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Constructing Poincaré series for number
theoretic applications

Amy T. DeCelles

Abstract. We give a general method for constructing Poincaré series
on higher rank groups satisfying automorphic differential equations, by
winding up solutions to differential equations of the form (∆−λ)νu = θ
on the underlying Riemannian symmetric space G/K, where ∆ is the
Laplacian, λ is a complex parameter, ν is an integral power, and θ
a compactly supported distribution. To obtain formulas that are as
explicit as possible we restrict ourselves to the case in which G is a
complex semi-simple Lie group, and we consider two simple choices for
θ, namely θ = δ, the Dirac delta distribution at the basepoint, and
θ = Sb, the distribution that integrates along a shell of radius b around
the basepoint. We develop a global zonal spherical Sobolev theory, which
enables us to use the harmonic analysis of spherical functions to obtain
integral representations for the solutions. In the case θ = δ, we obtain an
explicit expression for the solution, allowing relatively easy estimation
of its behavior in the eigenvalue parameter λ, necessary for applications
involving the associated Poincaré series. The behavior of the solution
corresponding to θ = Sb is considerably subtler, even in the simplest
possible higher rank cases; nevertheless, global automorphic Sobolev
theory ensures the existence and uniqueness of an automorphic spectral
expansion for the associated Poincaré series in a global automorphic
Sobolev space, which is sufficient for the applications we have in mind.
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1. Introduction

1.1. Context and motivation: applications in number theory. The
subconvexity results of Diaconu and Goldfeld [11, 12] and Diaconu and
Garrett [8, 9] and the Diaconu–Garrett–Goldfeld prescription for spectral
identities involving second moments of L-functions [10], rely critically on
a Poincaré series, whose data, in contrast to classical Poincaré series, is
neither smooth nor compactly supported. The data was chosen to imitate
Good’s kernel in [22], but in hindsight, can be understood as the solution
to a differential equation, (∆ − λ)u = θH , on the free space G/K, where
λ is a complex parameter and θH the distribution that integrates a func-
tion along a subgroup H. The Poincaré series is then itself a solution to the
corresponding automorphic differential equation and therefore has a heuristi-
cally immediate spectral expansion in terms of cusp forms, Eisenstein series,
and residues of Eisenstein series. This provides motivation for constructing
higher rank Poincaré series from solutions to differential equations of the
form (∆ − λ)νu = θ, where ∆ is the Laplacian on a symmetric space, θ a
distribution, λ a complex parameter, and ν a positive integral power.

A second motivation lies in constructing eigenfunctions for pseudo-
Laplacians. Colin de Verdiere’s proof of the meromorphic continuation of
Eisenstein series used the fact that a function is an eigenfunction for the
(self-adjoint) Friedrichs extension of a certain restriction ∆a of the Lapla-
cian on SL2(Z)\H if and only if it is a solution to the differential equa-
tion (∆ − λ)u = Ta, where Ta is the distribution that evaluates the con-
stant term at height a [5, 19]. While it would be desirable to construct a
self-adjoint Friedrichs extension for a suitable restriction of the Laplacian
such that eigenfunctions for this pseudo-Laplacian would be solutions to
(∆ − λ)u = δ, where δ is Dirac delta at a base point, the details of the
Friedrichs construction make this impossible, as can be shown with global
automorphic Sobolev theory [20]. Replacing δ with Sb, the distribution that
integrates along a shell of radius b, avoids this technicality.

Classical Poincaré series producing Kloosterman sums were generalized
by Bump, Friedberg, and Goldfeld for GLn(R) and by Stevens for GLn(A)
[3, 21, 29]. Other higher rank Poincaré series include those constructed by
Miatello and Wallach, the singular Poincaré series constructed by Oda and
Tsuzuki, and Thillainatesan’s Poincaré series producing multiple Dirichlet
series of cusp forms on GLn(R) [26, 27, 28, 30].

1.2. Overview of main results. Motivated by the applications discussed
above, we aim to obtain explicit formulas for solutions to differential equa-
tions of the form (∆−λ)νu = θ, where ∆ is the Laplacian on a Riemannian
symmetric space G/K, λ is a complex parameter, ν is an integral power, and
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θ a compactly supported distribution, and to derive Poincaré series repre-
sentations for solutions to corresponding automorphic differential equations
by averaging over an arithmetic subgroup Γ.

In this paper, to obtain formulas that are as explicit as possible, we restrict
ourselves to the case in which G is a complex semi-simple Lie group. We
consider two simple choices for θ, namely θ = δ, the Dirac delta distribution
at the basepoint, and θ = Sb, the distribution that integrates along a shell of
radius b around the basepoint. Global zonal spherical Sobolev theory ensures
that the harmonic analysis of spherical functions produces solutions.

With θ = δ, the Dirac delta distribution at the basepoint in G/K, we
obtain an explicit formula for the fundamental solution uz for (∆ − λz)ν ,
where λz = z(z − 1), z ∈ C. For a derivation of the fundamental solution
in the case G = SL2(C), assuming a suitable global zonal spherical Sobolev
theory, see [16, 17]. Our results for the general case are sketched in [18].
The following theorem appears in Section 3 as Theorem 3.1; please see its
context for the technical notation.

Theorem. For an integer ν > dim(G/K)/2 = n/2 + d, where d is the
number of positive roots, counted without multiplicities, and n = dim(a) is
the rank, uz can be expressed in terms of a K-Bessel function:

uz(a) =
2(−1)ν

π+(ρ)Γ(ν)
·
∏
α∈Σ+

α(log a)

2 sinh(log a)
·
(
| log a|

2z

)ν−d−n
2

·Kν−d−n
2
(z | log a|).

In the odd rank case, with ν = m+d+(n+1)/2, where m is any nonnegative
integer, uz(a) is given by

(−1)m+d+n+1
2 π

n+1
2

(m+ d+ n−1
2 )!π+(ρ)

·
∏
α∈Σ+

α(log a)

2 sinh(α(log a))
· e
−z| log a|

z
· P (| log a|, z−1)

where P is a degree m polynomial in | log a| and a degree 2m polynomial in
z−1. In particular, choosing ν minimally, i.e., ν = d+ n+1

2 ,

uz(a) =
(−1)d+n+1

2 π(n+1)/2

π+(ρ) Γ(d+ n+1
2 )

·
∏
α∈Σ+

α(log a)

2 sinh(α(log a))
· e
−z| log a|

z
.

When G is of even rank, and ν is minimal, i.e., ν = d+ n
2 + 1,

uz(a) =
(−1)d+n

2
+1 π

n
2

π+(ρ)Γ(d+ n
2 + 1)

·
∏
α∈Σ+

α(log a)

2 sinh(α(log a))
· | log a|

z
·K1(z | log a|).

Wallach derives a similar, though less explicit, formula in Section 4 of
[32], and the formula can also be obtained by multiplying the Euclidean

fundamental solution by J−1/2 =
∏ α

sinh(α) , using Hall and Mitchell’s “in-

tertwining” formula relating ∆ = ∆G/K and ∆p [23].
Note that the formula is particularly simple when G is of odd rank and

ν is the minimal power needed to ensure continuity. This allows relatively
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easy estimation of its behavior in the eigenvalue parameter, proving L2-
convergence and continuity of the associated Poincaré series Péuz and mak-
ing it possible to determine the vertical growth of the Poincaré series in the
eigenvalue parameter, as is needed for applications. The Poincaré series Péuz
is used to obtain an explicit formula relating the number of lattice points
in an expanding region in G/K to the automorphic spectrum [7]. Further,
the two-variable Poincaré series Péuz(y

−1x) produces identities involving
moments of GLn(C)×GLn(C) Rankin–Selberg L-functions [6].

The second example, motivated by application to eigenvalues of pseudo-
Laplacians, is the solution corresponding to θ = Sb, the distribution that
integrates along a shell of radius b around the basepoint in G/K. The
explicit formula for this solution is given in Theorem 3.2, which we state
here and prove in Section 3. Please refer to the context of the theorem in
Section 3 for the notation.

Theorem. For ν > (n+ 2d+ 1)/4, the solution to (∆− λz)νvz = Sb is

vz(a) =
(−1)νπ

n
2

2ν−
n
2
−1Γ(ν)

∏
sinh(α(log a))

·
∫
|H|=b

(
| log a−H|

z

)ν−n
2

Kν−n
2
(z| log a−H|)

∏
α∈Σ+

sinh(α(H))dH.

In particular, when n = dima∗ is odd,

vz(a) =
(−1)νπ

n+1
2 Γ(ν − n−1

2 )

Γ(ν)
∏

sinh(α(log a))

·
∫
|H|=b

Pν−n+1
2

(z| log a−H|)e−z| log a−H|

z2ν−n

∏
α∈Σ+

sinh(α(H))dH

where P`(x) is a degree ` polynomial with coefficients given by

ak =
(2`− k)!

22`−k`!(`− k)!k!
.

The behavior of the free space solution vz along the walls of the Weyl
chambers is very subtle, even in the simplest possible higher rank cases,
namely G complex of odd rank, making it difficult to verify the hypotheses
ensuring that the associated Poincaré series converges. Nevertheless, a dis-
tributional Poincaré series may be constructed via an averaging map, and
global automorphic Sobolev theory ensures the existence and uniqueness
of an automorphic spectral expansion for the Poincaré series, in terms of
cusp forms, Eisenstein series, and residues of Eisenstein series, in a global
automorphic Sobolev space. Moreover, by construction, the automorphic
spectral expansion of the associated Poincaré series is immediate, given the
analytic framework of global automorphic Sobolev spaces. This apprears
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as Theorem 4.1, in Section 4; please see the context for explanation of the
technical notation.

Theorem. If the solution vz is of sufficient rapid decay, the Poincaré series
Pévz(g) =

∑
γ∈Γ vz(γ ·g) converges absolutely and uniformly on compact sets,

to a continuous function of moderate growth, square-integrable modulo Γ.
Moreover, it has an automorphic spectral expansion, converging uniformly
pointwise:

Péz =

∫ ⊕
Ξ

π+(ρ)
π+(−iξ)

(∫
|H|=b e

−i〈ξ,H〉∏
α∈Σ+ sinh(αH)dH

)
Φξ(x0) · Φξ

(−1)ν(|ξ|2 + z2)ν

where {Φξ} denotes a suitable spectral family of spherical automorphic forms
(cusp forms, Eisenstein series, and residues of Eisenstein series) and

λξ = −(|ξ|2 + |ρ|2)

is the Casimir eigenvalue of Φξ.

If desired, uniform pointwise convergence (or any degree of Ck-conver-
gence) of the spectral expansion can be obtained by choosing the parameter
ν sufficiently large. However, for constructing eigenfunctions for pseudo-
Laplacians, weaker than C0-convergence is desired, since eigenfunctions for
the pseudo-Laplacian lie in a global automorphic Sobolev space potentially
much larger than C0. In the case of θ = Sb, the desired convergence is
guaranteed for ν = 1.

The difficulty, in all but the simplest possible higher rank case, namely
G complex of odd rank and θ = δ, of ascertaining whether the free space
solution to (∆ − λ)νu = θ is of sufficiently rapid decay along the walls of
the Weyl chambers, where

∏
sinh(α(log a)) blows up, is reason to question

whether an explicit “geometric” Poincaré series representation is actually
needed in a given application or whether the automorphic spectral expansion
suffices. Global automorphic Sobolev theory provides a robust framework
for discussing the convergence of automorphic spectral expansions without
reference to explicit geometric Poincaré series representations.

1.3. Outline of paper. In Section 2, we develop the necessary analytic
framework for solving the free space differential equations using the har-
monic analysis of spherical functions: global zonal spherical Sobolev theory.
To our knowledge, this is the first construction of Sobolev spaces of bi-K-
invariant distributions; an introduction to positively indexed Sobolev spaces
of bi-K-invariant functions can be found in [2]. Our discussion closely paral-
lels the global automorphic Sobolev theory developed in [7]; once a suitable
foundation has been laid, many of the results follow readily using the same
arguments, mutatis mutandis. In Section 3, we use the harmonic analysis
of spherical functions to derive integral representations of the solutions to
the differential equation (∆− λ)νu = θ, in the two cases θ = δ and θ = Sb,
discussed above, and, in the θ = δ case obtain an explicit formula for the
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solution. In Section 4, we construct the associated Poincaré series and de-
scribe their automorphic spectral expansions. In Appendix A, we give a
new, direct proof of the harmonicity of the π+ function in the formulas for
spherical functions on a complex semi-simple Lie group; this fact is needed
for evaluating the integral representing the solution corresponding to the
δ = θ case. Finally, Appendix B carries out an explicit computation that
is referenced in the derivations of the formulas for the free space solutions,
evaluating an integral over Rn in terms of K-Bessel functions.

Acknowledgements. This paper includes results from the author’s Ph.D.
thesis, completed under the supervision of Professor Paul Garrett, whom
the author thanks warmly for many helpful conversations.

2. Spherical transforms, global zonal spherical Sobolev
spaces, and differential equations on G/K

Global automorphic and global zonal spherical Sobolev spaces provide a
robust framework for decisively treating many analytic issues that arise in
constructing and manipulating the Poincaré series discussed in this paper.
In this section, we discuss global zonal spherical Sobolev theory and its
application to solving differential equations on G/K. Due to the many
parallels with the theory of global automorphic Sovolev spaces, which is
carefully discussed in Section 2 of [7], we abbreviate the discussion here and
frequently refer the reader to proofs of corresponding results in that paper.

2.1. Spherical transform and inversion. Let G be a complex semi-
simple Lie group with finite center and K a maximal compact subgroup. Let
G = NAK, g = n + a + k be corresponding Iwasawa decompositions. Let Σ
denote the set of roots of g with respect to a, let Σ+ denote the subset of pos-
itive roots (for the ordering corresponding to n), and let ρ = 1

2

∑
α∈Σ+ mαα,

mα denoting the multiplicity of α. Let a∗C denote the set of complex-valued
linear functions on a. Let X = K\G/K and Ξ = a∗/W ≈ a+. The spher-
ical transform of Harish-Chandra and Berezin integrates a bi-K-invariant
against a zonal spherical function:

Ff (ξ) =

∫
G
f(g)ϕρ+iξ(g) dg.

Zonal spherical functions ϕρ+iξ are eigenfunctions for Casimir (restricted to
bi-K-invariant functions) with eigenvalue λξ = −(|ξ|2 + |ρ|2). The inverse
transform is

F−1f =

∫
Ξ
f(ξ)ϕρ+iξ|c(ξ)|−2dξ

where c(ξ) is the Harish-Chandra c-function and dξ is the usual Lebesgue
measure on a∗ ≈ Rn. For brevity, denote L2(Ξ, |c(ξ)|−2) by L2(Ξ). The
Plancherel theorem asserts that the spectral transform and its inverse are
isometries between L2(X) and L2(Ξ).
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2.2. Characterizations of Sobolev spaces. We define positive index
zonal spherical Sobolev spaces as left K-invariant subspaces of completions
of C∞c (G/K) with respect to a topology induced by seminorms associated
to derivatives from the universal enveloping algebra, as follows. Let Ug≤`
be the finite dimensional subspace of the universal enveloping algebra Ug
consisting of elements of degree less than or equal to `. Each α ∈ Ug gives
a seminorm να(f) = ‖αf‖2L2(G/K) on C∞c (G/K).

Definition 2.1. Consider the space of smooth functions that are bounded
with respect to these seminorms:

{f ∈ C∞(G/K) : ναf < ∞ for all α ∈ Ug≤`}.

Let H`(G/K) be the completion of this space with respect to the topology
induced by the family {να : α ∈ Ug≤`}. The global zonal spherical Sobolev
space H`(X) = H`(G/K)K is the subspace of left-K-invariant functions in
H`(G/K).

Proposition 2.1. The space of test functions C∞c (X) is dense in H`(X).

Proof. We approximate a smooth function f ∈ H`(X) by pointwise prod-
ucts with smooth cut-off functions, whose construction (given by [15], Lem-
ma 6.1.7) is as follows. Let σ(g) be the geodesic distance between the cosets
1 ·K and g ·K in G/K. For R > 0, let BR denote the ball

BR = {g ∈ G : σ(g) < R}.

Let η be a nonnegative smooth bi-K-invariant function, supported in B1/4,

such that η(g) = η(g−1), for all g ∈ G. Let charR+1/2 denote the character-
istic function of BR+1/2, and let ηR = η ∗ charR+1/2∗η. As shown in [15], ηR
is smooth, bi-K-invariant, takes values between zero and one, is identically
one on BR and identically zero outside BR+1, and, for any γ ∈ Ug, there is
a constant Cγ such that

sup
g∈G
|(γ ηR)(g)| ≤ Cγ .

We will show that the pointwise products ηR · f approach f in the `th

Sobolev topology, i.e., for any γ ∈ Ug≤`, νγ
(
ηR · f − f

)
→ 0 as R→∞. By

definition,

νγ
(
ηR · f − f

)
= ‖γ

(
ηR · f − f

)
‖2L2(G/K).

Leibnitz’ rule implies that γ
(
ηR · f − f

)
is a finite linear combination of

terms of the form α(ηR − 1) · βf where α, β ∈ Ug≤`. When deg(α) = 0,

‖α(ηR − 1) · βf‖2L2(G/K) � ‖(ηR − 1) · βf‖2L2(G/K) ≤
∫
σ(g)≥R

|(β f)(g)|2 dg.
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Otherwise, α(ηR − 1) = αηR, and

‖α(ηR − 1) · βf‖2L2(G/K) = ‖αηR · βf‖2L2(G/K)

� sup
g∈G
|αηR(g)|2 ·

∫
σ(g)≥R

|(β f)(g)|2 dg

�
∫
σ(g)≥R

|(β f)(g)|2 dg.

Let B be any bounded set containing all of the (finitely many) β that appear
as a result of applying Leibniz’ rule. Then

νγ
(
ηR · f − f

)
� sup

β∈B

∫
σ(g)≥R

|(β f)(g)|2 dg.

Since B is bounded and f ∈ H`(X), the right hand side approaches zero as
R→∞. �

Proposition 2.2. Let Ω be the Casimir operator in the center of Ug. The
norm ‖ · ‖2` on C∞c (G/K)K given by

‖f‖22` = ‖f‖2 + ‖(1− Ω) f‖2 + ‖(1− Ω)2 f‖2 + · · ·+ ‖(1− Ω)` f‖2

where ‖ · ‖ is the usual norm on L2(G/K), induces a topology on C∞c (G/K)K

that is equivalent to the topology induced by the family {να : α ∈ Ug≤ 2`} of
seminorms and with respect to which H2`(X) is a Hilbert space.

Proof. Let {Xi} be a basis for g subordinate to the Cartan decomposition
g = p + k. Then Ω =

∑
iXiX

∗
i , where {X∗i } denotes the dual basis, with

respect to the Killing form. Let Ωp and Ωk denote the subsums corresponding
to p and k respectively. Then Ωp is a nonpositive operator, while Ωk is
nonnegative.

Lemma 2.1. For any nonnegative integer r, let Σr denote the finite set
of possible K-types of γ f , for γ ∈ Ug≤r and f ∈ C∞c (G/K)K , and let Cr
be a constant greater than all of the finitely many eigenvalues λσ for Ωk

on the K-types σ ∈ Σr. For any ϕ ∈ C∞c (G/K) of K-type σ ∈ Σm and
β = x1 . . . xn a monomial in Ug with xi ∈ p,

〈β ϕ, β ϕ〉 ≤ 〈(−Ω + Cm+n−1)n ϕ, ϕ〉

where 〈 , 〉 is the usual inner product on L2(G/K).

Proof. We proceed by induction on n = deg β. For n = 1, β = x ∈ p. Let
{Xi} be a self-dual basis for p such that X1 = x. Then,

〈xϕ, xϕ〉 ≤
∑
i

〈Xiϕ,Xiϕ〉 = −
∑
i

〈X2
i ϕ,ϕ〉 = 〈−Ωpϕ,ϕ〉

= 〈(−Ω + Ωk)ϕ,ϕ〉 ≤ 〈(−Ω + Cm)ϕ,ϕ〉 = 〈(−Ω + Cm+n−1)ϕ,ϕ〉.
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For n > 1, write β = xγ, where x = x1 and γ = x2 . . . xn. Then the K-type
of γϕ lies in Σm+n−1, and by the above argument,

〈x γϕ, x γϕ〉 ≤ 〈(−Ω + Cm+n−1) γϕ, γϕ〉.
Let C∞c (G/K)Σr be the subspace of C∞c (G/K) consisting of functions of
K-type in Σr and L2(G/K)Σr be the corresponding subspace of L2(G/K).
For the moment, let Σ = Σm+n−1 and C = Cm+n−1. Then, by construction,
−Ωk + C is positive on C∞c (G/K)Σ, and thus

−Ω + C = −Ωp − Ωk + C

is a positive densely defined symmetric operator on L2(G/K)Σ. Thus, by
Friedrichs [13, 14], there is an everywhere defined inverse R, which is a posi-
tive symmetric bounded operator on L2(G/K)Σ, and which, by the spectral
theory for bounded symmetric operators, has a positive symmetric square
root

√
R in the closure of the polynomial algebra C[R] in the Banach space

of bounded operators on L2(G/K)Σ. Thus −Ω+C has a symmetric positive

square root, namely
(√
R
)−1

, defined on C∞c (G/K)Σ, commuting with all
elements of Ug, and

〈(−Ω + C) γϕ, γϕ〉 = 〈γ
√
−Ω + Cϕ, γ

√
−Ω + Cϕ〉.

Now the K-type of
√
−Ω + C ϕ, being the same as that of ϕ, lies in Σm, so

by inductive hypothesis,

〈γ
√
−Ω + Cϕ, γ

√
−Ω + Cϕ〉

≤ 〈(−Ω + Cm+n−2)n−1
√
−Ω + Cϕ,

√
−Ω + Cϕ〉

= 〈(−Ω + Cm+n−2)n−1(−Ω + Cm+n−1)ϕ,ϕ〉
≤ 〈(−Ω + Cm+n−1)nϕ,ϕ〉

and this completes the proof of Lemma 2.1. �

Let α ∈ Ug≤2`. By the Poincaré–Birkhoff–Witt theorem we may assume
α is a monomial of the form α = x1 . . . xny1 . . . ym where xi ∈ p and yi ∈ k.
Then, for any f ∈ C∞c (G/K)K ,

ναf = 〈αf, αf〉L2(G/K) = 〈x1 . . . xnf, x1 . . . xnf〉L2(G/K)(xi ∈ p).

By the lemma, there is a constant C, depending on the degree of α, such
that να(f) � 〈(−Ω + C)degα f, f〉 for all f ∈ C∞c (G/K)K . In fact, for
bi-K-invariant functions, (−Ω + C)degα f = (−Ωp + C)degα f . Since Ωp is
positive semi-definite, multiplying by a positive constant does not change
the topology. Thus, we may take C = 1. That is, the subfamily {να :
α = (1 − Ω)k, k ≤ `} of seminorms on C∞c (G/K)K dominates the family
{να : α ∈ Ug≤ 2`} and thus induces an equivalent topology. This completes
the proof of Proposition 2.2. �

It will be necessary to have another description of Sobolev spaces. Let

W 2,`(G/K) = {f ∈ L2(G/K) : α f ∈ L2(G/K) for all α ∈ Ug≤`}
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where the action of Ug on L2(G/K) is by distributional differentiation. Give
W 2,`(G/K) the topology induced by the seminorms ναf = ‖α f‖2L2(G/K),

α ∈ Ug≤`. Let W 2,`(X) be the subspace of left K-invariants. These spaces
are equal to the corresponding Sobolev spaces: W 2,`(G/K) = H`(G/K)
and W 2,`(X) = H`(X). The proof of this is very similar to the proof of
Proposition 2.3 in [7]. By Proposition 2.2, H2`(X) = W 2,2`(X) is a Hilbert
space with norm

‖f‖22` = ‖f‖2 + ‖(1− Ω) f‖2 + · · ·+ ‖(1− Ω)` f‖2

where ‖ · ‖ is the usual norm on L2(G/K), and (1−Ω)k f is a distributional
derivative.

2.3. Spherical transforms and differentiation on Sobolev spaces.
Let ` ≥ 0. By an argument very similar to the proof of Proposition 2.4 in
[7], the Laplacian extends to a continuous linear map H2`+2(X)→ H2`(X);
the spherical transform extends to a map on H2`(X); and

F
(
(1−∆)f

)
= (1− λξ) · Ff for all f ∈ H2`+2(X).

Let µ be the multiplication map µ(v)(ξ) = (1− λξ) · v(ξ) = (1 + |ρ|2 +
|ξ|2) · v(ξ) where ρ is the half sum of positive roots. For ` ∈ Z, the weighted
L2-spaces V 2` = {v measurable : µ`(v) ∈ L2(Ξ)} with norms

‖v‖2V 2` = ‖µ`(v)‖2L2(Ξ) =

∫
Ξ

(1 + |ρ|2 + |ξ|2)2`|v(ξ)|2|c(ξ)|−2dξ

are Hilbert spaces with V 2`+2 ⊂ V 2` for all `. In fact, these are dense
inclusions, since truncations are dense in all V 2`-spaces. The multiplication
map µ is a Hilbert space isomorphism µ : V 2`+2 → V 2`, since for v ∈ V 2`+2,

‖µ(v)‖V 2` = ‖µ`+1(v)‖L2(Ξ) = ‖v‖V 2`+2 .

The negatively indexed spaces are the Hilbert space duals of their positively
indexed counterparts, by integration. The adjoints to inclusion maps are
genuine inclusions, since V 2`+2 ↪→ V 2` is dense for all ` ≥ 0, and, under the
identification (V 2`)∗ = V −2` the adjoint map µ∗ : (V 2`)∗ → (V 2`+2)∗ is the
multiplication map µ : V −2` → V −2`−2. For ` ≥ 0, the spherical transform
is an isometric isomorphism H2`(X) → V 2`; see the proof of Proposition
2.5 in [7]. This Hilbert space isomorphism F : H2` → V 2` gives a spectral
characterization of the 2`th Sobolev space, namely the preimage of V 2` under
F :

H2`(X) = {f ∈ L2(X) : (1− λξ)` · Ff(ξ) ∈ L2(Ξ)}.

2.4. Negatively indexed Sobolev spaces and distributions. Nega-
tively indexed Sobolev spaces allow the use of spectral theory for solving
differential equations involving certain distributions.

Definition 2.2. For ` > 0, the Sobolev space H−`(X) is the Hilbert space
dual of H`(X).
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Since the space of test functions is a dense subspace of H`(X) with
` > 0, dualizing gives an inclusion of H−`(X) into the space of distri-
butions. The adjoints of the dense inclusions H` ↪→ H`−1 are inclusions
H−`+1(X) ↪→ H−`(X), and the self-duality of H0(X) = L2(X) implies that
H`(X) ↪→ H`−1 for all ` ∈ Z. The spectral transform extends to an isomet-
ric isomorphism on negatively indexed Sobolev spaces F : H−2` → V −2`,
and for any u ∈ H2`(X), ` ∈ Z, F((1 −∆)u) = (1 − λξ) · Fu. Please see
the proof of Proposition 2.6 in [7].

Recall that, for a smooth manifold M , the positively indexed local Sobolev
spaces H`

loc(M) consist of functions f on M such that for all points x ∈M ,
all open neighborhoods U of x small enough that there is a diffeomorphism
Φ : U → Rn with Ω = Φ(U) having compact closure, and all test functions
ϕ with support in U , the function (f ·ϕ)◦Φ−1 : Ω −→ C is in the Euclidean
Sobolev space H`(Ω). The Sobolev embedding theorem for local Sobolev

spaces states that H`+k
loc (M) ⊂ Ck(M) for ` > dim(M)/2. A global ver-

sion of Sobolev embedding also holds; since the proof is similar to that of
Proposition 2.7 in [7], we state the theorem without proof here.

Proposition 2.3 (Global Sobolev embedding). For ` > dim(G/K)/2,

H`+k(X) ⊂ H`+k(G/K) ⊂ Ck(G/K).

This embedding of global Sobolev spaces into Ck-spaces is used to prove
that the integral defining spectral inversion for test functions can be ex-
tended to sufficiently highly indexed Sobolev spaces, i.e., the abstract iso-
metric isomorphism F−1 ◦ F : H`(X)→ H`(X) is given by an integral that
is convergent uniformly pointwise, when ` > dim(G/K)/2. This result will
be needed later, but its proof is parallel to the proof of Proposition 2.8 in
[7], so we state the result here without proof.

Proposition 2.4. For f ∈ Hs(X) , s > k + dim(G/K)/2,

f =

∫
Ξ
Ff(ξ)ϕρ+iξ |c(ξ)|−2 dξ in Hs(X) and Ck(X).

The embedding of global Sobolev spaces into Ck-spaces also implies that
compactly supported distributions lie in global Sobolev spaces. Specifically,
a compactly supported distribution of order k lies in H−s(X) for all s >
k + dim(G/K)/2. The proof of this is similar to that of Proposition 2.9 in
[7]. Thus the spectral transform of a compactly supported distribution is
defined (by isometric isomorphism, as discussed above) and, in particular, is
obtained by evaluating the distribution at the elementary spherical function,
as stated in the following proposition, whose proof is similar to the proof of
Proposition 2.10 in [7].

Proposition 2.5. For a compactly supported distribution u of order k,
Fu = u(ϕρ+iξ) in V −s where s > k + dim(G/K)/2.
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Remark 2.1. In particular, since the Dirac delta distribution at the base
point xo = 1 ·K in G/K is a compactly supported distribution of order zero,
it lies in H−`(X) for all ` > dim(G/K)/2, and its spherical transform is
Fδ = ϕρ+iξ(1) = 1.

3. Free space solutions

3.1. Fundamental solutions. Let G be a complex semi-simple Lie group
with finite center and K a maximal compact subgroup. Let G = NAK,
g = n + a + k be corresponding Iwasawa decompositions. Let Σ denote the
set of roots of g with respect to a, let Σ+ denote the subset of positive
roots (for the ordering corresponding to n), and let ρ = 1

2

∑
α∈Σ+ mαα, mα

denoting the multiplicity of α. Since G is complex, mα = 2, for all α ∈ Σ+,
so ρ =

∑
α∈Σ+ α. Let a∗C denote the set of complex-valued linear functions

on a. Consider the differential equation on the symmetric space X = G/K:

(∆− λz)νuz = δ1·K

where the Laplacian ∆ is the image of the Casimir operator for g, λz is
z2 − |ρ|2 for a complex parameter z, ν is an integer, and δ1·K is Dirac delta
at the basepoint xo = 1 ·K ∈ G/K. Since δ1·K is also left-K-invariant, we
construct a left-K-invariant solution on G/K using the harmonic analysis
of spherical functions.

Proposition 3.1. For integral ν > dim(G/K)/2, uz is a continuous left-
K-invariant function on G/K with the following spectral expansion:

uz(g) =

∫
Ξ

(−1)ν

(|ξ|2 + z2)ν
ϕρ+iξ(g) |c(ξ)|−2 dξ.

Proof. As mentioned above in Remark 2.1, δ1·K lies in the global zonal
spherical Sobolev spaces H−`(X) for all ` > dim(G/K)/2. Thus there is a
solution uz ∈ H−`+2ν(X). The solution uz is unique in Sobolev spaces, since
any u′z satisfying the differential equation must necessarily satisfy F(u′z) =
F(δ1·K)/(λξ−λz)ν = (−1)ν/(|ξ|2 +z2)ν . For ν > dim(G/K)/2, the solution
is continuous by Proposition 2.3, and by Propositions 2.4 and 2.5, has the
stated spectral expansion. �

Remark 3.1. As the proof shows, the condition on ν is necessary only if uni-
form pointwise convergence of the spectral expansion is desired. In general,
there is a solution, unique in global zonal spherical Sobolev spaces, whose
spectral expansion, given above, converges in the corresponding Sobolev
topologies.

For a complex semi-simple Lie group, the zonal spherical functions are
elementary. The spherical function associated with the principal series Iχ
with χ = eρ+iλ, λ ∈ a∗C is

ϕρ+iλ =
π+(ρ)

π+(iλ)

∑
sgn(w)ei wλ∑
sgn(w) ewρ
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where the sums are taken over the elements w of the Weyl group, and the
function π+ is the product π+(µ) =

∏
α>0〈α, µ〉 over positive roots, without

multiplicities. The ratio of π+(ρ) to π+(iλ) is the c-function, c(λ). The
denominator can be rewritten∑

w∈W
sgn(w) ewρ =

∏
α∈Σ+

2 sinh(α).

Proposition 3.2. The fundamental solution uz has the following integral
representation:

uz =
(−1)ν (−i)d

π+(ρ)
∏

2 sinhα
·
∫
a∗

π+(λ)eiλ

(|λ|2 + z2)ν
dλ.

Proof. In the case of complex semi-simple Lie groups, the inverse spherical
transform has an elementary form. Since the function π+ is a homogeneous
polynomial of degree d, equal to the number of positive roots, counted with-
out multiplicity, and is W -equivariant by the sign character, F−1f is∫

a∗/W
f(λ)ϕρ+iλ|c(λ)|−2dλ =

(−i)d

π+(ρ)
∏

2 sinhα
·
∫
a∗
f(λ)π+(λ)eiλdλ.

By Proposition 3.1, uz has the stated integral representation. �

Proposition 3.3. The integral in Proposition 3.2 can be expressed in terms
of a K-Bessel function:∫

a∗

π+(λ)ei〈λ,log a〉

(|λ|2 + z2)ν
dλ

=
πn/2idπ+(log a)

2ν−(1+d+n/2)Γ(ν)
·
(
| log a|
z

)ν−d−n/2
Kν−d−n/2(| log a|z)

where n = dim a, d is the number of positive roots, counted without multi-
plicity, and ν > n/2 + d.

Proof. Let I(log a) denote the integral to be evaluated. Using the Γ-
function and changing variables λ→ λ√

t
,

I(log a) =
1

Γ(ν)
·
∫ ∞

0

∫
a∗
tνe−t(|λ|

2+z2)π+(λ)eiλdλ
dt

t

=
1

Γ(ν)
·
∫ ∞

0
tν−(d+n)/2e−tz

2

∫
a∗
e−|λ|

2
π+(λ)e−i〈λ,− log a/

√
t〉dλ

dt

t
.

The polynomial π+ is in fact harmonic. See, for example, Lemma 2 in [31]
or, for a more direct proof, Theorem A.1, below. Thus the integral over
a∗ is the Fourier transform of the product of a Gaussian and a harmonic
polynomial, and by Hecke’s identity,∫

a∗
e−|λ|

2
π+(λ)e−i〈λ ,− log a/

√
t〉dλ = id t−d/2 π+(log a) e−| log a|2/t.
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Returning to the main integral,

I(log a) =
id π+(log a)

Γ(ν)
·
∫ ∞

0
tν−de−tz

2 (
t−n/2e−| log a|2/t) dt

t
.

Replacing the Gaussian by its Fourier transform and using the Γ-function
identity again,

I(log a) = id π+(log a) · Γ(ν − d)

Γ(ν)
·
∫
a∗

ei〈λ,log a〉

(|λ|2 + z2)ν−d
dλ.

This integral can be written as a K-Bessel function (see Section B) yielding
the desired conclusion. �

The explicit formula for uz follows immediately. Choosing ν to be the
minimal integer required for C0-convergence yields a particularly simple
expression, as described in the following theorem.

Theorem 3.1. For an integer ν > dim(G/K)/2 = n/2 + d, where d is the
number of positive roots, counted without multiplicities, and n = dim(a) is
the rank, uz can be expressed in terms of a K-Bessel function:

uz(a) =
2(−1)ν

π+(ρ)Γ(ν)
·
∏
α∈Σ+

α(log a)

2 sinh(log a)
·
(
| log a|

2z

)ν−d−n
2

·Kν−d−n
2
(z | log a|).

In the odd rank case, with ν = m+d+(n+1)/2, where m is any nonnegative
integer, uz(a) is given by

(−1)m+d+n+1
2 π

n+1
2

(m+ d+ n−1
2 )!π+(ρ)

·
∏
α∈Σ+

α(log a)

2 sinh(α(log a))
· e
−z| log a|

z
· P (| log a|, z−1)

where P is a degree m polynomial in | log a| and a degree 2m polynomial in
z−1. In particular, choosing ν minimally, i.e., ν = d+ n+1

2 ,

uz(a) =
(−1)d+n+1

2 π(n+1)/2

π+(ρ) Γ(d+ n+1
2 )

·
∏
α∈Σ+

α(log a)

2 sinh(α(log a))
· e
−z| log a|

z
.

When G is of even rank, and ν is minimal, i.e., ν = d+ n
2 + 1,

uz(a) =
(−1)d+n

2
+1 π

n
2

π+(ρ)Γ(d+ n
2 + 1)

·
∏
α∈Σ+

α(log a)

2 sinh(α(log a))
· | log a|

z
·K1(z | log a|).

Remark 3.2. For fixed α, large |z|, and µ = 4α2 (see [1], 9.7.2),

Kα(z) ≈√
π
2z e
−z
(

1 +
µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
+

(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+ · · ·

)
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for |argz| < 3π
2 . Thus, for ν minimal, in the even rank case the fundamental

solution has the following asymptotic:

uz(a)≈ (−1)d+(n/2)+1π(n+1)/2

√
2π+(ρ)Γ(d+ (n/2) + 1)

·
∏
α∈Σ+

α(log a)

2 sinh(α(log a))
·
√
| log a|
z
·e
−z| log a|

z
.

Remark 3.3. Recall from Proposition 3.1 that zonal spherical Sobolev
theory ensures the continuity of uz for ν chosen as in the theorem. For
G = SL2(C), the continuity is visible, since fundamental solution is, up to
a constant,

uz(ar) =
r e−(2z−1)r

(2z − 1) sinh r
where ar =

(
er/2 0

0 e−r/2

)
.

3.1.1. Using Hall and Mitchell’s Intertwining Formula. The sym-
metric space fundamental solution can also obtained by multiplying the
Euclidean fundamental solution by

∏ α
sinh(α) , using Hall and Mitchell’s “in-

tertwining” formula relating ∆ = ∆G/K and ∆p [23] as follows. (See also
Helgason’s discussion of the wave equation on G/K in [25].)

Again, G is a complex semi-simple Lie group with maximal compact K.
We identify G/K with p via the exponential mapping. Then

∆f = J−1/2
(
∆p − ‖ρ‖2

)(
J1/2f

)
where ∆ = ∆G/K is the (non-Euclidean) Laplacian on G/K,

J−1/2 =
∏ α

sinhα
,

where the product ranges over positive roots, f is a bi-K-invariant function
on G, ∆p is the (Euclidean) Laplacian on p. Thus,

(∆− λz)νf = J−1/2(∆p − z2)ν J1/2 f.

Let wz be a solution of the Euclidean differential equation

(∆p − z2)ν wz = ϕ.

Then the function uz = J−1/2wz is a solution to the corresponding differen-
tial equation on G/K: (∆− λz)ν uz = J−1/2ϕ, since

(∆− λz)ν(J−1/2wz) = J−1/2(∆p − z2)νJ1/2(J−1/2wz)

= J−1/2(∆p − z2)νwz = J−1/2ϕ.

If J−1/2 ≡ 1 on the support of ϕ, as in the case at hand, ϕ = δ, the function
uz = J−1/2wz is the solution of (∆− λz)νuz = δ. Thus, to obtain a formula
for the fundamental solution for (∆−λz)ν on G/K, one can simply mulitply

the Euclidean fundamental solution for (∆p − z2)ν by J−1/2. This does in
fact yield the formula given in Theorem 3.1.
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3.2. Integrating along shells. Now we replace the Dirac delta distribu-
tion with Sb, the distribution that integrates a function along a shell of
radius b around the basepoint, by which we mean

K · {a = exp(H) : H ∈ a+ with |H| = b} ·K/K.
Note that, for SL2(C), this is a spherical shell of radius b, centered at the
basepoint 1 · K, in hyperbolic 3-space. Arguing as in the previous case
(see the proof of Proposition 3.1), since Sb is a compactly supported dis-
tribution, the differential equation (∆− λz)ν vz = Sb has a unique solution
in global zonal spherical Sobolev spaces. The spherical inversion formula of
Harish-Chandra and Berezin gives an integral representation for vz, in terms
of the spherical transform of Sb. The integral representation is convergent
(uniformly pointwise) for ν sufficiently large, by the global Sobolev embed-
ding theorem. Since the distribution Sb lies in Hs(X) for all s < −1/2,
choosing ν > (dim(G/K) + 1)/4 suffices to ensure uniform pointwise con-
vergence. If desired, convergence in the Ck-topology can be obtained by
choosing ν > (dim(G/K) + 1)/4 + k/2.

On the other hand, for some applications, a weaker convergence is de-
sired: e.g., for applications involving pseudo-Laplacians, what is needed
H1-convergence, since eigenfunctions for the Friedrichs extension of (a re-
striction of) the Laplacian must lie in the domain of the Friedrichs extension,
which, by construction, lies in H1(X). In this case H1-convergence is guar-
anteed for ν = 1, regardless of the dimension of G/K.

Remark 3.4. We might hope to obtain an explicit formula for the solution
by simply multiplying the corresponding Euclidean solution by J−1/2, as in
the case of the fundamental solution. However, since J−1/2 is not identically
one on the shell of radius b, this does not succeed. (See Section 3.1.1.)

Theorem 3.2. For ν > (n+ 2d+ 1)/4, the solution to (∆− λz)νvz = Sb is

vz(a) =
(−1)νπ

n
2

2ν−
n
2
−1Γ(ν)

∏
sinh(α(log a))

·
∫
|H|=b

(
| log a−H|

z

)ν−n
2

Kν−n
2
(z| log a−H|)

∏
α∈Σ+

sinh(α(H))dH.

In particular, when n = dima∗ is odd,

vz(a) =
(−1)νπ

n+1
2 Γ(ν − n−1

2 )

Γ(ν)
∏

sinh(α(log a))

·
∫
|H|=b

Pν−n+1
2

(z| log a−H|)e−z| log a−H|

z2ν−n

∏
α∈Σ+

sinh(α(H))dH

where P`(x) is a degree ` polynomial with coefficients given by

ak =
(2`− k)!

22`−k`!(`− k)!k!
.
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Proof. By Proposition 2.4, the solution vz has the following integral repre-
sentation,

vz(a) =

∫
a∗/W

(−1)ν F(Sb)(ξ)

(|ξ|2 + z2)ν
· ϕρ+iξ(a)|c(ξ)|−2 dξ.

As in the derivation of the fundamental solution, we use the W -equivariance
of π+ by the sign character and the degree d homogeneity of π+ to rewrite
this as

vz(a) =
(−1)ν(−i)d

π+(ρ)
∏

2 sinh(α(log a))

∫
a∗

FSb(ξ)
(|ξ|2 + z2)ν

ei〈ξ,log a〉 π+(ξ) dξ.

The spherical transform is

F(Sb)(ξ) = Sb(ϕρ+iξ) =

∫
b-shell

ϕξ+iρ(g) dg.

Writing g ∈ G as g = k a k′ = k exp(H) k′, we reduce to an integral over a
Euclidean sphere in a,

F(Sb)(ξ) =

∫
|H|=b

π+(ρ)

π+(−iξ)

∑
sgnwe−iwξ(H)∑
sgnwewρ(H)

∏
α∈Σ+

sinh2(α(H))dH.

Using the fact that
∑
w∈W

sgnwewρ(H) =
∏
α∈Σ+

2 sinh(α(H)) and Weyl group

invariance,

F(Sb)(ξ) = id
π+(ρ)

π+(ξ)

∫
|H|=b

e−i〈ξ,H〉
∏
α∈Σ+

2 sinh(α(H))dH.

Thus

vz(a) =
(−1)ν∏

2 sinh(α(log a))

∫
a∗

∫
|H|=b

ei〈ξ,log a−H〉

(|ξ|2 + z2)ν

∏
α∈Σ+

2 sinh(α(H))dHdξ

=
(−1)ν∏

sinh(α(log a))

∫
|H|=b

(∫
a∗

ei〈ξ,log a−H〉

(|ξ|2 + z2)ν
dξ

) ∏
α∈Σ+

sinh(α(H))dH.

The inner integral can be interpreted as an integral over Rn, where n =
dim a∗, and can be expressed as a K-Bessel function to obtain the desired
results. (See Section B.) �

Remark 3.5. For G = SL2(C), with ν = 1, ensuring H1-convergence, the
solution is

vz(ar) =
− sinh(b)

z sinh(r)
·

{
e−2bz sinh(2rz) if r < b

sinh(2bz)e−2rz if r > b,
where ar =

(
er/2 0

0 e−r/2

)
and, with ν = 2, ensuring uniform pointwise convergence, the solution is

vz(ar) =
2 sinh(b)

z3 sinh(r)
·

{
e−2bz

(
(1 + 2bz) cosh(2rz)− 2rz sinh(2rz)

)
if r < b(

(1 + 2rz) cosh(2bz)− 2bz sinh(2bz)
)
e−2rz if r > b.
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Remark 3.6. In principle, one can also obtain a solution by convolution
with the fundamental solution, uz, discussed above. For x = k′x · arx · kx in
G and g = k′g · ab · kg on the b-shell in G/K,

uz(g · x−1) = uz(k
′
g ab kg k

−1
x arx (k′x)−1) = uz(ab kg k

−1
x arx)

and thus

vz(x) = (x · Sb)(uz) =

∫
b-shell

uz(g · x−1)dg =

∫
K
uz(ab k k

−1
x arx)dk

where dk is dg, restricted to K.

4. Poincaré series and automorphic spectral expansions

Let Γ be a discrete subgroup of G. The averaging map

α = αΓ : C0
c (G/K) −→ C0

c (Γ\G)K given by f 7→
∑
γ∈Γ

γ · f

is a continuous surjection, as is its extension α : E ′(G/K) → E ′(Γ\G)K , to
the space of compactly supported distributions on G/K. We call Péf = α(f)
the Poincaré series associated to f .

Though the automorphic spectrum consists of disparate pieces (cusp
forms, Eisenstein series, residues of Eisenstein series) it will be useful to have
a uniform notation. We posit a parameter space Ξ with spectral (Plancherel)
measure dξ and let {Φξ}ξ∈Ξ denote the elements of the spectrum.

The Poincaré series Péuz associated to the fundamental solution uz dis-
cussed above is used to obtain an explicit formula relating the number of
lattice points in an expanding region in G/K to the automorphic spectrum
[7]. Further, the two-variable Poincaré series Péuz(y

−1x) produces identities
involving moments of GLn(C) × GLn(C) Rankin–Selberg L-functions [6].
The arguments given in [7] generalize as follows.

For a given compactly supported distribution θ on G/K, let θafc = α(θ),
and consider the automorphic differential equation (∆ − λ)ν uafc = θafc.
Since θafc is compactly supported modulo Γ, it lies in a global automorphic
Sobolev space. Thus there is a solution uafc, unique in global automorphic
Sobolev spaces, with an automorphic spectral expansion whose coefficients
are obtained by 〈θ,Φξ〉, ξ ∈ Ξ. The spectral expansion is convergent (uni-
formly pointwise) for sufficiently large ν. If the corresponding free-space
solution u is of sufficiently rapid decay, then, by arguments involving gauges
on groups, the Poincaré series Péu converges to a continuous function that
is square integral modulo Γ. Thus it lies in a global automorphic Sobolev
space, and by uniqueness, it must be pointwise equal to uafc.

We now consider the Poincaré series associated to the solution to

(∆− λz)ν vz = Sb, ν > (dim(G/K) + 1)/4.
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Theorem 4.1. If the solution vz is of sufficient rapid decay, the Poincaré
series Pévz(g) =

∑
γ∈Γ vz(γ · g) converges absolutely and uniformly on com-

pact sets, to a continuous function of moderate growth, square-integrable
modulo Γ. Moreover, it has an automorphic spectral expansion, converging
uniformly pointwise:

Péz =

∫ ⊕
Ξ

π+(ρ)
π+(−iξ)

(∫
|H|=b e

−i〈ξ,H〉∏
α∈Σ+ sinh(αH)dH

)
Φξ(x0) · Φξ

(−1)ν(|ξ|2 + z2)ν

where {Φξ} denotes a suitable spectral family of spherical automorphic forms
(cusp forms, Eisenstein series, and residues of Eisenstein series) and

λξ = −(|ξ|2 + |ρ|2)

is the Casimir eigenvalue of Φξ.

Proof. Since vz is of sufficient rapid decay the Poincaré series converges
absolutely and uniformly on compact sets to a function that is of moderate
growth and square integrable modulo Γ, by Proposition 3.1.1 in [7].

The automorphic spectral expansion of Péz can be written as a Hilbert di-

rect integral
∫ ⊕

Ξ

Safc
b Φξ ·Φξ
(λξ−λz)ν . To determine the coefficients Safc

b Φξ, we consider

the effect of Safc
b on an automorphic spherical eigenfunction f for Casimir.

The the averaging map αK given by αK(f) =
∫
K f(kg)dk maps f to a con-

stant multiple of the zonal spherical function ϕ◦f with the same eigenvalue

as f . Since αK(f)(1) = f(x0) and ϕ◦f is normalized so that ϕ◦f (1) = 1,

αK(f) = f(x0) · ϕ◦f .

Safc
b f =

∫
|H|=b

∫
K
f(k expH)dk

∏
α∈Σ+

4 sinh2(αH)dH

= (x0) ·
∫
|H|=b

ϕ◦f (exp(H))
∏
α∈Σ+

4 sinh2(αH)dH.

Thus Safc
b Φξ is

Safc
b Φξ = Φξ(x0) ·

∫
|H|=b

π+(ρ)

π+(−iξ)

∑
sgnwe−iwξ(H)∑
sgnwewρ(H)

∏
α∈Σ+

4 sinh2(α(H))dH

= Φξ(x0) · π+(ρ)

π+(−iξ)
·
∫
|H|=b

e−i〈ξ,H〉
∏
α∈Σ+

2 sinh(α(H))dH

and the spectral expansion of Péz is as stated. Global automorphic Sobolev
theory ensures convergence. �

Remark 4.1. In the case G = SL2(C), Γ = SL2(Z[i]), with ν = 2, it is
clear from Remark 3.5 that vz is of sufficient rapid decay for Re(z) � 1.
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Thus its Poincaré series Péz(g) is:

2 sinh(b)

z3

( ∑
σ(γg)<b

(
(1 + 2bz) cosh(2σ(γg)z)− 2σ(γg)z sinh(2rz)

)
e−2bz

sinh(σ(γg))

+
∑

σ(γg)>b

(
(1 + 2σ(γg)z) cosh(2bz)− 2bz sinh(2bz)

)
e−2σ(γg)z

sinh(σ(γg))

)

where σ(g) is the geodesic distance from gK to x0 = 1 ·K. The Poincaré
series has spectral expansion

Péz =
∑

f GL2 cfm

sin(2btf ) · f(x0) · f
2tf sinh(b)(t2f + z2)2

+
Φ0(x0) · Φ0

(z2 − 1
4)2

+
1

4π

∫ ∞
−∞

sin(2bt) · E 1
2
−it(x0) · E 1

2
+it

2t sinh(b)(t2 + z2)2
dt

where the sum ranges over an orthonormal basis of cusp forms, Φ0 denotes
the constant automorphic form with L2-norm one, and

−(t2f + 1
4) and − (t2 + 1

4)

are the Casimir eigenvalues of f and E 1
2

+it, respectively.

Remark 4.2. Regardless of the convergence of the Poincaré series, the
solution vafc

z to the automorphic differential equation exists, is unique in
global automorphic Sobolev spaces, and has the given spectral expansion,
converging in a global automorphic Sobolev space. If desired, uniform point-
wise convergence of the spectral expansion can be obtained by choosing ν
sufficiently large, as mentioned above. The difficulty, even in the simplest
possible higher rank cases, namely G complex of odd rank, of ascertaining
whether vz is of sufficiently rapid decay along the walls of the Weyl chambers,
where

∏
sinh(α(log a)) blows up, is reason to question whether the explicit

“geometric” Poincaré series representation of vafc is actually needed in a
given application or whether the automorphic spectral expansion suffices.

Appendix A. The harmonicity of π+

Let G be complex semi-simple Lie group. We will give a direct proof that
the function π+ : a∗ → R given by π+(µ) =

∏
α>0〈α, µ〉 where the product is

taken over all postive roots, counted without multiplicity, is harmonic with
respect to the Laplacian naturally associated to the pairing on a∗. (See also
[31], Lemma 2, where this result is obtained as a simple corollary of the less
trivial fact that π+ divides any polynomial that is W -equivariant by the
sign character.) It is this property that enables us to use Hecke’s identity in
the computations above. We will use the following lemma.
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Lemma A.1. Let I be the set of all non-orthogonal pairs of distinct positive

roots, as functions on a. Then π+ is harmonic if
∑

(β,γ)∈ I
〈β,γ〉
β γ = 0.

Proof. Considering a∗ as a Euclidean space, its Lie algebra can be identified
with itself. For any basis {xi} of a∗, the Casimir operator (Laplacian) is
∆ =

∑
i xi x

∗
i . For any α, β in a∗ and any λ ∈ a

∆〈α, λ〉〈β, λ〉 =
∑
i

xi
(
〈α, x∗i 〉 〈β, λ〉+ 〈α, λ〉 〈β, x∗i 〉

)
=
∑
i

(
〈α, x∗i 〉 〈β, xi〉+ 〈α, xi〉 〈β, x∗i 〉

)
= 2〈α, β〉.

Thus

∆π+ =
∑
i

xix
∗
iπ

+ =
∑
i

xi
∑
β>0

α(x∗i ) ·
π+

β

=
∑
i

∑
β>0

β(x∗i ) ·
(∑
γ 6=β

γ(xi) ·
π+

βγ

)
=

(∑
β 6=γ

〈β, γ〉
β γ

)
· π+

and π+ is harmonic if the sum in the statement of the lemma is zero. �

Remark A.1. When the Lie algebra g is not simple, but merely semi-
simple, i.e., g = g1 ⊕ g2, any pair β, γ of roots with β ∈ g1 and γ ∈ g2 will
have 〈β, γ〉 = 0, so it suffices to consider g simple.

Proposition A.1. For g = sl3, sp2, or g2, the following sum over all pairs

(β, γ) of distinct positive roots is zero:
∑

β 6=γ
〈β,γ〉
β γ = 0.

Proof. The positive roots in sl3 are α, β, and (α + β) with 〈α, α〉 = 2,
〈β, β〉 = 2, 〈α, β〉 = −1. In other words, the two simple roots have the
same length and have an angle of 2π/3 between them. The pairs of distinct
positive roots are (α, β), (α, α+β) and (β, α+β), so the sum to compute is

〈α, β〉
αβ

+
〈α, α+ β〉
α (α+ β)

+
〈β, α+ β〉
β (α+ β)

.

Clearing denominators and evaluating the parings,

〈α, β〉 · (α+ β) + 〈α, α+ β〉 · β + 〈β, α+ β〉 · α = −(α+ β) + β + α = 0.

For sp2, the simple roots have lengths 1 and
√

2 and have an angle of 3π/4
between them: 〈α, α〉 = 1, 〈β, β〉 = 2, 〈α, β〉 = −1. The other positive roots
are (α+β) and (2α+β). The non-orthogonal pairs of distinct positive roots
are (α, β), (α, 2α+ β), (β, α+ β), and (α+ β, 2α+ β). So the sum we must
compute is

〈α, β〉
αβ

+
〈α, 2α+ β〉
α (2α+ β)

+
〈β, α+ β〉
β (α+ β)

+
〈α+ β, 2α+ β〉
(α+ β)(2α+ β)

.
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Again, clearing denominators,

〈α, β〉 · (α+ β)(2α+ β) + 〈α, 2α+ β〉 · β(α+ β)

+ 〈β, α+ β〉 · α(2α+ β) + 〈α+ β, 2α+ β〉 · αβ
and evaluating the pairings,

− (α+ β)(2α+ β) + β(α+ β) + α(2α+ β) + αβ

= −(2α2 + 3αβ + β2) + αβ + β2 + 2α2 + αβ + αβ = 0.

Finally we consider the exceptional Lie algebra g2. The simple roots have
lengths 1 and

√
3 and have an angle of 5π/6 between them: 〈α, α〉 = 1,

〈β, β〉 = 3, 〈α, β〉 = −3/2. The other positive roots are (α + β), (2α + β),
(3α+ β), and (3α+ 2β). Notice that the roots α and α+ β have the same
length and have an angle of 3π/2 between them. So together with their
sum 2α + β, they form a copy of the sl3 root system. The three terms
corresponding to the three pairs of roots among these roots will cancel, as
in the sl3 case. Similarly, the roots (3α+β) and β have the same length and
have an angle of 3π/2 between them, so, together with their sum, (3α+ 2β)
they form a copy of the sl3 root system, and the three terms in the sum
corresponding to the three pairs among these roots will also cancel. The
remaining six pairs of distinct, non-orthogonal postitive roots are (α, 3α+β),
(α, β), (3α+β, 2α+β), (2α+β, 3α+2β), (3α+2β, α+β), and (α+β, β). We
shall see that the six terms corresponding to these pairs cancel as a group.
After clearing denominators, the relevant sum is

〈α, β〉 · (α+ β)(2α+ β)(3α+ β)(3α+ 2β)

+ 〈α, 3α+ β〉 · β(α+ β)(2α+ β)(3α+ 2β)

+ 〈3α+ β, 2α+ β〉 · αβ(α+ β)(3α+ 2β)

+ 〈2α+ β, 3α+ 2β〉 · αβ(α+ β)(3α+ β)

+ 〈3α+ 2β, α+ β〉 · αβ(2α+ β)(3α+ β)

+ 〈α+ β, β〉 · α(2α+ β)(3α+ β)(3α+ 2β).

Evaluating the pairings and factoring out (3/2), this is

− (α+ β)(2α+ β)(3α+ β)(3α+ 2β) + β(α+ β)(2α+ β)(3α+ 2β)

+ αβ(α+ β)(3α+ 2β) + αβ(α+ β)(3α+ β)

+ αβ(2α+ β)(3α+ β) + α(2α+ β)(3α+ β)(3α+ 2β).

Expanding,

− 18α4 − 45α3β − 40α2β2 − 15αβ3 − 2β4

+ 6α3β + 13α2β2 + 9αβ3 + 2β4

+ 3α3β + 5α2β2 + 2αβ3

+ 3α3β + 4α2β2 + αβ3

+ 6α3β + 5α2β2 + αβ3

+ 18α4 + 27α3β + 13α2β2 + 2αβ3.
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This sum is zero. �

Proposition A.2. For any complex simple Lie algebra g, the following sum

over all pairs (β, γ) of distinct positive roots is zero:
∑

β 6=γ
〈β,γ〉
β γ = 0.

Proof. Let I be the indexing set {(β, γ)} of pairs of distinct, non-orthogonal
positive roots. For each (β, γ) ∈ I, let Rβ,γ be the two-dimensional root
system generated by β and γ. For such a root system R, let IR be the set of
pairs of distict, non-orthogonal positive roots, where positivity is inherited
from the ambient g. The collection J of all such IR is a cover of I. We refine
J to a subcover J ′ of disjoint sets, in the following way.

For any pair IR and IR′ of sets in J with nonempty intersection, there is a
two-dimensional root system R′′ such that IR′′ contains IR and IR′ . Indeed,
letting (β, γ) and (β′, γ′) be pairs in I generating R and R′ respectively, the
nonempty intersection of IR and IR′ implies that there is a pair (β′′, γ′′)
lying in both IR and IR′ . Since R and R′ are two-dimensional and β′′ and
γ′′ are linearly independent, all six roots lie in a plane. Since all six roots lie
in the root system for g, they generate a two-dimensional root system R′′
containing R and R′, and IR′′ ⊃ IR, IR′ . Thus we refine J to a subcover
J ′: if IR in J intersects any IR′ in J , replace IR and IR′ with the set
IR′′ described above. The sets IR in J ′ are mutually disjoint, and, for any
(β, γ) ∈ I, there is a root system R such that (β, γ) ∈ IR ∈ J ′, thus

∑
(β,γ)∈ I

〈β, γ〉
β γ

=
∑

IR ∈ J ′

∑
(β,γ)∈ IR

〈β, γ〉
β γ

.

By the classification of complex simple Lie algebras of rank two, R is iso-
morphic to the root system of sl3, sp2, or g2. Thus, by Proposition A.1, the
inner sum over IR is zero, proving that the whole sum is zero.

Note that the refinement is necessary, as there are copies of sl3 inside g2.
Note also that the only time the root system of g2 appears is in the case of
g2 itself, since, by the classification, g2 is the only root system containing
roots that have an angle of π/6 or 5π/6 between them. �

Remark A.2. See [24], Lemma 2, for a proof of Proposition A.2 when G is
not necessarily complex.

Theorem A.1. For a complex semi-simple Lie group G, the function π+ :
a∗ → R given by π+(µ) =

∏
α>0〈α, µ〉 where the product is taken over all

postive roots, counted without multiplicity, is harmonic with respect to the
Laplacian naturally associated to the pairing on a∗.

Proof. This follows immediately from Lemma A.1, Remark A.1, and Propo-
sition A.2. �
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Appendix B. Evaluating the integral

Proposition B.1. For ν > n/2, Re(z) > 0, x ∈ Rn,

Iz(x) =

∫
Rn

ei〈ξ,x〉

(|ξ|2 + z2)ν
dξ =

πn/2

2ν−n/2−1Γ(ν)

(
|x|
z

)ν−n/2
Kν−n/2(|x|z).

In particular, when n is odd and ν = n+1
2 ,

Iz(x) =
π(n+1)/2

(n−1
2 )!

e−|x| z

z

(
ν = n+1

2 ∈ Z
)

and when n is even and ν = n
2 + 1,

Iz(x) =
πn/2

(n2 )!

|x|K1(|x| z)
z

(
ν = n

2 + 1 ∈ Z
)
.

Proof. Since the integral is rotation-invariant, we may assume 〈ξ, x〉 =
|x| ξ1, where ξ = (ξ1, . . . , ξn). Then, using the Gamma function, we may
rewrite the integral as∫

Rn

ei〈ξ,x〉

(|ξ|2 + z2)ν
dξ =

∫
Rn

ei|x|ξ1

(|ξ|2 + z2)ν
dξ

=
π(n−1)/2Γ(ν − n−1

2 )

Γ(ν)

∫
R

ei|x|ξ1

(ξ2
1 + z2)ν−(n−1)/2

dξ1.

This integral can be expressed as a modified Bessel function:∫
R

eiAt

(t2 + z2)s
dt =

√
2π

2s−1Γ(s)

(
A

z

)s−1/2

Ks−1/2(Az)

for Re(s) > 1
2 ,Re(z) > 0, A > 0. In particular, when s = ` + 1

2 is a half-
integer: ∫

R

eiAt

(t2 + z2)`+1/2
dt =

2 · `!
(2`)!

(
A

2z

)`
K`(Az)

for ` ∈ N,Re(z) > 0, A > 0, and, when s = `+ 1 is an integer:∫
R

eiAt

(t2 + z2)`+1
dt =

πe−Az

z2`+1
P`(Az)

for ` ∈ Z≥0,Re(z) > 0, A > 0, where P`(x) is a degree ` polynomial with
coefficients given by

ak =
(2`− k)!

22`−k`!(`− k)!k!
.

Specializing to ν = n+1
2 and ν = n

2 + 1 yields the desired conclusions. �
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