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Invariance under bounded analytic
functions: generalizing shifts

Ajay Kumar, Niteesh Sahni and Dinesh Singh

Abstract. In a recent paper, one of the authors — along with co-
authors — extended the famous theorem of Beurling to the context of
subspaces that are invariant under the class of subalgebras of H∞ of the
form IH∞, where I is the inner function z2. In recent times, several
researchers have replaced z2 by an arbitrary inner function I and this
has proved important and fruitful in applications such as to interpolation
problems of the Pick–Nevanlinna type. Keeping in mind the great deal
of interest in such problems, in this paper, we provide analogues of the
above mentioned IH∞ related extension of Beurling’s theorem in the
setting of the Banach space BMOA, in the context of uniform algebras,
on compact abelian groups with ordered duals and the Lebesgue space on
the real line. We also provide a significant simplification of the proof of
Beurling’s theorem in the setting of uniform algebras and a new proof of
Helson’s generalization of Beurling’s theorem in the context of compact
abelian groups with ordered duals.
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1. Introduction and statement of main theorem
(Theorem C)

The results carried in this article stem from the famous and fundamen-
tal theorem of Beurling, [4], related to the characterization of the invariant
subspaces of the operator of multiplication by the coordinate function z —
also known as the shift operator — on the classical Hardy space H2 of the
open unit disk. This invariance is also equivalent to invariance under mul-
tiplication by each element of the Banach algebra H∞ of bounded analytic
functions on the disk, see [19, Lemma, p. 106]. The impetus for this arti-
cle is the recent extension (on the open disk) of Beurling’s theorem to the
problem of characterizing invariant subspaces on H2 where the invariance is
under the context of multiplication by each element of the subalgebra IH∞

of H∞, where I is any inner function, i.e., I has absolute value 1 almost
everywhere on the boundary T of the open unit disk. Such an extension has
had important applications to interpolation problems and related issues for
which we refer to [3], [6], [11], [14], [2], [20] and [21].

Our principal objective in this paper is to prove versions of the above
mentioned extension of Beurling’s theorem in the setting of the Banach
space BMOA, the Hardy spaces on uniform algebras, on compact abelian
groups and on the Lebesgue space of the real line. When dealing with
uniform algebras, we first present a new, much simplified and elementary
proof of Beurling’s theorem on uniform algebras [12, p. 131]. We do this
by eliminating, in the context of the Hardy spaces of uniform algebras,
the use of a deep result of Kolmogoroff’s on the weak 1-1 nature of the
conjugation operator and also by eliminating the complicated technicalities
of uniform integrability. Later on, in Section 5, we also present a new proof of
the Helson–Lowdenslager version of Beurling’s theorem on compact abelian
groups (see [16], [17]).

With the purpose of making things clearer, we state below Beurling’s
theorem on the open unit disk and two other connected theorems that are
relevant to the rest of this paper. All three theorems below are in the setting
of the Hardy spaces of the open unit disk. At appropriate places we shall
state the relevant versions of these theorems in the context of various Hardy
spaces (mentioned above) and on BMOA. Our key objective is to show
in the rest of the paper that the Theorem C below has valid versions in
various Hardy spaces and on BMOA. It is this theorem that has proved to
be important in interpolation problems of the open disk.

Let D denote the open unit disk and let T be the unit circle in the complex
plane C. We use Hp(D), 1 ≤ p < ∞ to denote the classical Hardy space of
analytic functions inside the unit disk D and H∞(D) is the space of bounded
analytic functions on D. For 1 ≤ p ≤ ∞, Lp denotes the Lebesgue space on
the unit circle T and Hp stands for the closed subspace of Lp which consists
of the functions in Lp whose Fourier coefficients for the negative indices
are zero. Due to the fact that there is an isometric isomorphism between
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Hp(D) and Hp, on certain occasions we will identify Hp(D) with Hp without
comment (see [19]).

The shift operator S on the Hardy space H2, as mentioned above, is
defined as (Sf)(z) = zf(z), for all z ∈ T and all f in H2. The same
definition extends to all Hardy spaces and S is an isometry on all of them.
In fact, the operator S is well defined on the larger Lebesgue spaces Lp of
which the Hardy spaces are closed subspaces and it is an isometry here as
well. The space L2 is a Hilbert space under the inner product

〈f, g〉 =

∫
T

f(z)g(z)dm

where dm is the normalized Lebesgue measure. A proper nontrivial closed
subspace M of a Banach space X is said to be invariant under a bounded
linear transformation (operator) T acting on X if T (M) ⊆ M. Invariant
subspaces and their characterization play an import role in operator theory
and have numerous applications.

Note. All further necessary terminology and notation are given within the
relevant sections that shall follow. Throughout the text, closp stands for the
closure in p-norm (weak-star when p =∞) and [ . ] for the span.

Theorem A (Beurling’s Theorem, [4]). Every nontrivial shift invariant
subspace of H2 has the form φH2, where φ is an inner function.

Theorem B (Equivalent version of Beurling’s Theorem, [19, Lemma, p.
106]). A closed subspace of H2 is shift-invariant iff it is invariant under
multiplication by every bounded analytic function in H∞.

Theorem C (Extension of Beurling’s Theorem, [28, Theorem 3.1]). Let I be
an inner function and letM be a subspace of Lp, 1 ≤ p ≤ ∞ that is invariant
under IH∞. Either there exists a measurable set E such that M = χEL

p

or there exists a unimodular function φ such that φIHp ⊆ M ⊆ φHp. In
particular, if p = 2, then there exists a subspace W ⊆ H2 	 IH2 such that
M = φ(W ⊕ IH2).

2. A brief preview

In Section 3, we present an analogue of Theorem C in the setting of the
space BMOA. In Section 4, we present a simplification of the proof of
Beurling’s theorem and an analogue of Theorem C in the setting of uniform
algebras. In Section 5, we produce a new and simple proof of the Helson–
Lowdenslager analogue of Beurling’s theorem and a version of Theorem C
on compact abelian groups with ordered duals. Section 6 describes an avatar
of Theorem C for the Lebesgue space of the real line.
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3. Theorem C in the context of BMOA

Let f ∈ H1, then we say that f ∈ BMOA if

‖f‖∗ = sup
L

1

|L|

∫
L

|f − fL|dθ <∞

where L is a subarc of T, |L| is the normalized Lebesgue measure of L and

fL = 1
|L|
∫
L

fdθ. This ‖.‖∗ is a pseudo norm. The space BMOA is a Banach

space under the norm ‖f‖ = ‖f‖∗ + |f(0)| and BMOA is the dual of H1.
The duality is due to a famous theorem of C. Fefferman which we state
below.

Fefferman’s Theorem (Disk version, [13, p. 261]). Each f ∈ BMOA is a
linear functional on H1 and its action is given by

f(g) = lim
r→1−

∫
T

f(reiθ)g(reiθ)dθ, for all g ∈ H1.

This duality induces the weak-star topology on BMOA. The weak star
closed subspaces of BMOA invariant under the operator of multiplication
by the coordinate function z are well known, see [8], [30] and [31]. It is
also easy to see that the appropriate version of Theorem B is valid in this
context, i.e., the shift invariant subspaces are identical to those that are
invariant under multiplication by each element of the algebra of multipliers
of BMOA (see Lemma 3.4) which we call the multiplier algebra of BMOA
and which we denote by Mbmoa. The point to be noted in the context of the
space BMOA is that in our version of Theorem C for this section, we replace
H∞ (of the original Theorem C) by Mbmoa. This is as it should be for H∞ is
the multiplier algebra of H2 and Mbmoa is the multiplier algebra of BMOA.
Additionally we replace the arbitrary inner function I of Theorem C by any
arbitrary finite Blaschke factor B(z) since these are the only inner functions
that reside inside of Mbmoa. The collection Mbmoa is well known through
the work of Stegenga [33]. This enables us to present here the appropriate
version of Theorem C in the setting of BMOA. It will be relevant to point
out some important and interesting references connected with the context
of BMOA and this section such as [1], [9], [22], [23], [24], [25], [26] and [27].

We call a positive measure µ on the open unit disk, a Carleson measure
if ∃ a positive constant Nµ such that µ(Sh) ≤ Nµh, for all h ∈ (0, 1). Here

Sh = {reiθ : 1− h ≤ r < 1, |θ − θ0|}.

Remark 3.1. We will frequently be using the fact, given in Theorem 3.4,
in [13, p. 233], that

f ∈ BMOA ⇐⇒ dµf = |f ′(z)|2(1− |z|2)dxdy
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is a Carleson measure and the smallest constant Nµf is such that Nµf is
equivalent to the pseudo norm ‖f‖2∗.

Since the paper [7] is not easily available we reproduce the details of the
following two lemmas from it which are needed by us. While proving the
forthcoming Lemma, we will use K to denote a constant which need not be
the same at each occurrence. Let ft(z) = f(tz), for t ∈ (0, 1) and z ∈ D,
where f is any function analytic inside D. We know thatH∞ ⊂ BMOA ⊂ B,
where B is the Bloch space. An analytic function f on D is said to be a
Bloch function if sup

z
|f ′(z)|(1− |z|2) <∞.

Lemma 3.2. If f ∈ B and g ∈ BMOA, then for z = reiθ in D:

(i) |f(z)− f(tz)| ≤ K. log
(

1−rt
1−r

)
, where K is independent of t.

(ii)
∫ 1

0 log2
(

1−rt
1−r

)
1−r

(1−rt)2dr < 1, for all t.

(iii)
∫ ∫

Sh
|g′t(f − ft)|2(1− |z|2)dxdy < Kh; where K is independent of t.

(iv) ‖gt‖∗ ≤ K, for some K independent of t.

Proof. (i) Let f ∈ B. Then

sup
z
|f ′(z)|(1− |z|2) <∞ and |f(z)− f(tz)| =

∣∣∣∣∫ z

tz
f ′(r)dr

∣∣∣∣ .
This means

|f(z)− f(tz)| ≤
∫ r

tr

K

1− x
dx = K. log

(
1− rt
1− r

)
.

(ii) Taking log
(

1−rt
1−r

)
= x, in the integral,

∫ 1
0 log2

(
1−rt
1−r

)
1−r

(1−rt)2dr, the

integral becomes
∫∞

0
x2e−x

ex−x dx. Since x ≤ ex − 1 ≤ ex − t, for 0 < t < 1, the

value of this integral will be less than
∫∞

0 xe−xdx = 1.

(iii) From part (i), we see that |f(z)−f(tz)|2 ≤ K. log2
(

1−rt
1−r

)
. Thus the

integral ∫ ∫
Sh

|f(z)− f(tz)|2|g′t|2(1− |z|2)dxdy

≤ K
∫ ∫

Sh

|g′t|2 log2

(
1− rt
1− r

)
(1− r2)dxdy

≤ K
∫ ∫

Sh

log2

(
1− rt
1− r

)
(1− r)

(1− rt)2
dxdy

≤ K
∫ θ0+h

θ0−h

∫ 1

0
log2

(
1− rt
1− r

)
(1− r)

(1− rt)2
drdθ

≤ Kh.
(iv) By Fefferman’s theorem, for each g in BMOA there exists functions

ϕ and ψ in L∞ such that g = ϕ+ ψ̃, where ψ̃ is the harmonic conjugate of
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ψ. So we can write, gt = ϕt + ψ̃t. Thus

‖gt‖∗ ≤ ‖ϕt‖∗ + ‖ψt‖∗ ≤ ‖ϕ‖∞ +K.‖ψ‖∞. �

Let [f ] denote the weak-star closure of {pf : p is a polynomial} inBMOA.

Lemma 3.3. If f ∈ BMOA and g ∈ H∞, then fg ∈ BMOA implies
fg ∈ [f ].

Proof. Even though this proof is also available in [7, Lemma 2], we have
chosen to reproduce the proof in details, since this technique is likely to
prove useful in other situations. First we shall show that the integral

J =

∫ ∫
Sh

|(gtf)′|2(1− |z|2)dxdy

is uniformly bounded for all t ∈ (0, 1). Note that

J ≤ K
(∫ ∫

Sh

|gtf ′|2(1− |z|2)dxdy +

∫ ∫
Sh

|g′tf |2(1− |z|2)dxdy

)
.

Take J1 =
∫ ∫

Sh
|gtf ′|2(1−|z|2)dxdy and J2 =

∫ ∫
Sh
|g′tf |2(1−|z|2)dxdy. We

claim that both J1 and J2 are finite. By Remark 3.1, f ∈ BMOA implies

µf (Sh) =

∫ ∫
Sh

|f ′(z)|2(1− |z|2)dxdy ≤ Kh, ∀ h ∈ (0, 1).

As g ∈ H∞, so gt also lies inside H∞ and ‖gt‖∞ ≤ ‖g‖∞, therefore

J1 =

∫ ∫
Sh

|gtf ′|2(1− |z|2)dxdy

≤ ‖g‖2∞
∫ ∫

Sh

|f ′(z)|2(1− |z|2)dxdy ≤ Kh.

Now

|g′tf |2 = |g′tf − g′tft − gtf ′t + (gtft)
′|2

≤ K
(
|g′t(f − ft)|2 + |gtf ′t |2 + |(gtft)′|2

)
.

Put

J2,1 =

∫ ∫
Sh

|g′t(f − ft)|2(1− |z|2)dxdy,

J2,2 =

∫ ∫
Sh

|gtf ′t |2(1− |z|2)dxdy,

J2,3 =

∫ ∫
Sh

|(gtft)′|2(1− |z|2)dxdy.

By part (iii) in Lemma 3.2, we have

J2,1 =

∫ ∫
Sh

|g′t(f − ft)|2(1− |z|2)dxdy < Kh.
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By Remark 3.1 and part (iv) in Lemma 3.2, we have

J2,2 =

∫ ∫
Sh

|gtf ′t |2(1− |z|2)dxdy,

≤ ‖g‖2∞
∫ ∫

Sh

|f ′t(z)|2(1− |z|2)dxdy

≤ ‖g‖2∞‖ft‖2∗.h
≤ Kh.

Since gtft is bounded for each t ∈ (0, 1), gtft ∈ BMOA. Again using
Remark 3.1 and part (iv) in Lemma 3.2, we have

J2,3 =

∫ ∫
Sh

|(gtft)′|2(1− |z|2)dxdy

≤ K.
∫ ∫

Sh

(
|gtf ′t |2 + |g′tft|2

)
(1− |z|2)dxdy

= K

(∫ ∫
Sh

|gtf ′t |2(1− |z|2)dxdy +

∫ ∫
Sh

|g′tft|2(1− |z|2)dxdy

)
≤ K

(
‖g‖2∞‖ft‖2∗.h+ ‖ft‖2∞‖gt‖2∗.h

)
≤ K

(
‖g‖2∞‖ft‖2∗.h+ ‖ft‖2∗‖gt‖2∗.h

)
≤ Kh.

By boundedness of all the above integrals, we have

µgtf (Sh) = J ≤ K(J1 + J2) ≤ (J1 + J2,1 + J2,2 + J2,3) ≤ Kh.

Note that each of K’s by virtue of Lemma 3.2 is independent of all t ∈
(0, 1), therefore µgtf is uniformly bounded. Thus for each t ∈ (0, 1), µgtf
is a Carleson measure and by Remark 3.1, gtf ∈ BMOA. Since {gtf} is
uniformly bounded and converges point wise to gf as t → 1, gtf converges
weak-star to gf in BMOA.

Now it remains to show that for each fixed t ∈ (0, 1), gtf ∈ [f ]. Observe
that gt is analytic on D, so there exists a sequence of polynomials Pn such
that Pn converges to gt and P ′n converges to g′t, uniformly on D . Write
(Pnf)′ = P ′nf + Pnf

′ and

µPnf (Sh) =

∫ ∫
Sh

|(Pnf)′|2(1− |z|2)dxdy.

As seen above for J2,3, we have µPnf (Sh) ≤ Kh. Here K is independent
of n because both Pn and P ′n are uniformly bounded. This means Pnf
is uniformly bounded in BMOA norm and hence by H1-BMOA duality,
{Pnf} is a uniformly bounded sequence of linear functional onH1. Also, Pnf
converges pointwise to gtf , so Pnf converges weak-star to gtf in BMOA.
For each n, Pnf ∈ [f ] and gtf is the weak-star limit of Pnf , so gtf ∈ [f ] and
hence gf ∈ [f ]. �
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The following lemma shows that invariance under multiplication by z in
BMOA is equivalent to invariance under the multiplier algebra Mbmoa.

Lemma 3.4. IfM is a weak-star closed subspace of BMOA, then zM⊂M
if and only if ϕM⊂M, for each ϕ ∈Mbmoa.

Proof. It is easy to see that zM⊂M, if ϕM⊂M, for every ϕ ∈Mbmoa,
since z ∈Mbmoa. To prove the converse, let us take an element ϕ inside the
multiplier algebra Mbmoa. By Theorem 1.2 in [33], we see that ϕ ∈ H∞.
Let f ∈ M. Now ϕf ∈ BMOA, because ϕ ∈ Mbmoa. So by Lemma 3.3,
ϕf ∈ [f ]. But [f ] ⊂M, because zM⊂M. So ϕf ∈M. �

Our proof of the main theorem of this section (Theorem 3.7) will make
use of the following description of an orthonormal basis for H2 in terms of
a finite Blaschke factor B(z) of order n:

Let α1, . . . , αn ∈ D, and B(z) =
n∏
i=1

z−αi
1−αiz

be a Blaschke factor of order

n. We assume that α1 = 0. Let k̂i(z) =

√
1−|αi|2
1−αiz

, B0(z) = 1 and Bi(z) =
i∏

j=1

z−αj

1−αjz
, then Bn(z) = B(z), i = 1, 2, . . . , n. Define ej,m = k̂j+1BjB

m;

0 ≤ j ≤ n− 1,m = 0, 1, 2, . . . .

Theorem 3.5. [32, Theorem 3.3]. The set {ej,m} is an orthonormal basis
for H2.

The space H2 is decomposed in terms of its closed subspace H2(B), where
H2(B) stands for the closed span of the set {1, B(z), B2(z), . . . } in H2.

Theorem 3.6. [32, Corollary 3.4].

H2 = e00H
2(B)⊕ e10H

2(B)⊕ · · · ⊕ en−1,0H
2(B).

Now we prove the main result of this section.

Theorem 3.7. Let B(z) be a finite Blaschke factor and M be a weak-star
closed subspace of BMOA which is invariant under B(z)Mbmoa. Then,
there exists a finite dimensional subspace W of BMOA and an inner func-
tion ϕ such that

M = ϕ (W ⊕B(z)BMOA) ∩BMOA.

Proof. First, we shall show that M has nonempty intersection with H∞.
Using the fact that {ej,0B(z)m : m = 0, 1, 2, . . . } is an orthonormal basis, in
Theorem 3.6, any f ∈M can be written as

(3.1) f(z) = e00f0(B(z)) + · · ·+ en−1,0fn−1(B(z)),

for some f0(z), . . . , fn−1(z) in H2. For k = 0, 1, . . . , n−1, we define functions

g(k)(z) = exp (−|fk(z)| − i|fk(z)|∼) ,
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where ∼ stands for the harmonic conjugate. Consider the function

g(z) = g(0)(B(z)) . . . g(n−1)(B(z)).

It is easy to see that g(z)f(z) ∈ H∞. Define

gt(z) = g(tz) =
n−1∏
k=0

g(k)(t.B(z))

for t ∈ (0, 1).

For each such fixed t, g(k)(tz) is analytic on D, so there exists a sequence of

polynomials P
(k)
s (z) that converges uniformly to g(k)(tz) and hence there ex-

ists sequence P
(k)
s (B(z)) that converges uniformly to g(k)(tB(z)) as s→∞.

Taking Ps(z) =
∏n−1
k=0 P

(k)
s (B(z)) and gt(z) = g(tz) =

∏n−1
k=0 g

(k)(tB(z)), we
see that Ps(z) converges to gt(z) uniformly and hence P ′s(z) converges uni-
formly to g′t(z). As seen in Lemma 3.3, Psf is uniformly bounded sequence
of linear functionals and converges pointwise to gtf as s → ∞. Therefore,
Psf converges weak-star to gtf in BMOA. For each natural number s,
Psf ∈ M because M is invariant under multiplication by B(z). In addi-
tion, M is weak-star closed, so the weak-star limit gtf also belongs to M.
Again, as seen in Lemma 3.3, gtf converges weak-star to gf , so gf also
belongs to M. This establishes the claim that M∩H∞ is nonempty.

The spaceM∩H∞ is a weak-star closed subspace of H∞ and is invariant
under the algebra BH∞, so by Theorem 3.1 in [28], there exists an inner
function ϕ such that

(3.2) ϕB(z)H∞ ⊆M∩H∞ ⊆ ϕH∞.
It has been established in Theorem 4.1, in [30] that

IH∞ = IBMOA ∩BMOA

for any inner function I. Therefore,

(3.3) ϕB(z)BMOA ∩BMOA ⊆M∩H∞ ⊆ ϕBMOA ∩BMOA.

The bar in (3.3) denotes weak-star closure in BMOA.
We claim that M∩H∞ = M. Consider the decomposition 3.1 for any

f ∈M. For each k = 0, 1, . . . , n− 1, define a sequence ofH∞ functions

g(k)
m (z) = exp

(
−|fk(z)| − i|fk(z)|∼

m

)
.

Define

Om(z) =
n−1∏
k=0

g(k)
m (B(z)).

It can be seen that Om(z)f(z) ∈ H∞, and Om(z)→ 1 a.e.
As seen above, for each fixed m, Om(tz)f(z) ∈ M. Also, Om(tz)f(z)

converges weak-star to Om(z)f(z) in BMOA, so Om(z)f(z) ∈M and hence
in M∩H∞.
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Now, Om(z)f(z)→ f(z) a.e. and

‖Om(z)f(z)‖BMOA ≤ ‖Om(z)f(z)‖∞ ≤ K
for some constant K. By Dominated Convergence Theorem, for every ε > 0,∫

T
|Om(z)f(z)− f(z)| < ε for sufficiently large m.

This means that for each polynomial p ∈ H1 with upper bound Mp, we can
find sufficiently large m,n such that∫

T
|Om(z)f(z)−On(z)f(z)| < ε

|Mp|
.

So∫
T
|Om(z)f(z)p(z)−On(z)f(z)p(z)| =

∫
T
|Om(z)f(z)−On(z)f(z)||p(z)|

<
ε

|Mp|
.|Mp| = ε.

Thus (Omf) (p) is a Cauchy sequence for each polynomial p inH1. Moreover,
‖Om(z)f(z)‖BMOA ≤ K. By Ex. 13, in [5, p. 76], {Om(z)f(z)} converges
weak-star to some h(z) in BMOA.

We claim that h(z) coincides with f(z). Note that (Omf)(k) converges
weak-star to h(k), for each k in H1. So (Omf)(kz0) converges weak-star
to h(kz0), where kz0 = 1

1−z̄0z is the reproducing kernel in H1, and z0 is an

arbitrary but fixed element of D. Therefore, Om(z0)f(z0) = (Omf)(kz0)
converges weak-star to h(z0) = h(kz0). Since z0 was arbitrarily chosen, so
Om(z)f(z) converges weak-star to h(z), for each z ∈ D. But Om(z)f(z)
converges to f(z) a.e., so h = f a.e.

This proves that Omf converges to f weak-star in BMOA, and hence
M∩H∞ =M. The inequality (3.3) now reads

(3.4) ϕB(z)BMOA ∩BMOA ⊂M ⊂ ϕBMOA ∩BMOA.

Let M stand for the closure of M in H2. Taking closure in H2 throughout
(3.4) we get

(3.5) ϕB(z)H2 ⊂M ⊂ ϕH2.

From (3.5), we see thatM	ϕB(z)H2 ⊂ ϕ(H2	B(z)H2). So, there exists

a subspace W1 of H2	B(z)H2 such thatM	ϕB(z)H2 = ϕW1. Moreover,
dimW1 ≤ n. Therefore

M = ϕW1 ⊕ ϕB(z)H2.

Since M⊂M , we have the following form for M:

(3.6) M = ϕW ⊕ ϕB(z)N ;

where W is a subspace of W1, and N is a subspace of H2.
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Now H2	B(z)H2 = {e0,0, e1,0, . . . , en−1,0} ⊂ H∞ and consequently W ⊂
H∞. Thus in Equation (3.6) we have W ⊂ BMOA, and because ϕB(z) is
inner, we also have N ⊂ BMOA.

In light of (3.4) we see that ϕB(z)BMOA ∩ BMOA ⊂ ϕB(z)N . But
N ⊂ BMOA. So ϕB(z)N = ϕB(z)BMOA ∩ BMOA. This completes the
proof of the theorem. �

If we take B(z) = 1, then invariance under Mbmoa is equivalent to in-
variance under the operator S of multiplication by coordinate function z
on BMOA, and the results in [8, Theorem 3.1], [30, Theorem 4.3] and [31,
Theorem C] can be derived as corollaries of the above theorem.

Corollary 3.8. Let M be a weak star closed subspace of BMOA invariant
under S. Then there exists a unique inner function ϕ such that

M = ϕBMOA ∩BMOA.

Replacing B(z) with z, we obtain common invariant subspaces of S2 and
S3 and Theorem 3.1 in [30] is received as corollary of Theorem 3.7.

Corollary 3.9. Let M be weak star closed subspace of BMOA which is
invariant under S2 and S3 but not invariant under S. Then there exists an
inner function I and constants α, β such that

M = IBMOAα,β ∩BMOA.

Proof. This follows by taking B(z) = z and W as subspace of span{1, z}.
�

4. Theorem C in the setting of uniform algebras

Let X be a compact Hausdorff space and let A be a uniform algebra in
C(X), the algebra of complex valued continuous functions on X. Here, by
a uniform algebra we mean a closed subalgebra of C(X) which contains the
constant functions and separates the points of X, i.e., for any x, y ∈ X,
x 6= y, ∃ a function f ∈ A such that f(x) 6= f(y). For a multiplicative
linear functional ϕ in the maximal ideal space of A, a representing measure
m for ϕ is a positive measure on X such that ϕ(f) =

∫
fdm, for all f ∈ A.

We shall denote the set of all representing measures for ϕ by Mϕ. Let W
be a convex subset of a vector space V , an element x ∈ W is said to be a
core point of W if whenever y ∈ V such that x + y ∈ W , then for every
sufficiently small ε > 0, x − εy ∈ W . A core measure for ϕ is a measure
which is a core point of Mϕ.

For 1 ≤ p < ∞, Lp(dm) is the space of functions whose p-th power in
absolute value is integrable with respect to the representing measure m and
Hp(dm) is defined to be the closure of A in Lp(dm). L∞(dm) is the space
of m-essentially bounded functions and H∞(dm) is the weak-star closure of
A in L∞(dm). Let A0 be the subalgebra of A such that

∫
fdm = 0, for all

f ∈ A. Hp
0 (dm) is the closure of A0 in Lp(dm). The real annihilator of A in
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LpR, 1 ≤ p ≤ ∞, is the space Np which consists of functions w in LpR such
that

∫
wfdm = 0, for all f ∈ A. The conjugate function of a function f in

ReH2(dm) is the function f∗ in ReH2
0 (dm) such that f + if∗ ∈ H2(dm).

The conjugation operator is the real linear operator which sends f to f∗.
We call a function I in H∞(dm) inner if |I| = 1 m-almost everywhere.

A subspace M of Lp(dm) is said to be invariant under A if AM ⊆ M or
equivalently A0M⊆M. We sayM is simply invariant if A0M is not dense
in M. We refer to [12] for more details.

Our purpose in the theorem given below is to demonstrate that the The-
orem V.6.1 in [12, pg 131], which is the key result that essentially charac-
terizes the invariant subspaces on uniform algebras, can actually be proved
without the use of Kolmogoroff’s theorem on the

(
Lp, L1

)
boundedness of

the conjugation operator (0 < p < 1) as defined above on uniform algebras
and used in [12] for observing convergence in measure for the conjugate of a
sequence of L1 functions. We also eliminate the use of uniform integrability.
The simplification is enabled since we make use of the geometry of the space
L2 and the annihilating space N2 in L2. In this setting, the conjugation
operator is well defined and bounded without having to take recourse to the
theorem of Kolmogoroff’s. As our proof shows, we also do not use uniform
integrability.

Theorem 4.1. Suppose the set of representing measures for ϕ is finite di-
mensional and m is a core measure for ϕ. Then there is a 1-1 correspondence
between invariant subspaces Mp of Lp (m) and closed (weak star closed if
q = ∞) invariant subspaces Mq of Lq (m) such that Mq = Mp ∩ Lq(dm)
and Mp is the closure in Lp(dm) of Mq, (0 < p < q ≤ ∞).

Proof. It is enough to consider the case q = ∞ since the other values of q
will have an identical proof. Let Mp be an invariant subspace of Lp(dm).
Put M = Mp ∩ L∞(dm). By the Krein–Schmulian criterion, M is weak-

star closed. We show M (in Lp(dm)) is equal to Mp. By definition of N2,

L2 = H2 ⊕H2
0 ⊕N2

c (see [12, p. 105]), therefore in case of real L2, we have

L2
R = ReH2 ⊕ N2. Let us choose any f ∈ Mp and let P

(
|f |

p
2

)
be the

projection in L2
R of |f |

p
2 onto N2. So h = |f |

p
2 − P

(
|f |

p
2

)
∈ ReH2. Let

hn = exp

(
−(h+ ih∗)

n

)
,

where ∗ denotes the conjugation operator. Then hn ∈ H∞(dm) and hnf ∈
Mp ∩ L∞(dm). Further, hnf → f in Lp(dm) since hn → 1 boundedly and
pointwise. This proves Mp ∩ L∞(dm) is dense in Mp.

Now suppose that M is a weak-star closed invariant subspace of L∞(dm)
and let Mp be the closure of M in Lp(dm). We must show that

Mp ∩ L∞(dm) = M.
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Clearly Mp ∩ L∞(dm) is weak-star closed in L∞(dm). Assume that

M  Mp ∩ L∞(dm).

Then there exists g ∈ ⊥M such that g /∈ ⊥Mp ∩ L∞(dm) (g ∈ L1(dm)).
We may assume without loss of generality that g ∈ L∞(dm). This can be
done by considering

g exp

−
(
|g|

1
2 + P

(
|g|

1
2

))
− i
(
|g|

1
2 + P

(
|g|

1
2

))∗
n

 .

Then for each f ∈Mp, there is a sequence (fn) ⊂M such that∫
X

gfndm→
∫
X

gfdm.

But
∫
X

gfndm = 0 so that
∫
X

gfdm = 0. This contradiction implies that

Mp ∩ L∞(dm) = M . �

Theorem V.6.2 in [12, pg 132] is Beurling’s theorem in the setting of
uniform algebras and follows as a corollary to Theorem 4.1 (Theorem V.6.1
in [12]). We state it below and we will use it in the proof of our next theorem
(Theorem 4.3).

Corollary 4.2 (Beurling’s theorem in the setting of uniform algebras, [12,
pg 132]). Let m be a unique representing measure for ϕ. LetMp be a simply
invariant subspace of Lp(dm). Then there is q in Mp such that |q| = 1
almost everywhere and Mp = qHp(dm).

Proof. The proof is identical to Theorem V.6.2 in [12]. �

Let I be an inner function in H∞(dm), then IH∞(dm) is a subalgebra
of H∞(dm). The following theorem is the version of Theorem C in the
setting of uniform algebras, i.e., we characterize the subspaces of Lp(dm),
1 ≤ p ≤ ∞, which are invariant under IH∞(dm).

Theorem 4.3. Let I be an inner function and M be a subspace of Lp(dm),

1 ≤ p ≤ ∞, invariant under IH∞(dm) such that
∫
X

fdm 6= 0, for some f in

M, then
I.qHp(dm) ⊆M ⊆ qHp(dm)

where q is a m-measurable function such that |q| = 1 m-a.e. When p = 2,

M = q (W ⊕ IHp(dm))

for some subspace W of H2(dm).

Proof. Let us take M1 = closp[H
∞(dm)M], where the closure (weak-star

when p =∞) is taken in Lp(dm), then

(4.1) IM1 = I.closp[H
∞(dm)M] = closp[IH

∞(dm)M].
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Since H∞(dm) is a Banach algebra under sup-norm, A0M1 ⊆M1. This
implies M1 is an invariant subspace of Lp(dm). Also M ⊆ M1, so by

hypothesis it follows
∫
X

fdm 6= 0, for some f in M1, and hence A0M1 is

not dense inM1. Therefore,M1 is simply invariant. Thus by Corollary 4.2
(Theorem V.6.2 in [12]), M1 = qHp(dm) for some L∞(dm) function q with
|q| = 1. So, (4.1) becomes

I.qHp(dm) ⊆M ⊆ qHp(dm).

When p = 2, then there exists a closed subspace W1 ⊂M such that

M = W1 ⊕ I.qH2(dm).

ButM⊆ qH2(dm), so W1 = qW , where W is a closed subspace of H2(dm),
because q is unitary. Therefore

(4.2) M = q(W ⊕ IH2(dm)).

and the proof is complete. �

When X = T the unit circle, then the algebra A becomes the disk algebra
and Lp(dm) = Lp, and we obtain the following part of Theorem 3.1, in [28],
as a corollary.

Corollary 4.4. Let I be an inner function and M be a subspace of Lp,
1 ≤ p ≤ ∞, invariant under IH∞ but not invariant under H∞, then there
exists a unimodular function q such that I.qHp ⊆ M ⊆ qHp. When p = 2,
there exists W ⊆ H2 	 IH2 and M = q(W ⊕ IH2).

5. Theorem C for compact abelian groups

We use K to denote a compact abelian group dual to a discrete group Γ
and σ to denote the Haar measure on K which is finite and normalized so
that σ(K) = 1. For each λ in Γ, let χλ denote the character on K defined
by χλ(x) = x(λ), for all x in K. Lp(dσ), 1 ≤ p < ∞ denotes the space of
functions whose pth- power in absolute value is integrable on K with respect
to the Haar measure σ. L∞(dσ) is the space of essentially bounded functions
w.r.t. the Haar measure σ. For p = 2, the space L2(dσ) is a Hilbert space
with inner product

〈f, g〉 =

∫
K

f(x)g(x)dσ, ∀ f, g ∈ L2(dσ)

and the set of characters {χλ}λ∈Γ forms an orthonormal basis of L2(dσ).
Every f in L1(dσ) has a Fourier series in terms of {χλ}λ∈Γ, i.e.,

f(x) ∼
∑
λ∈Γ

aλ(f)χλ(x), where aλ(f) =

∫
K

f(x)χλ(x)dσ.
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Suppose Γ+ is a semigroup such that Γ is the disjoint union Γ+ ∪ {0} ∪ Γ−,
where 0 denote the identity element of Γ and Γ− = −Γ+. We say the
elements of Γ+ are positive and those of Γ− are negative. The group Γ
induces an order under these conditions. Details can be found in [29].

For a subspace M of Lp(dσ), we set

M− = closp

[⋃
λ>0

χλ.M

]
and Mλ = χλ.M.

We say a function in L2(dσ) is analytic if aλ(f) = 0 for all λ < 0. H2(dσ)
is the subspace of L2(dσ) consisting of all analytic functions in L2(dσ). For
each λ ∈ Γ, χλ is an isometry on H2(dσ) and the adjoint operator of χλ is

χ∗λf(x) = Pχ−λf(x)

where P is the orthogonal projection of L2(dσ) on H2(dσ).
A closed subspace M of a Hilbert space H is said to be an invariant

subspace under {χλ}λ∈Γ1 if χλM ⊂ M for all λ in Γ1, where Γ1 ⊆ Γ such
that Γ1 ∩ Γ−1

1 = {0} and Γ1Γ−1
1 = Γ. M is said to be doubly invariant if

χλM ⊂ M and χ∗λM ⊂ M for all λ in Γ1, where χ∗λ denote the adjoint
operator of χλ. We call a semigroup {χλ}λ∈Γ1 of operators unitary if χλ is
a unitary operator for each λ ∈ Γ1 and quasi-unitary if the closure of ⋃

λ/∈Γ−1
1

χλ(H)

 = H.

A semigroup {Ts}s∈Γ1 is called totally nonunitary if for any doubly invariant
subspace M for which {Ts|M}s∈Γ1 is quasi-unitary, we have M = {0}.

First we present a new proof of the Helson–Lowdenslager generalization of
Beurling’s theorem in the setting of compact abelian groups. The statement
of this theorem, in [16], runs as follows:

Theorem 5.1 ([16, Theorem 1]). Let M be an invariant subspace larger
than M−. Then M = q.H2, where q is measurable on K and |q(x)| = 1
almost everywhere.

Our proof relies on the Suciu decomposition for a semigroup of isometries
as stated below.

Theorem 5.2 (Suciu’s Decomposition, [34, Theorem 2]). Let {Ts}s∈Γ1 be a
semigroup of isometries on a Hilbert space H. The space H may be decom-
posed uniquely in the form

H = Hq ⊕Ht

in such a way that Hq and Ht are doubly invariant subspaces, {Ts|Hq}s∈Γ1

is quasi-unitary and {Ts|Ht}s∈Γ1 is totally nonunitary.
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Theorem 5.3. Let M be a closed subspace of L2(dσ) and M− (M. If M
is invariant under the semigroup of characters {χλ}λ≥0 (i.e., λ ∈ Γ+∪{0}),
then

M = ϕH2(dσ)

where ϕ is a σ-measurable function and |ϕ(x)| = 1 almost everywhere.

Proof. M is a Hilbert space being a closed subspace of L2(dσ) and each χλ
in the semigroup {χλ}λ≥0 is an isometry on M. By Theorem 5.2, we can
write

(5.1) M = L ⊕
∑
λ≥0

χλ(N )

where N is the orthogonal complement of

clos2

[⋃
λ>0

χλ(M)

]
in L2(dσ) and L is a quasi unitary subspace of L2(dσ). Clearly N is nonzero
otherwise M− =M.

Let ϕ be an element in N . We claim that ϕ is nonzero almost everywhere.
From Equation 5.1, we have

〈χδϕ, χλϕ〉 =

∫
K

χλ−δϕϕ̄dσ = 0 for all δ, λ ∈ Γ+.

This means ∫
K

χγ |ϕ|2dσ = 0 for each nonzero γ ∈ Γ.

and thus ϕ is constant almost everywhere. If we choose ϕ such that ‖ϕ‖ = 1,
then |ϕ| = 1 a.e.

Next we assert thatN is one dimensional. To see this assume the existence
of a ψ in N which is orthogonal to ϕ. Then we have

〈χδϕ, χλψ〉 = 0 for all δ, λ ≥ 0,

which implies ∫
K

χδ−λϕψ̄dσ = 0

and thus ∫
K

χγϕψ̄dσ = 0, γ ∈ Γ.

Therefore, every Fourier coefficient of ϕψ̄ is zero and hence ϕψ̄ = 0 a.e.,
which is possible only when ψ is zero almost everywhere, because ϕ is non-
vanishing almost everywhere. So N is one-dimensional and Equation (5.1)
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can be written as

(5.2) M = L ⊕
∑
λ≥0

χλϕ.

Since L is invariant under {χλ}λ≥0, for any f in L, we have

〈χδf, χλϕ〉 = 0 for all δ, λ ≥ 0.

A similar computation which we did above shows that f = 0 a.e., which in
turn implies L is zero and Equation (5.2) becomes

(5.3) M =
∑
λ≥0

χλϕ.

Now multiplication by ϕ is isometry on L2(dσ), so Equation 5.3 takes the
form

M = ϕH2(dσ)

which completes the proof. �

Now we present an analogue of Theorem C in the setting of compact
abelian groups with ordered duals.

Theorem 5.4. Let M be a closed subspace of Lp(dσ), 1 ≤ p ≤ ∞ and

M̃ = closp

[
∪λ≥0χλ.M

]
. If M̃− ( M̃ and for a fixed inner function I,

χλ.IM⊆M, for each λ ≥ 0, then

IϕHp(dσ) ⊆M ⊆ ϕHp(dσ)

where ϕ is measurable on K and |ϕ| = 1 σ-almost everywhere. When p = 2,
there exists a subspace W ⊆ H2(dσ) such that M = ϕ(W ⊕ IH2(dσ)).

Proof. Since multiplication by I is an isometry on Lp(dσ) and M ⊆ M̃,
we have

I.M̃ = I.closp

⋃
λ≥0

χλ.M

 = closp

⋃
λ≥0

χλ.IM

 ⊆M
and thus we have

(5.4) I.M̃ ⊆M ⊆ M̃.

For δ > 0 in Γ⋃
δ>0

χδ.M̃ =
⋃
δ>0

χδ.closp

⋃
λ≥0

χλ.M

 = closp

[⋃
λ>0

χλ.M

]
⊆ M̃.

Now the subspace M̃ is invariant and also M̃ is larger than M̃− by
hypothesis. Therefore by Theorem 1′, [16, p. 13], M̃ = ϕHp(dσ), where ϕ
is a σ-measurable function and |ϕ| = 1 σ-a.e. Thus Equation (5.4) becomes

I.ϕHp(dσ) ⊆M ⊆ ϕHp(dσ).
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When p = 2, there exists a closed subspace V of M such that

M = V ⊕ IϕH2(dσ).

But V ⊆ M ⊆ H2(dσ), so V = ϕW , where W is a closed subspace of H2,
because ϕ is unitary. Therefore

�(5.5) M = ϕ(W ⊕ IH2(dσ)).

When I = χλ0 , for some λ0 in Γ+, we obtain the following as a corollary
to Theorem 5.4.

Corollary 5.5. Let M be a closed subspace of Lp(dσ), 1 ≤ p ≤ ∞ and

M̃ = closp

[
∪λ≥0χλ.M

]
. If M̃− ( M̃ and for a fixed positive element λ0

in Γ, χλ.M⊆M, for each λ ≥ λ0, then

χλ0 .ϕH
p(dσ) ⊆M ⊆ ϕHp(dσ)

where ϕ is measurable on K and |ϕ| = 1 σ-almost everywhere.

We observe that Theorem 1.3, in [10], becomes a special case of Corol-
lary 5.5, when p = 2. If we take Γ = Z and λ0 = 2, then χλ0 = z2 and
χλM⊆M, ∀ λ ≥ λ0 means invariance under H∞1 . Here H∞1 is a subalgebra
of H∞ which is defined as

H∞1 = {f ∈ H∞ : f ′(0) = 0}.

Corollary 5.6 ([10, Theorem 1.3]). LetM be a norm closed subspace of L2

which is invariant for H∞1 , but is not invariant for H∞. Then there exist
scalars α, β in C with |α|2 + |β|2 = 1 and α 6= 0 and a unimodular function
J , such that M = JH2

αβ.

6. Theorem C for the Lebesgue space of the real line

Let L2(R) denote the space of square integrable functions on the real
line R. We consider H2(R) a closed subspace of L2(R) which consists of
functions whose Fourier transform

F (λ) =

∞∫
−∞

f(x)e−iλxdx

is zero almost everywhere for every λ < 0. A subspace M of L2(R) is
said to be invariant if eiλxM ⊆ M, for all λ > 0 and simply invariant if
eiλxM (M, for λ > 0. If eiλxM =M for all real λ, then we callM doubly
invariant.

In this section, we give an extension along the lines of [10] and [28] of the
Beurling–Lax theorem, [19, p. 114] for the Lebesgue space L2(R) of the real
line.
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Theorem 6.1. Let M be a closed subspace of L2(R). If I is a measurable
function with I(x) = 1 a.e. and eiλxIM ⊆ M, for all λ ≥ 0, then either
there exists a measurable subset E of R such that M = χEL

2(R) or

M = q
(
W ⊕ IH2(R)

)
where q is measurable function on the real line and |q(x)| = 1 almost every-
where.

Proof. Consider the subspace

N = clos2

⋃
λ≥0

eiλxM

 .
Our consideration of N implies thatM is a subspace of N and eiλxN ⊆ N ,
for all λ > 0. Since multiplication by I is an isometry on L2(R) andM is a
closed subspace of L2(R), eiλxIM⊆M, for λ ≥ 0. So

IN = Iclos2

⋃
λ≥0

eiλxM

 = clos2

⋃
λ≥0

eiλxIM

 ⊆M.

Thus we obtain the inclusion

(6.1) IN ⊆M ⊆ N .

If eiλxN = N , for some λ and hence for all λ, then by [19, Theorem, p.
114], N = χEL

2(R), for some fixed measurable subset E of the real line.
Thus, IN = N and by the inclusion in (6.1), we have M = χEL

2(R).
On the other side, if eiλxN ( N , then again by [19, Theorem, p. 114],

N = qH2(R), where q is a measurable function on the real line and |q(x)| = 1
almost everywhere. So

I.qH2(R) ⊆M ⊆ qH2(R).

Now we see that

M	 IqH2(R) ⊆ qH2(R)	 I.qH2(R)

= q
(
H2(R)	 IH2(R)

)
.

So there exists a subspace W ⊆ H2(R)	 IH2(R) such that

qW =M	 IqH2(R)

or we can write

M = q
(
W ⊕ IH2(R)

)
. �

Acknowledgments. The authors are grateful to the referee for making
suggestions and critical remarks that have improved the presentation of the
proof of Theorem 4.1 in the paper. The authors acknowledge the facilities
and library support of the Mathematical Sciences Foundation, Delhi.



1268 AJAY KUMAR, NITEESH SAHNI AND DINESH SINGH

References

[1] Aleksandrov, A. B. Invariant subspaces of the shift operator. An axiomatic
approach. Investigations on linear operators and the theory of functions, XI.
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981),
7–26, 264. MR0629832; J. Sov. Math. 22 (1983), 1695–1708. Zbl 0517.47019,
doi: 10.1007/BF01882574.

[2] Ball, Joseph A.; Bolotnikov, Vladimir; ter Horst, Sanne. A constrained
Nevanlinna–Pick interpolation problem for matrix-valued functions. Indiana Univ.
Math. J. 59 (2010), no. 1, 15–52. MR2666471 (2011d:47037), Zbl 1196.47013,
arXiv:0809.2345, doi: 10.1512/iumj.2010.59.3776.

[3] Ball, Joseph A.; Guerra Huamán, Moisés D. Convexity analysis and the matrix-
valued Schur class over finitely connected planar domains. J. Operator Theory 70
(2013), no. 2, 531–571. MR3138369, Zbl 06254355, doi: 10.7900/jot.2011sep21.1940.

[4] Beurling, Arne. On two problems concerning linear transformations in Hilbert
space. Acta Math. 81 (1948), 17 pp. MR0027954 (10,381e), Zbl 0033.37701,
doi: 10.1007/BF02395019.

[5] Bhatia, Rajendra. Notes on functional analysis. Texts and Readings in Mathemat-
ics, 50. Hindustan Book Agency, New Delhi, 2009. x+237 pp. ISBN: 978-81-85931-89-
0. MR2477477 (2010a:46001), Zbl 1175.46001.

[6] Broschinski, Adam. Eigenvalues of Toeplitz operators on the annulus and Neil
algebra. Complex Anal. Oper. Theory 8 (2014), no. 5, 1037–1059. MR3208801, Zbl
1331.47047, doi: 10.1007/s11785-013-0331-5.

[7] Brown, Leon; Sadek, Jawad. On cyclic vectors in BMOA and VMOA. Izv. Tekhn.
Univ. Plovdiv. Fund. Nauk. Prilozhen. 2 (1996), 15–19. MR1420110 (98k:30046), Zbl
0878.46016.

[8] Brown, Leon; Sadek, Jawad. Invariant subspaces in the space of analytic functions
of bounded mean oscillation. Houston J. Math. 27 (2001), no. 4, 883–886. MR1874679
(2002j:30053), Zbl 1005.30041.

[9] Cima, Joseph A.; Ross, William T. The backward shift on the Hardy space.
Mathematical Surveys and Monographs, 79. American Mathematical Society, Prov-
idence, RI, 2000. xii+199 pp. ISBN: 0-8218-2083-4. MR1761913 (2002f:47068), Zbl
0952.47029, doi: 10.1090/surv/079.

[10] Davidson, Kenneth R.; Paulsen, Vern I.; Raghupathi, Mrinal; Singh,
Dinesh. A constrained Nevanlinna–Pick interpolation problem. Indiana Univ.
Math. J. 58 (2009), no. 2, 709–732. MR2514385 (2010j:30077), Zbl 1167.47013,
doi: 10.1512/iumj.2009.58.3486.

[11] Dritschel, Michael A.; Pickering, James. Test functions in constrained inter-
polation. Trans. Amer. Math. Soc. 364 (2012), no. 11, 5589–5604. MR2946923, Zbl
1294.47024, doi: 10.1090/S0002-9947-2012-05515-2.

[12] Gamelin, Theodore W. Uniform algebras. Prentice-Hall, Inc., Englewood Cliffs,
N. J., 1969. xiii+257 pp. MR0410387 (53 #14137), Zbl 0213.40401.

[13] Garnett, John B. Bounded analytic functions. Revised first edition. Graduate
Texts in Mathematics, 236. Springer, New York, 2007. xiv+459 pp. ISBN: 978-0-387-
33621-3; 0-387-33621-4. MR2261424 (2007e:30049), Zbl 1106.30001, doi: 10.1007/0-
387-49763-3.

[14] Hamilton, Ryan; Raghupathi, Mrinal. The Toeplitz corona problem for
algebras of multipliers on a Nevanlinna–Pick space. Indiana Univ. Math. J.
61 (2012), no. 4, 1393–1405. MR3085612, Zbl 1308.47017, arXiv:1104.3821,
doi: 10.1512/iumj.2012.61.4685.

[15] Helson, Henry. Lectures on invariant subspaces. Academic Press, New York - Lon-
don, 1964. xi+130 pp. MR0171178 (30 #1409), Zbl 0119.11303.

http://www.ams.org/mathscinet-getitem?mr=0629832
http://zbmath.org/?q=an:0517.47019
http://dx.doi.org/10.1007/BF01882574
http://www.ams.org/mathscinet-getitem?mr=2666471
http://zbmath.org/?q=an:1196.47013
http://arXiv.org/abs/0809.2345
http://dx.doi.org/10.1512/iumj.2010.59.3776
http://www.ams.org/mathscinet-getitem?mr=3138369
http://zbmath.org/?q=an:06254355
http://dx.doi.org/10.7900/jot.2011sep21.1940
http://www.ams.org/mathscinet-getitem?mr=0027954
http://zbmath.org/?q=an:0033.37701
http://dx.doi.org/10.1007/BF02395019
http://www.ams.org/mathscinet-getitem?mr=2477477
http://zbmath.org/?q=an:1175.46001
http://www.ams.org/mathscinet-getitem?mr=3208801
http://zbmath.org/?q=an:1331.47047
http://zbmath.org/?q=an:1331.47047
http://dx.doi.org/10.1007/s11785-013-0331-5
http://www.ams.org/mathscinet-getitem?mr=1420110
http://zbmath.org/?q=an:0878.46016
http://zbmath.org/?q=an:0878.46016
http://www.ams.org/mathscinet-getitem?mr=1874679
http://zbmath.org/?q=an:1005.30041
http://www.ams.org/mathscinet-getitem?mr=1761913
http://zbmath.org/?q=an:0952.47029
http://zbmath.org/?q=an:0952.47029
http://dx.doi.org/10.1090/surv/079
http://www.ams.org/mathscinet-getitem?mr=2514385
http://zbmath.org/?q=an:1167.47013
http://dx.doi.org/10.1512/iumj.2009.58.3486
http://www.ams.org/mathscinet-getitem?mr=2946923
http://zbmath.org/?q=an:1294.47024
http://zbmath.org/?q=an:1294.47024
http://dx.doi.org/10.1090/S0002-9947-2012-05515-2
http://www.ams.org/mathscinet-getitem?mr=0410387
http://zbmath.org/?q=an:0213.40401
http://www.ams.org/mathscinet-getitem?mr=2261424
http://zbmath.org/?q=an:1106.30001
http://dx.doi.org/10.1007/0-387-49763-3
http://dx.doi.org/10.1007/0-387-49763-3
http://www.ams.org/mathscinet-getitem?mr=3085612
http://zbmath.org/?q=an:1308.47017
http://arXiv.org/abs/1104.3821
http://dx.doi.org/10.1512/iumj.2012.61.4685
http://www.ams.org/mathscinet-getitem?mr=0171178
http://zbmath.org/?q=an:0119.11303


INVARIANCE UNDER BOUNDED ANALYTIC FUNCTIONS 1269

[16] Helson, H. Analyticity on compact abelian groups. Algebras in analysis (Proc. In-
structional Conf. and NATO Advanced Study Inst., Birmingham, 1973), 1–62. Aca-
demic Press, London, 1975. MR0427959 (55 #989), Zbl 0321.43009.

[17] Helson, Henry; Lowdenslager, David. Invariant subspaces. Proc. Internat.
Sympos. Linear Spaces (Jerusalem, 1960), 251–262. Jerusalem Academic Press,
Jerusalem; Pergamon, Oxford, 1961. MR0157251 (28 #487), Zbl 0142.10305.

[18] Hoffman, Kenneth. Analytic functions and logmodular Banach algebras.
Acta Math. 108 (1962), 271–317. MR0149330 (26 #6820), Zbl 0107.33102,
doi: 10.1007/BF02545769.

[19] Hoffman, Kenneth. Banach spaces of analytic functions. Prentice Hall, Inc., En-
glewood Cliffs, N.J., 1962. xiii+217 pp. MR0133008 (24 #A2844), Zbl 0117.34001.

[20] Jury, Michael T.; Knese, Greg; McCullough, Scott. Nevanlinna–
Pick interpolation on distinguished varieties in the bidisk. J. Funct. Anal.
262 (2012), no. 9, 3812–3838. MR2899979, Zbl 1241.32002, arXiv:1009.4144,
doi: 10.1016/j.jfa.2012.01.028.

[21] Knese, Greg. Polynomials defining distinguished varieties. Trans. Amer. Math.
Soc. 362 (2010), no. 11, 5635–5655. MR2661491 (2011f:47022), Zbl 1205.14041,
arXiv:0909.1818, doi: 10.1090/S0002-9947-2010-05275-4.

[22] Kumar, Ajay; Sahni, Niteesh; Singh Dinesh; Thukral, Virender. Factorising
non-square matrix-valued analytic functions. In preparation.

[23] Lata, Sneh; Mittal, Meghna; Singh, Dinesh. A finite multiplicity Helson–
Lowdenslager–de Branges theorem. Studia Math. 200 (2010), no. 3, 247–266.
MR2733268 (2012i:47012), Zbl 1210.47021, arXiv:0910.5416, doi: 10.4064/sm200-3-
3.
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