New York Journal of Mathematics
New York J. Math. 22 (2016) 933-942.

Differentiating along rectangles, in
lacunary directions

Laurent Moonens

ABSTRACT. We show that, given some lacunary sequence of angles 6 =
(65) en not converging too fast to zero, it is possible to build a rare dif-
ferentiation basis A of rectangles parallel to the axes that differentiates
L' (R?) while the basis %g obtained from % by allowing its elements to
rotate around their lower left vertex by the angles 6;, j € N, fails to
differentiate all Orlicz spaces lying between L'(R?) and L log L(R?).
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1. Introduction

Assume that 8 = (6;);en C (0,27) is a lacunary sequence going to zero
and denote by %y the set of all rectangles in R?, one of whose sides makes
an angle 6; with the horizontal axis, for some j € N. It follows from results
by CORDOBA and FEFFERMAN [2] (for p > 2) and NAGEL, STEIN and
WAINGER [7] (for all p > 1) that for every f € LP(R?), one has:

. 1
(1) f@)= Jm /R /,

diam R—0

for almost every z € R? (we say, in this case, that By differentiates LP(R™)).
This is often equivalent, according to Sawyer-Stein principles (see e.g. GAR-
S1A [3, Chapter 1)), to the fact that the associated maximal operator Mg,
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defined for measurable functions f by:

1
M f(x) = sup — / £l
rez Rl Jr
R>x

satisfies a weak (p, p) inequality, i.e., verifies:

C
[0af > e} < o [ 1117

for all @ > 0 and all f € LP(R?). By interpolation, of course, such a property
for all p > 1 implies that My sends boundedly LP(R™) into LP(R™) for all
p> 1.

Since then, the LP (p > 1) behaviour of the operators Mg, has been
studied when the lacunary sequence 0 is replaced by some Cantor sets (see
e.g. Karz [5] and HARE [4]); recently, BATEMAN [1] obtained necessary
and sufficient (geometrical) conditions on @ providing the LP boundedness
of M B +

In this paper we explore the behaviour of some maximal operators asso-
ciated to rare differentiation bases of rectangles oriented in a lacunary set
of directions @ = {6; : j € N}, provided that the sequence () does not
converge too fast to zero. More precisely, we prove the following theorem.

Theorem 1. Given a lacunary sequence 8 = (0;)jen C (0,27) satisfying:
0; — 0,
0< @ﬂg _hmﬂi+1<17
jmoo U oo 0
there exists a differentiation basis B of rectangles parallel to the azxes satis-
fying the two following properties:

(i) Mg has weak type (1,1) (in particular A differentiates L'(R?)).

(ii) If we denote by By the differentiation basis obtained from 2 by al-
lowing its elements to rotate around their lower left corner by any
angle 8;, j € N, then for any Orlicz function ® (see below for a def-
inition) satisfying ® = o(tlog, t) at co, the mazximal operatorM g,
fails to have weak type (®,®) (in particular By fails to differentiate
L®(R")).

Remark 2. The differentiation basis 4 we shall construct in the proof of
Theorem 1 is rare: it will be obtained as the smallest translation-invariant
basis containing a countable family of rectangles with lower left corner at
the origin (see Section 3 for a more precise statement).

Our paper is organized as follows: we first discuss some easy geometrical
facts concerning rectangles and rotations along lacunary sequences, following
with a proof of Theorem 1.
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2. Some basic geometrical facts

In the sequel we always call standard rectangle in R? a set of the form
Q = [0, L] x [0, ¢] where L > 0 and ¢ > 0 are real numbers; we then let Q4 :=
[L/2,L] x [0,£]. For 6 € [0,27) we also denote by ry the (counterclockwise)
rotation of angle # around the origin.

Lemma 3. Fiz real numbers 0 < ¥ < 0 < 5 and 0 < 20 < L and let

Q = [0,L] x [0,4]. If moreover one has tan( — ) > 1/4/% (%)2 — 1, then
ryQ+ and roQy are disjoint.

rold

(g, o)
& Q4

FIGURE 1. The rectangles Q, Q4,79Q and r9Q+

Proof. To prove this lemma, we can assume, without loss of generality,
that one has ¥ = 0 (for otherwise, apply r_y to ry@Q+ and rgQ4). Let
m = tanf. Observe then that the lines y = ¢ and y = mx intersect at

xo=4L/m </ % (%)2 -1 % and yo = ¢. Since we also have:

1/L\* L
< — —_ = —
’(xO)yO)‘ \g 4 <£> 27

this shows indeed that Q4 and ryQ4 are disjoint (see Figure 1). O

Lemma 4. Assume that the sequence (0;)gen C (0,7/2) is such that one
has:

0; — 0,
(2) 0< A< lim 22 < Tim 2 < < 1.
jooo B im0 b
Let 0 := {6, : j € N}.
There exists constants d(p) > c(pu) > 0 depending only on p such that,
for each € > 0 and each integer k € N*, one can find a standard rectangle
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Qr = [0, L] x [0,£] and a subset Oy, C O satisfying #0) = k such that the
following hold:

(i) e(uA™F < §& < d(uw)r*.

(1) |Upes, moQx| > 51l

Proof. To prove this lemma, observe first that letting m; := tan6; for all
j € N, one clearly has:

lim 4 — 1,

j—00 (9j
so that (2) also holds for the sequence (m;);en. There hence exists an index
Jo € N such that, for all j > jg, one has A < mrib—;rl < p (we may also and will
assume that one has m;j, < 1). For the sake of clarity, we shall now consider
that jo = 0 and compute, for an integer 0 < j < k:

—_

mj; — Mg

tan(ﬁj — Qk) > f(mj — mk)

T T+mymy 2

Since we also have, for every integer 0 < j < k:
Ak_jmj < mg < ,uk_jmja

we obtain under the same assumptions on j:

1 1, .

i(mj —my) = i(uﬁk — )ymy > 5)\]“(/1*1 — 1)my.

Now choose real numbers 0 < 2/ < L < ¢ (we write L and ¢ instead of
Ly and {j here, for the index k remains constant all through the proof)
satisfying:

tan(Hj — Qk) =

(ﬁ) (R

It is clear that one has:

L
2= ATFVANE [t = L)y 2,

so that (ii) holds if we take, for example, c(pu) := /[(1~1 — 1)mo]~2 and
d(p) :== /4 + [(u=1 — 1)mg]~2. On the other hand, (i) is clearly satisfied by
assumption.

In order to show (iii), define @ := [0, L] x [0, ¢] and observe that one has

tan(Hj — Hk) > 41 s

1 (L)?2

i(7) -1
for all integers j satisfying j < k. According to Lemma 3, this ensures that
the family {rngJr : j € Nyj < k} consists of pairwise disjoints sets; in
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particular we get:

k-1 k-1 Ql
UW)JQ > |_|7‘9JQ+ =k 5
=0

=0
(we used U to indicate a disjoint union) and the lemma is proved. O

We now turn to studying maximal operators associated to families of
standard rectangles.

3. Maximal operators associated to lacunary sequences of
directions

From now on, given a family & of standard rectangles and a set 8 C
[0,27), we let rgZ = {reQ : Q € #Z,0 € 0}, and we define, for f: R?> — R

measurable:

Mg f(x) := sup {@ »

/ |fl: Q € Z, 7 translation, z € T(Q)} ,

and:

1
M,,2f(x) :=sup {w /(R) |f|: R € reZ,  translation, x € T(R)} .

Notice, in particular, that in case one has inf{diam R : R € Z} = 0, My
and M,z are the maximal operators associated to the translation-invariant
differentiation bases % and %y defined respectively by:

B :={7(Q) : Q € #Z,T translation}
and
Bo = {1(reQ) : Q € #,0 € 0,7 translation}.
The next proposition will be useful in order to study the maximal operator

M, 2. Observe that it has the flavour of STOKOLOS’ [8, Lemma 1].

Proposition 5. Assume that (6;);en C (0,27) satisfies:
0. 9.
0<\< lim 2 < llim]——i_l<u<l,
jooo b5 oo b

and let @ := {0; : j € N}. There exists a (countable) family % of standard
rectangles in R? which is totally ordered by inclusion, verifies inf{diam R :
R € #} = 0 and satisfies the following property: for any k € N*, there exists
sets O, C R? and Y, C R? satisfying the following conditions:

(i) [Yi| = w(p) - KATF[O].

(i) For any x € Yy, one has M,,zxeo, f(x) > K () AP
Here, k(p) > 0 and £’ () > 0 are two constants depending only on fu.
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rallic

L/

FIGURE 2. The intersection Oy N ryQy

Proof. Define Z = {Qy : k € N*} where the sequence (Q)ren+ is de-
fined inductively as follows. We choose @1 = [0, L1] x [0,41] and 6; C 6
associated to k = 1 and ¢ = 1 according to Lemma 4. Assuming that
Q1,...,Qr have been constructed, for some integer k € N* we choose
Qr+1 = [0, Lx41] X [0, £41] and 61 associated to k+1 and € = min(ly, 1/k)
according to Lemma 4. Since the sequence (Qp)ren+ i a nonincreasing se-
quence of rectangles, it is clear that # is totally ordered by inclusion. It is
also clear by construction that one has inf{diam R : R € Z} = 0.

Now fix k € N* and define © := B(0,¢;) and Y} := Ueeek rgQp. Com-
pute hence, using [Lemma 4, (ii) and (iii)]:
L Tl > e(n) CkExTR|Oy,

1 1
Vi > —kLply = —k
Vi > SR Lity o o

so that (i) is proved in case one lets k(u) = Cé‘;).

For =z € Y}, choose 0 € 8}, for which one has x € r9Q);. and observe that
one has (see Figure 2):

|@kﬂT9Qk| %sz T A ™ k
M,z x0,(T) > = =2 A",
r0#X04(7) | Qx| Lily 4 Lp =~ 4d(p)
which finishes the proof of (ii) if we let &'(u) := 4d7(ru)' O

For our purposes, an Orlicz function is a convex and increasing function
® : [0,00) — [0,00) satisfying ®(0) = 0; we then let L®(R?) denote the
set of all measurable functions f in R? for which ®(|f|) is integrable (for
®(t) = tP, p > 1 this yields the usual Lebesgue space LP(R?), while for

P(t) = Do(t) :=t(1+ log, t)
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we get the Orlicz space Llog, L(R?) := L*0(R?)). Recall that a sublinear
operator T is said to be of weak type (®,P) in case there exists a constant
C > 0 such that, for all f € L*(R?) and all a > 0, one has:

|{xE]R2:Tf(a:)>a}\</RQCI><’f|>.

(0%

Whenever ®(t) = tP for p > 1, we shall say that T has weak type (p,p).

The next result specifies the announced Theorem 1. It is mainly a con-
sequence of the preceding proposition and some standard techniques as de-
veloped in MOONENS and ROSENBLATT [6].

Theorem 6. Assume that (0;)jen C (0,27) satisfies:

0; — 0;
0< lim 2% < fim 22 <1,
j—00 9j j—00 9j
and let @ := {0; : j € N}. There exists a (countable) family Z of standard
rectangles in R? with inf{diam R : R € #} = 0, satisfying the following
conditions:

(i) My has weak type (1,1), and hence the associated differentiation
basis B differentiates L'(R?).

(ii) For any Orlicz function ® satisfying ® = o(Pg) at oo, M,z fails
to be of weak type (®,®). In particular, M,,z fails to have weak
type (1,1), and hence the associated differentiation basis By fails to
differentiate L'(R?).

Proof. Begin by choosing real numbers 0 < A < p < 1 such that one has:

0< A< liimﬁg E@<u<1,
jooo U5 T imoo 0
and keep the notations of Proposition 5.

Let now Z be the family of rectangles given by Proposition 5. Observe
first that, since Z is totally ordered by inclusion, it follows e.g. from [9,
Claim 1] that My satisfies a weak (1,1) inequality.

In order to show (ii), define, for k sufficiently large, fr := [1/x/(n)] -
)\_kX@k, where O and Y} are associated to k and Z# according to Proposi-
tion 5.

Claim 1. For each sufficiently large k, we have:

(o € B2 : My fi(z) > 1}] > cm,u)/R

) (I)O(fk)a

1
where ¢1 (A, 1) = % is a constant depending only on A and pu.
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Proof of the claim. To prove this claim, one observes that for = € Y}, we
have Mg fi(x) > 1 according to [Proposition 5, (ii)]. Yet, on the other hand,
one computes, for k sufficiently large:

1 1
) < ATk 1-1 ! klog <
L #0050 < A8 1= log, w0 + Floz 5

2log %
K (1)
and the claim follows. O

< k)‘_k‘@k‘ <01(A7M)"Yk’a

Claim 2. For any ® satisfying ® = o(®() at oo and for each C' > 0, we

have: Do
lim 7JR2 o(l |
k—o0 fR2 C|fk|)

Proof of the claim. Compute for any k:
Je2 ®(CLk) _ ®(A*C/K' (1)
Joz @o(1fel) — Po(AF/K (1))
DA FCO/K (1) Po(A*C/K' (1))
Do(AFC/K (1)) Po(AF /K (1)) 7

w is bounded as £ — oo by a constant

independent of k, while by assumption the quotient %

observe that the quotient

tends to
zero as k — 0o. The claim is proved.
We now finish the proof of Theorem 6. To this purpose, fix & an Orlicz

function satisfying ® = o(®Pg) at oo and assume that there exists a constant
C > 0 such that, for any a > 0, one has:

\{m€R2:M@f(ar)>a}|</Rz<1>(clﬂ>.

Using Claim 1, we would then get, for each k sufficiently large:

1
0<atvm [ @i <|{oer e > 1] < [ aeon).
R n
contradicting the previous claim and proving the theorem. O

Remark 7. If we are solely interested in the weak (1,1) behaviour of the
maximal operators My and M,,%, observe that Theorem 6 in particular
applies to ®(t) = ¢, ensuring that the maximal operator M, 4 also fails to
have weak type (1,1).

Moreover, as pointed out by the referee, the construction, given a sequence
of distinct angles @ = (6;); C (0,7/2), of a countable family % of rectangles
for which Mg is of weak type (1,1) while M, % is not, can be done almost
immediately from Lemma 3 — and does not require a growth condition on
the sequence 6.
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To see this, observe that for each k, it is easy, according to Lemma 3 and
making Ly /¢, > 1 large enough, to construct a rectangle Qp = [0, L] x
[0, £] such that the rectangles 179,Qk,+, 0 < j < k are pairwise disjoint. We
can also inductively construct (Qp) such that one has Qri1 C Qy for all
k € N. Hence #Z := {Qf : k € N} is totally ordered by inclusion, ensuring
that Mg has weak type (1,1).

On the other hand, define for £ € N a function fj := |Qk|%. For

all x € Yy := U?:o 79, Qk, choose an integer 0 < j < k for which one has
T € r9;Qr and compute (see Figure 2 again):

Q| 1B(0,€,) Nro, Qx| 1

= =_,
|B(0, 4y)| |Qk| 4

It hence follows that one has:

(E+ DIkl = (k + DIQk| = 2(k + 1)| Q% +|

1
{x €R2: M,y filz) > 4}

Mrg%fk(x)

<2V <2

)

so that M, 4 cannot have weak type (1,1).

Remark 8. In [Theorem 6, (ii)], it is not clear to us whether or not the
space Llog L(R?) is sharp; we don’t know, for example, whether or not %
differentiates Llog' ™ L(R?) for € > 0.
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