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Benson Farb and Jesse Wolfson

Abstract. This note is meant to correct a mistake in [1]. A corrected
version of [1] can be found on the archive: arXiv:1506.02713.

In Step 2 of Theorem 1.2 on page 808 of [1], we claimed that the map of
Equation (3.3) (the map Ψ in Equation (1) below) is an isomorphism. This
is not true, as pointed out to us by H. Spink and D. Tseng. However, we
will see below that it is a bijective morphism. This has the effect that one
needs to add the assumption that char(K) = 0 in Theorem 1.2, Corollary
1.3, and Theorem 1.7 of [1]. The corresponding point counts over Fq still
hold.

Step 2 of Theorem 1.2. As to the proof of Theorem 1.2 on page 808 of
[1], the entirety of Step 2 should be deleted and replaced by the following.

Let k ≥ 0. Define a morphism

Ψ : Am(d−nk) × Ak → Amd

by

Ψ(f1, . . . , fm, g) := (f1g
n, . . . , fmgn).

The restriction of Ψ to Polyd−kn,m
n × Ak gives a morphism

Ψ : Polyd−kn,m
n × Ak → Rd,m

n,k −Rd,m
n,k+1 (1)

where the target is the space of m-tuples of degree d polynomials with a
common n-fold factor of degree equal to k, with no other common n-fold
factors. We think of the map Ψ−1 as the (non-algebraic) map that extracts
a common n-fold factor from a tuple of polynomials. We claim that:

(i) For any field k the morphism Ψ is bijective.
(ii) For k = C, the map Ψ is a homeomorphism in the classical topology.
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These facts will allow us to analyze Polyd,mn recursively. Note that the
case k = 0 follows by definition:

Polyd,mn := Rd,m
n,0 −Rd,m

n,1 .

To see (i): It is clear from the definitions that Ψ is surjective. The map
Ψ is injective because there is a unique n-fold degree k factor in each fig

n,
so if fig

n = uiv
n then this implies g = v and so fi = ui.

To see (ii): First note that the spaces of polynomials in the range and
domain of Ψ have Galois covers given by the corresponding spaces of (all
possible orderings of) roots, with deck group the appropriate product of
symmetric groups. The map Ψ lifts to a map between these spaces of roots:

Φ : Am(d−nk) × Ak → Amd

given by

Φ((~r1, . . . , ~rm), ~s)) := ((~r1, (~s)
n), . . . , (~rm, (~s)n))

where ~ri is the vector of d roots of fi; the vector of roots of g is denoted ~s;
and where (~s)n denotes the vector (~s, . . . , ~s), where ~s is repeated n times.
It follows that the map Φ is closed, and hence the map Ψ is closed, and
hence the map Ψ is closed. Since Ψ is bijective, it follows that Ψ is a
homeomorphism.

Step 3 of Theorem 1.2. In Step 3 on page 808, one should insert the
following after Equation (3.6).

We now claim that, when char(K) = 0 then

[Polyd−kn,m
n ] · Lk = [Rd,m

n,k ]− [Rd,m
n,k+1] (2)

To see this, first note that we proved in Step 2 that the map Ψ in (1)
is a bijective morphism on K-points for all fields K. It is known (see,
e.g., Remark 4.1 of [2]) that if char(K) = 0 then a bijective morphism of
K-varieties induces an equality [X] = [Y ] in the Grothendieck ring of K-
varieties.

The line “Plugging in the expression from Equation (3.3) into Equation
(3.6)” should now read: “Plugging in the expression from Equation (2) into
Equation 3.6 ”
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