ψ(kX + b) = kpm−1 + kY + b

for X = x + (px2 − pmx, x3 − p2m−2x), Y = y + (y3), k ∈ Z, b ∈ N , is an
embedding of rings. Moreover, Imϕ ⊆ β(S), so ImϕC S. �

Proposition 4.5. Every filial p-ring R generated by one element is an ideal
in some finite filial commutative p-ring with an identity.

Proof. Without loss of generality we can assume that R has no identity.
Let R = [a] for some a ∈ R. Since R is commutative, so by assumptions
and Proposition 1.10, it follows that R ∼= S ⊕ N , where N is a nonzero
commutative nil-H-p-ring generated by one element and S is a finite direct
sum of finite fields of characteristic p. From Proposition 4.4 and its proof
there exists a finite commutative p-ring T with an identity such that N CT .
By Theorem 1.4, the ring S ⊕ T is filial. Moreover S ⊕ T is a commutative
ring with an identity and RC S ⊕ T . �

Theorem 4.6. Every filial (commutative) p-ring R such that |R| = p3 is
an ideal in some finite filial (commutative) p-ring with an identity.

Proof. Without loss of generality we can assume that R has no identity.
If the group R+ is cyclic or pR = 0, then the thesis follows from Propo-

sition 4.2. So, from now let R+ ∼= Z+
p2
× Z+

p . Assume that R = A ⊕ B for

some nonzero ideals A,B of R. Without loss of generality we can assume
that A+ ∼= Zp and B+ ∼= Z+

p2
. Since the rings A and B are commutative, so

we have the following cases:

(1) R ∼= Zp × Zp2 .
(2) R ∼= Zp × pZp3 .

(3) R ∼= Zp × p2Zp4 .
(4) R ∼= pZp2 × Zp2 .

(5) R ∼= p2Zp3 × pZp3 .

(6) R ∼= p3Zp4 × p2Zp4 .
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The ring described in (1) has an identity. The rings described in (2) and
(3) are ideals in the filial rings Zp × Zp3 and Zp × Zp4 , respectively (see
Lemma 1.4). The ring described in (4) is not filial by Lemma 1.9. Finally,
for rings described in (5) and (6) the thesis follows from Proposition 4.4.

From now on, we assume that the ring R cannot be written as a direct
sum of two nonzero ideals. Obviously, there exist x1, x2 ∈ R such that
R+ = 〈x1〉 ⊕ 〈x2〉, where o(x1) = p2, o(x2) = p.

If R is a commutative ring which is not nil, then, by Proposition 1.10,
R ∼= S ⊕N , where S ∈ S and N is a nil ring. But R is indecomposable, so
N = 0 and S is a field.

If R is a noncommutative ring which is not nil, then, by Theorem 3 of

[AntE82], it follows that R ∼=
(

Zp2 pZp2

0 0

)
or R ∼=

(
Zp2 0
pZp2 0

)
. In the

first case 〈(
p p
0 0

)〉
C

(
pZp2 pZp2

0 0

)
C

(
Zp2 pZp2

0 0

)
,

but

〈(
p p
0 0

)〉
is not an ideal in

(
Zp2 pZp2

0 0

)
, so R is not filial. Simi-

larly one can show that the ring

(
Zp2 0
pZp2 0

)
is not filial.

It remains to consider the case when R is an indecomposable nil ring.
If x21 /∈ 〈x1〉, then |〈x1〉+ 〈x21〉| > p2. Hence R = 〈x1〉+ 〈x21〉, so R = [x1]

and the thesis follows directly from Proposition 4.5.
Assume that x21 ∈ 〈x1〉. Then there exists t ∈ Z such that x21 = tx1. If

p - t, then x1 ∈ Rx1 and since R is nil, so x1 = 0. This is a contradiction.
Therefore, p | t and x21 ∈ 〈px1〉. Thus [x1] = 〈x1〉 and since R is an H-
ring, so 〈x1〉 C R. Next, pR2 = 0 since px21 ∈ p〈px1〉 = {0}, and p(x22) =
p(x1x2) = p(x2x1) = 0 since px2 = 0, and R(p) = 〈px1〉 + 〈x2〉. Hence
x1x2, x2x1 ∈ 〈px1〉. Obviously x22 ∈ R(p), so there exist k, l ∈ Z such that
x22 = k(px1) + lx2. Then x32 = pkx1x2 + lx22 = l(pkx1 + lx2) and for any
m ∈ N, xm2 = pLmx1 + lm−1x2 for some Lm ∈ Z. Since R is a nil ring, so
xm2 = 0 for some m ∈ Z and lm−1x2 = 0. Thus p | l and x22 = pkx1.

From the above considerations we see that x21 = pax1, x1x2 = pbx1,
x2x1 = pcx1, x

2
2 = pdx1 for some a, b, c, d ∈ Zp.

If d = 0, then x22 = 0 and [x2] = 〈x2〉 C R. In this case R = 〈x1〉 ⊕ 〈x2〉,
which is a contradiction. Therefore, d 6= 0.

Now, assume that R is commutative. Theorem 2 of [AntE82] implies that
there are only the following cases:

(1) x22 = px1, x
2
1 = x1x2 = x2x1 = 0,

(2) x22 = apx1 for some 0 6= a ∈ Zp, x
2
1 = px1, x1x2 = x2x1 = 0.

In case (1), let T = (Zp4�yZp[y]/(y3))/(p3·1−y2) where y = y+(y3). The

ring Zp4 � yZp[y]/(y3) is filial by Example 3.2, so T is also a filial ring as a
homomorphic image of a filial ring. Moreover, the function ϕ : R→ T given
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by the formula ϕ(kx1+sx2) = kp2 ·1+sY , where k, s ∈ Z, Y = y+(p3 ·1−y2)
is an embedding of rings such that Imϕ ⊆ β(T ), so ImϕC β(T ).

In case (2), let S = xZp[x]/(x3). Then S is an almost null ring by Propo-
sition 2.5. The ring Zp3 �S is filial by Example 3.2. Next, T = (Zp3 �S)/I,

where I = (ap2 · 1 −X2), X = x + (x3) is also a filial ring as a homomor-
phic image of a filial ring. The function ϕ : R → T given by the formula
ϕ(kx1 + sx2) = kp · 1 + sX is an embedding of rings such that Imϕ ⊆ β(T ),
so ImϕC β(T ).

Now, assume that the ring R is not commutative. From Theorem 4 of
[AntE82] we have only the following cases to consider:

(3) x22 = x2x1 = px1, x
2
1 = x1x2 = 0,

(4) x22 = apx1 for some 0 6= a ∈ Zp, x
2
1 = x1x2 = px1, x2x1 = 0.

In case (3), by Remark 2.6, there exists an almost null ring S = [x, y]
and A ∈ Zp such that o(x) = o(y) = o(x2) = p, y2 = Ax2, xy = 0,
yx = x2 and the congruence X2 + X + A ≡ 0 (mod p) has no solutions.
Let T = (Zp3 � S)/I, where I = (p2 · 1 − x2). The ring Zp3 � S is filial by
Example 3.2, so T is also a filial ring as a homomorphic image of a filial ring.
The function ϕ : R → T given by ϕ(kx1 + sx2) = (kp · 1 + kx + sBy) + I,
where k, s ∈ Z, B ∈ Zp and B · A = 1, is an embedding of rings such that
Imϕ ⊆ β(T ), so ImϕC β(T ).

In case (4), assume first that the congruence X2 + X + a ≡ 0 (mod p)
has no solutions. Then by Remark 2.6, there exists an almost null ring
S = [x, y] such that o(x) = o(y) = o(x2) = p, y2 = ax2, yx = 0 and
xy = x2. Let T = (Zp4 � S)/I, where I = (p3 · 1 − x2). The ring Zp4 � S
is filial by Example 3.2, so T is also a filial ring as a homomorphic image
of a filial ring. Moreover, the function ϕ : R → T given by the formula
ϕ(kx1 + sx2) = (kp2 · 1 + kx + sy) + I, where k, s ∈ Z, is an embedding of
rings such that Imϕ ⊆ β(T ), so Imϕ C β(T ) and Imϕ C T . Assume that
there exists b ∈ Zp such that b2 + b+ a = 0 in the field Zp. Since a 6= 0, so
p > 2. Hence, 1

2 ∈ Zp and for s ∈ Zp we have that s2 + s = (s − 1
2)2 − 1

4 .

Therefore {s2 + s : s ∈ Zp} has exactly 1 + p−1
2 < p elements. Thus, there

exists t ∈ Zp such that s2 + s+at 6= 0 for every s ∈ Zp. Moreover, t 6= 0 and
t 6= 1, so b2+b+a = 0. By Remark 2.6, it follows that there exists an almost
null ring S = [x, y] such that o(x) = o(x2) = o(y) = p, y2 = atx2, xy = x2,
yx = 0. The ring Zp3�S is filial by Example 3.2. Let T = (Zp3�S)/I, where

I = (t(1− t)p2 ·1−x2). Then T is a filial ring and the function ϕ : S → β(T )
given by the formula ϕ(sx1 + kx2) = (s(1 − t)p · 1 + sx + kt−1y) + I for
k, s ∈ Z is an embedding of rings. �

Lemma 4.7. If a nil-H-p-ring I, which is not an almost null ring is an
ideal in a filial ring with an identity, then I is an ideal in a filial p-ring with
an identity.

Proof. Let R be a filial ring with an identity such that I C R. Without
losing generality, we can assume that I is an essential ideal of R. Then
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β(R) is a filial ring as an ideal of R. By Corollary 8 of [FP05], β(R) is an
H-ring. From Corollary 4.6.9 of [KP69], we get that I is nilpotent. If the
group β(R)+ has an element of infinite order, then by Proposition 2.4(iii),
β(R) is an almost null ring. Hence I is an almost null ring as a subring of
β(R), a contradiction. Thus the group β(R)+ is torsion. Moreover I is an
essential ideal in R, so β(R)+ is a p-group. Again, by Proposition 2.4(ii),
the group β(R)+ is of finite exponent. Hence there exists n ∈ N such that
pnβ(R)+ = 0. Moreover, I ⊆ β(R), so β(R) is an essential ideal of R.

If p · 1 /∈ β(R), then p · 1 ∈ Z(R) implies that pm · 1 /∈ β(R) for every
m ∈ N. In particular pmR 6= 0 for all m ∈ N. By essentiality of β(R) in R
we have pn+1R∩β(R) 6= 0. Hence pn+1r ∈ β(R)\{0} for some r ∈ R. Thus
(p(r)R)n+1 ⊆ β(R), so ((p(r)R + β(R))/β(R))n+1 = 0 and p(r)R ⊆ β(R).
Consequently 0 = pn(p(r)R) = pn+1(r)R, so pn+1r = 0, a contradiction.
Hence p · 1 ∈ β(R) and there exists s ∈ N such that (p · 1)s = 0. Then
psR = 0 and R is a p-ring. �

Now we prove Theorem 1.1 stated in Introduction.

Proof. The first part of the theorem is a direct consequence of Proposi-
tion 2.3, Corollary 4.3 and Theorem 4.6.

Let p ∈ P and let I be the ring described in Example 2.8. Then p2I = 0,
|I| = p4 and I is a commutative nil-H-ring, which is not an almost null.
Next, I(p)+ = 〈px1〉⊕〈x2〉⊕〈x3〉, so I(p)2 = 〈px1〉. Hence I(p)2+〈x1〉 = 〈x1〉
and x21 6∈ I(p)2 + 〈x1〉. Thus, by Lemma 4.1 the ring I is not an ideal in any
filial p-ring with an identity. By Lemma 4.7, I is not an ideal in any filial
ring with an identity. �

From Theorem 1.1 it follows, that the 16-element ring is the smallest filial
ring, which is not an ideal in any filial ring with an identity.

Acknowledgements. The authors are grateful to the referee and the editor
for useful comments and advices.

References

[And66] Andrijanov, V. I. Mixed Hamiltonian nilrings. Ural. Gos. Univ. Mat. Zap. 5
(1966), 15–30. MR0201475 (34 # 1359).

[And67] Andrijanov, V. I. Periodic Hamiltonian rings. Mat. Sb. (N.S.) 74
(116) (1967), 241–261. MR0217121 (36 # 212), Zbl 0192.37703,
doi: 10.1070/SM1967v003n02ABEH002372.

[A03] Andruszkiewicz, R. R. The classification of integral domains in which the
relation of being an ideal is transitive. Comm. Algebra. 31 (2003), no. 5, 2067–
2093. MR1976268 (2004c:13035), Zbl 1075.13009, doi: 10.1081/AGB-120018987.

[APr09] Andruszkiewicz, R. R.; Pryszczepko, K. A classification of commutative
reduced filial rings. Comm. Algebra. 37 (2009), no. 11, 3820–3826. MR2573220
(2011b:16009), Zbl 1180.13004, doi: 10.1080/00927870802545703.

[APr10] Andruszkiewicz, R. R.; Pryszczepko, K. On commutative reduced fil-
ial rings. Bull. Aust. Math. Soc. 81 (2010), no. 2, 310–316. MR2609112
(2011e:16001), Zbl 1209.13009, doi: 10.1017/S0004972709000847.

http://www.ams.org/mathscinet-getitem?mr=0201475
http://www.ams.org/mathscinet-getitem?mr=0217121
http://zbmath.org/?q=an:0192.37703
http://dx.doi.org/10.1070/SM1967v003n02ABEH002372
http://www.ams.org/mathscinet-getitem?mr=1976268
http://zbmath.org/?q=an:1075.13009
http://dx.doi.org/10.1081/AGB-120018987
http://www.ams.org/mathscinet-getitem?mr=2573220
http://zbmath.org/?q=an:1180.13004
http://dx.doi.org/10.1080/00927870802545703
http://www.ams.org/mathscinet-getitem?mr=2609112
http://zbmath.org/?q=an:1209.13009
http://dx.doi.org/10.1017/S0004972709000847


ADJOINING AN IDENTITY TO A FINITE FILIAL RING 709

[APr12] Andruszkiewicz, R. R.; Pryszczepko, K. The classification of commutative
Noetherian, filial rings with identity. Comm. Algebra. 40 (2012), no. 5, 1690–
1703. MR2924477, Zbl 1253.13003, doi: 10.1080/00927872.2011.554933.

[APu88] Andruszkiewicz, R.; Puczy lowski, E. R. On filial rings. Portugal. Math. 45
(1988), no. 2, 139–149. MR0952532 (89j:16032), Zbl 0653.16024.

[APu90] Andruszkiewicz, R. R.; Puczy lowski, E. R. Kurosh’s chains of associative
rings. Glasgow Math. J. 32 (1990), no. 1, 67–69. MR1045086 (91c:16017), Zbl
0695.16004, doi: 10.1017/S001708950000906X.

[APu97] Andruszkiewicz, R. R.; Puczy lowski, E. R. Accessible subrings and
Kurosh’s chains of associative rings. Algebra Colloq. 4 (1997), no. 1, 79–88.
MR1440025 (98d:16034), Zbl 0876.16015, doi: 10.1017/S1446788713000268.

[AS13] Andruszkiewicz, Ryszard R.; Sobolewska, Magdalena. Accessible sub-
rings and Kurosh’s chains of associative rings. J. Aust. Math. Soc. 95 (2013),
no. 2, 145–157. MR3142352, Zbl 06250152, doi: 10.1017/S1446788713000268.

[AntE82] Antipkin, V. G.; Elizarov, V. P. Rings of order p3. Sibirsk. Mat.
Zh. 23 (1982), no. 4, 9–18, 219. MR0668331 (84d:16025), Zbl 0497.16009,
doi: 10.1007/BF00968650.
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