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Algebras, synchronous games, and
chromatic numbers of graphs
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and Matthew Satriano

Abstract. We associate to each synchronous game a *-algebra whose
representations determine whether the game has a perfect determin-
istic strategy, perfect quantum strategy or one of several other types
of strategies studied in the theory of non-local games. Applying these
results to the graph coloring game allows us to develop a correspon-
dence between various chromatic numbers of a graph and the question
of whether ideals in a free algebra are proper; this latter question can
then be approached via non-commutative Gröbner basis methods. Fur-
thermore, we introduce several new chromatic numbers guided by the
algebra. One of these new chromatic numbers, χalg, is called the alge-
braic chromatic number, and one of our main results is the algebraic
4-colorability theorem: all graphs G satisfy χalg(G) ≤ 4.
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1. Introduction

In recent years, the theory of non-local games has received considerable
attention, especially due to its connections with theoretical computer sci-
ence, quantum information theory, and Connes’ embedding conjecture. In
such a game, two players, Alice and Bob, play cooperatively against a ref-
eree. They can agree on a strategy ahead of time, but cannot communicate
once the game begins. The criterion by which they win or lose is public
information, and is based on responses they give to questions posed by the
referee. In this paper, we focus on synchronous games, those that satisfy
certain symmetry properties for Alice and Bob. A major problem is to com-
pute the maximum probability with which Alice and Bob can win a given
game. This of course depends on the type of strategy they employ, the
two primary kinds of strategies being deterministic and quantum; there are
many kinds of quantum strategies (q, qa, qc), but all rely on Alice and Bob
sharing a so-called entangled state prior to the start of the game which they
use to determine responses to the questions posed by the referee, see Section
2 for precise definitions.

Interestingly many graph invariants can be rephrased in terms of synchro-
nous games. For example, given a graph G and positive integer c, there is
the so-called c-coloring game (G, c); this game has a perfect deterministic
strategy if and only if χ(G) ≤ c, and it has a perfect q-strategy if and only
if the quantum chromatic number χq(G) ≤ c. As another example, given
two graphs G and H, there is the graph homomorphism game which has a
perfect deterministic strategy if and only if there is a graph homomorphism
G → H, and has a q-strategy if and only if there is a so-called quantum

homomorphism G
q→ H.

The first aim of our paper is to associate to every synchronous game G
a ∗-algebra A(G). This algebra A(G) has the property that its representa-
tion theory completely determines whether G has a perfect deterministic or
quantum strategy. Specifically, we prove the following in Theorem 3.2.

Theorem 1.1. Let G = (I,O, λ) be a synchronous game.
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(1) G has a perfect deterministic strategy if and only if there exists a
unital *-homomorphism from A(G) to C.

(2) G has a perfect q-strategy if and only if there exists a unital *-
homomorphism from A(G) to the bounded operators B(H) on a finite
dimensional Hilbert space H 6= 0.

(3) G has a perfect qc-strategy if and only if there exists a unital C*-
algebra C with a faithful trace and a unital *-homomorphism π :
A(G)→ C.

Given the fundamental role A(G) plays in determining the types of strate-
gies G has, our next aim is to investigate the algebra A(G) itself. We do so
in the specific case of the c-coloring game, introducing a new invariant that
we now describe. Fixing a graph G, by considering the c-coloring game as c
varies, we obtain a system of ∗-algebras A(G, c).

Definition 1.2. The algebraic chromatic number χalg(G) of G is the small-
est c for which A(G, c) 6= 0.

It is immediate from this definition that χalg provides a universal lower
bound on all chromatic numbers (χq, χqa, χqc, χ) ofG. Indeed, if any of these
latter chromatic numbers equals c, then Theorem 1.1 tells us that A(G, c)
has a non-trivial ∗-representation, hence A(G, c) 6= 0 and so χalg(G) ≥ c.
We prove several basic properties of χalg in Section 4.

The main theorem is the following somewhat surprising result. This ap-
pears as Theorem 6.1 in the paper.

Theorem 1.3 (Algebraic 4-colorability theorem). For every graph G, we
have χalg(G) ≤ 4.

Our proof of this theorem is computer-assisted: in Section 5, we reduce
the problem from one concerning ∗-algebras to one concerning Q-algebras
defined by generators and relations; in Section 6 we then apply a Gröbner
basis approach to prove that the identity is not in the ideal generated by
the relations, thereby proving A(G, 4) 6= 0, yielding Theorem 1.3. Despite
considerable effort on our part, as well as the part of several others, we are
unable to find a simple direct proof that these algebras are non-trivial that
does not rely on the Gröbner basis approach, which in turn requires extensive
calculations. One reason that other efforts have failed is that although
our results show that the ∗-algebras A(G, 4) are non-trivial, many of them
nonetheless have no non-trivial ∗-representations as algebras of operators
on a Hilbert space. For example, A(K5, 4) is a free ∗-algebra defined by
20 generators and roughly 60 relations. This algebra contains 4 non-zero
self-adjoint idempotents that sum to −1, and consequently there can be no
non-zero ∗-homomorphism of this algebra into the algebra of operators on a
Hilbert space. Nonetheless, via our computational approach, we can prove
A(K5, 4) 6= 0. These properties of A(K5, 4) are explained more fully in
Remark 6.2.
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Finally, we consider variants on our definition of χalg, introducing two fur-
ther chromatic numbers: the hereditary chromatic number χhered(G) built
out of systems of hereditary ideals (see Definition 3.6), and the locally com-
muting chromatic number χlc(G) which arises by imposing extra commuting
conditions in A(G, c) for adjacent vertices (see Definition 7.1). Currently we
know of no graph G where χhered is not equal to the common value of χq,
χqa, and χqc. We find this particularly exciting since it indicates that the
Gröbner basis problem for hereditary ideals could potentially yield an algo-
rithm for computing quantum chromatic numbers or help in determining if
χq, χqa, and χqc coincide.

We study χlc in considerable detail in Sections 7 and 8. In these sections
we also introduce the corresponding locally commuting clique number ωlc.
We prove in Theorem 7.4 that ω = ωlc and in Theorem 8.18 we prove χlc is
not equal to χ, χq, or χvect.

2. Synchronous games and strategies

We lay out some definitions and a few basic properties of games and
strategies. We will primarily be concerned with the c-coloring game and the
graph homomorphism game.

2.1. Definitions of games and strategies. By a two-person finite
input-output game we mean a tuple G = (IA, IB, OA, OB, λ) where IA,
IB, OA, OB are finite sets and

λ : IA × IB ×OA ×OB → {0, 1}
is a function that represents the rules of the game, sometimes called the
predicate. The sets IA and IB represent the inputs that Alice and Bob
can receive, and the sets OA and OB, represent the outputs that Alice and
Bob can produce, respectively. A referee selects a pair (v, w) ∈ IA × IB,
gives Alice v and Bob w, and they then produce outputs (answers), a ∈ OA
and b ∈ OB, respectively. They win the game if λ(v, w, a, b) = 1 and lose
otherwise. Alice and Bob are allowed to know the sets and the function λ
and cooperate before the game to produce a strategy for providing outputs,
but while producing outputs, Alice and Bob only know their own inputs and
are not allowed to know the other person’s input. Each time that they are
given an input and produce an output is referred to as a round of the game.

We call such a game synchronous provided that: (i) Alice and Bob have
the same input sets and the same output sets, which we denote by I and O,
respectively, and (ii) λ satisfies:

∀v ∈ I, λ(v, v, a, b) =

{
0 a 6= b

1 a = b
,

that is, whenever Alice and Bob receive the same inputs then they must
produce the same outputs. To simplify notation we write a synchronous
game as G = (I,O, λ).
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A graph G is specified by a vertex set V (G) and an edge set E(G) ⊆
V (G) × V (G), satisfying (v, v) /∈ E(G) and (v, w) ∈ E(G) =⇒ (w, v) ∈
E(G). The c-coloring game for G has inputs IA = IB = V (G) and outputs
OA = OB = {1, ..., c} where the outputs are thought of as different colors.
They win provided that whenever Alice and Bob receive adjacent vertices,
i.e., (v, w) ∈ E, their outputs are different colors and when they receive
the same vertex they output the same color. Thus, (v, w) ∈ E(G) =⇒
λ(v, w, a, a) = 0, ∀a, λ(v, v, a, b) = 0, ∀v ∈ V (G), ∀a 6= b and the rule
function is equal to 1 for all other tuples. It is easy to see that this is a
synchronous game.

Given two graphs G and H, a graph homomorphism from G to H is a
function f : V (G) → V (H) with the property that (v, w) ∈ E(G) =⇒
(f(v), f(w)) ∈ E(H). The graph homomorphism game from G to H
has inputs IA = IB = V (G) and outputs OA = OB = V (H). They win
provided that whenever Alice and Bob receive inputs that are an edge in
G, their outputs are an edge in H and that whenever Alice and Bob receive
the same vertex in G they produce the same vertex in H. This is also a
synchronous game.

A deterministic strategy for a game is a pair of functions, h : IA → OA
and k : IB → OB such that if Alice and Bob receive inputs (v, w) then they
produce outputs (h(v), k(w)). A deterministic strategy wins every round of
the game if and only if

∀(v, w) ∈ IA × IB, λ(v, w, h(v), k(w)) = 1.

Such a strategy is called a perfect deterministic strategy.
It is not hard to see that for a synchronous game, any perfect deterministic

strategy must satisfy, h = k. In particular, a perfect deterministic strategy
for the c-coloring game for G is a function h : V (G) → {1, ..., c} such that
(v, w) ∈ E(G) =⇒ h(v) 6= h(w). Thus, a perfect deterministic strategy
is precisely a c-coloring of G. Similarly, a perfect deterministic strategy for
the graph homomorphism game is precisely a graph homomorphism.

Finally, it is not difficult to see that if Kc denotes the complete graph on
c vertices then a graph homomorphism exists from G to Kc if and only if
G has a c-coloring. This is because any time (v, w) ∈ E(G) then a graph
homomorphism must send them to distinct vertices in Kc. Indeed, the rule
function for the c-coloring game is exactly the same as the rule function for
the graph homomorphism game from G to Kc.

A random strategy for a game G is a conditional probability density
p(a, b|v, w), which represents the probability that, given inputs (v, w) ∈ IA×
IB, Alice and Bob produce outputs (a, b) ∈ OA×OB. Thus, p(a, b|v, w) ≥ 0
and for each (v, w), ∑

a∈OA,b∈OB

p(a, b|v, w) = 1.
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In this paper we identify random strategies with their conditional proba-
bility density, so that a random strategy will simply be a conditional prob-
ability density p(a, b|v, w).

A random strategy is called perfect if

λ(v, w, a, b) = 0 =⇒ p(a, b|v, w) = 0, ∀(v, w, a, b) ∈ IA × IB ×OA ×OB.

Thus, for each round, a perfect strategy gives a winning output with prob-
ability 1.

We next discuss local random strategies, which are also sometimes called
classical, meaning not quantum. They are obtained as follows: Alice and
Bob share a probability space (Ω, P ), for each input v ∈ IA, Alice has a
random variable, fv : Ω → OA and for each input w ∈ IB, Bob has a
random variable, gw : Ω→ OB such that for each round of the game, Alice
and Bob will evaluate their random variables at a point ω ∈ Ω via a formula
that has been agreed upon in advance. This yields conditional probabilities,

p(a, b|v, w) = P ({ω ∈ Ω | fv(ω) = a, gw(ω) = b}).

The set of all conditional probability densities p(a, b|v, w) that can be ob-
tained in this fashion is denoted Cloc(n1, n2, k1, k2), where n1 = |IA| and
n2 = |IB| are the cardinalities of Alice and Bob’s input sets, respectively,
and k1 = |OA|, k2 = |OB| are the respective cardinalities of Alice and Bob’s
output sets.

A density p(a, b|v, w) will be a perfect strategy for a game G if and only
if

∀(v, w) ∈ IA × IB, P ({ω ∈ Ω | λ(v, w, fv(ω), gw(ω)) = 0}) = 0,

or equivalently,

∀(v, w) ∈ IA × IB, P ({ω ∈ Ω | λ(v, w, fv(ω), gw(ω)) = 1}) = 1.

If we have a perfect local strategy and set

Ω1 = ∩v∈IA,w∈IB{ω ∈ Ω | λ(v, w, fv(ω), gw(ω)) = 1},

then P (Ω1) = 1 since IA and IB are finite sets; in particular, Ω1 is non-
empty. If we choose any ω ∈ Ω1 and set h(v) = fv(ω) and k(w) = gw(ω),
then it is easily checked that this is a perfect deterministic strategy.

Thus, a perfect classical random strategy exists if and only if a perfect
deterministic strategy exists. An advantage to using a perfect classical ran-
dom strategy over a perfect deterministic strategy, is that it is difficult for
an observer to construct a deterministic strategy even after observing the
outputs of many rounds.

The idea behind nonlocal games is to allow other, larger sets of con-
ditional probabilities, namely, those that can be obtained by allowing Alice
and Bob to run quantum experiments to obtain their outputs. Currently,
there are several competing mathematical models that try to describe the
sets of probability densities that can be obtained in this fashion.
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We begin with the most frequently used model. We keep the values
of n1, n2, k1, k2 as above. Recall that a projection valued measure (PVM)
is a set {Pi}ki=1 of orthogonal projections on some Hilbert space H with∑k

i=1 Pi = I.
An (n1, n2, k1, k2)-tuple,

(
p(a, b|v, w)

)
, (v, w) ∈ IA×IB, (a, b) ∈ OA×OB,

is called a quantum correlation if there exist two finite dimensional Hilbert
spaces, HA and HB, PVMs {Pv,a}k1a=1, v ∈ IA on HA and {Qw,b}k2b=1, w ∈ IB
on HB, together with a unit vector h ∈ HA ⊗HB such that

p(a, b|v, w) = 〈(Pv,a ⊗Qw,b)h, h〉.

Such a tuple
(
p(a, b|v, w)

)
is called a quantum correlation and the set of

all such quantum correlations is denoted by Cq(n1, n2, k1, k2).

Note that Cq(n1, n2, k1, k2) can be thought of as a subset of [0, 1]n1n2k1k2 .

Its closure in [0, 1]n1n2k1k2 is denoted by Cqa(n1, n2, k1, k2), and a tuple(
p(a, b|v, w)

)
in Cqa(n1, n2, k1, k2) is called a quantum approximate cor-

relation.
The next model we discuss is similar to Cq(n1, n2, k1, k2) but it only con-

siders one Hilbert space H as opposed to the two Hilbert spaces HA and
HB. Consider a unit vector h ∈ H, and PVM’s {Pv,a}k1a=1, v ∈ IA and

{Qw,b}k2b=1, b ∈ IB on H such that Pv,aQw,b = Qw,bPv,a,∀v, w, a, b. Then let

p(a, b|v, w) = 〈Pv,aQw,bh, h〉.

A density
(
p(a, b|v, w)

)
arising in this manner is called a quantum com-

muting correlation; the set of such tuples is denoted by Cqc(n1, n2, k1, k2).
Note that in this last model, if we set hv,a = Pv,ah and kw,a = Qw,bh then

we have two sets of vectors such that p(a, b|v, w) = 〈hv,a, kw,b〉. This idea
is used to define the quantum vector correlations. A tuple

(
p(a, b|v, w)

)
is called a quantum vector correlation, if there exists a Hilbert space
H and vectors {hv,a}, v ∈ IA, a ∈ OA and {kw,b}, w ∈ IB, b ∈ OB with
p(a, b|v, w) = 〈hv,a, kw,b〉 such that

• 〈hv,a, hv,c〉 = 0, a 6= c,
• 〈kw,b, kw,c〉 = 0, b 6= c,

•
∑k1

a=1 hv,a =
∑k2

b=1 kw,b,∀v, w and this common value is a unit vector,
• 〈hv,a, kw,b〉 ≥ 0,∀v, w, a, b.

The set of all quantum vector correlations is denoted by Cvect(n1, n2, k1, k2).
This larger set is often useful for purposes of semidefinite programming.

Finally, the largest natural set of densities are the non-signalling cor-
relations. A tuple

(
p(a, b|v, w)

)
is called non-signalling provided:

• p(a, b|v, w) ≥ 0, ∀v, w, a, b,
•
∑

a,b p(a, b|v, w) = 1, ∀v, w,

•
∑

b p(a, b|v, w) =
∑

b p(a, b|v, w′), ∀w,w′ and this common value is
denoted by pA(a|v),
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•
∑

a p(a, b|v, w) =
∑

a p(a, b|v′, w), ∀v, v′ and this common value is
denoted by pB(b|w).

The set of all such correlations is denoted by Cnsb(n1, n2, k1, k2).
For t ∈ {loc, q, qa, qc, vect, nsb}, when the values n1, n2, k1, k2 are un-

derstood, we simply use Ct to denote the corresponding set of conditional
probabilities. It is known that

Cloc ( Cq ( Cqa ⊆ Cqc ( Cvect ( Cnsb.

Proofs of these containments can be found in [7], [11], and [27]. The strict
containments are intended to indicate that for some values of n1, n2, k1, k2
these containments are strict. The precise values of n1, n2, k1, k2 for which
these containments are strict is still a subject of ongoing research. The fact
that Cq ( Cqa is the most difficult and was only recently shown by [30] for
large values of n1, n2 and by [6] for smaller values, i.e., n1, n2 ≥ 5. The
question of whether or not Cqa = Cqc for any number of experiments and
any number of outputs is known to be equivalent to Connes’ embedding
conjecture due to results of [25].

We say that p(a, b|v, w) is a perfect t-strategy for a game provided that
it is a perfect strategy that belonging to the set Ct.

Given a graph G we set χt(G) equal to the least c for which there exists a
perfect t-strategy for the c-coloring game for G. The above inclusions imply
that

χ(G) = χloc(G) ≥ χq(G) ≥ χqa(G) ≥ χqc(G) ≥ χvect(G) ≥ χnsb(G).

Currently, it is unknown if there are any graphs that separate χq(G), χqa(G)
and χqc(G) or whether these three parameters are always equal. Examples
of graphs are known for which χ(G) > χq(G), for which χqc(G) > χvect(G)
and for which χvect(G) > χnsb(G). For details, see [5], [27] and [26]. Other
versions of quantum chromatic type graph parameters appear in [1] and a
comparison of those parameters with χqa and χqc can be found in [1, Section
1].

Similarly, we say that there is a t-homomorphism from G to H if and
only if there exists a perfect t-strategy for the graph homomorphism game
from G to H. It is unknown if q-homomorphisms, qa-homomorphisms and
qc-homomorphisms are distinct or coincide.

Finally, we close this section by showing that it is enough to consider
so-called symmetric games. Note that in a synchronous game there is no
requirement that λ(v, w, a, b) = 0 =⇒ λ(w, v, b, a) = 0. That is, the
rule function does not need to be symmetric in this sense. The following
shows that it is enough to consider synchronous games with this additional
symmetry.

Given G = (I,O, λ) a synchronous game, we define λs : I × I × O ×
O → {0, 1} by setting λs(v, w, a, b) = λ(v, w, a, b)λ(w, v, b, a) and set Gs =
(I,O, λs). Then it is easily seen that Gs is a synchronous game with the
property that λs(v, w, a, b) = 0 ⇐⇒ λs(w, v, b, a) = 0.
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2.2. A few properties of strategies. In the remainder of this section,
we prove the following slight extension of [27].

Proposition 2.1. Suppose G = (I,O, λ) is a synchronous game and that
p(a, b|v, w) = 〈hv,a, kw,b〉 is a perfect vect-strategy for G, where the vectors
hv,a and kw,b are as in the definition of a vector correlation (see [24, 6.15]).
Then hv,a = kv,a, ∀v ∈ I, a ∈ O.

Proof. By definition, for each v ∈ I the vectors {hv,a : a ∈ O} are mutually
orthogonal and {kv,a : a ∈ O} are mutually orthogonal. So,

1 =
∑
a,b∈O

p(a, b|v, v) =
∑
a∈O

p(a, a|v, v) =
∑
a∈O
〈hv,a, kv,a〉 ≤∑

a∈O
‖hv,a‖‖kv,a‖ ≤

(∑
a∈O
‖hv,a‖2

)1/2(∑
a∈O
‖kv,a‖2

)1/2
= 1.

Thus, the inequalities are equalities, which forces hv,a = kv,a for all v ∈ I
and all a ∈ O. �

Corollary 2.2. Let G = (I,O, λ) be a synchronous game and let t ∈
{loc, q, qa, qc, vect}. If p(a, b|v, w) is a perfect t-strategy for G, then we have
p(a, b|v, w) = p(b, a|w, v) for all v, w ∈ I and all a, b ∈ O.

Proof. If p(a, b|v, w) is a perfect t-strategy, then it is a perfect vect-strategy
and hence there exist vectors as in the definition such that,

p(a, b|v, w) = 〈hv,a, hw,b〉 = 〈hw,b, hv,a〉 = p(b, a|w, v),

where the middle equality follows since the inner products are assumed to
be non-negative. �

This corollary readily yields the following result.

Proposition 2.3. Let G = (I,O, λ) be a synchronous game and let t ∈
{loc, q, qa, qc, vect}. Then p(a, b|v, w) is a perfect t-strategy for G if and
only if p(a, b|v, w) is a perfect t-strategy for Gs.

3. The *-algebra of a synchronous game

We begin by constructing a *-algebra, defined by generators and relations,
that is affiliated with a synchronous game. The existence or non-existence
of various types of perfect quantum strategies for the game then corresponds
to the existence or non-existence of various types of representations of this
algebra. This leads us to examine various ideals in the algebra.

3.1. Relations, generators, and the basic *-algebra. Let G = (I,O, λ)
be a synchronous game and assume that the cardinality of I is |I| = n while
the cardinality of O is |O| = m. We will often identify I with {0, ..., n− 1}
and O with {0, ...,m − 1}. We let F(n,m) denote the free product of n
copies of the cyclic group of order m and let C[F(n,m)] denote the complex
*-algebra of the group. We regard the group algebra as both a *-algebra,
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where for each group element g we have g∗ = g−1, and as an (incomplete)
inner product space, with the group elements forming an orthonormal set
and the inner product is given by

〈f, h〉 = τ(fh∗),

where τ is the trace functional.
For each v ∈ I we have a unitary generator uv ∈ C[F(n,m)] such that

umv = 1. If we set ω = e2πi/m then the eigenvalues of each uv is the set
{ωa : 0 ≤ a ≤ m − 1}. The orthogonal projection onto the eigenspace
corresponding to ωa is given by

ev,a =
1

m

m−1∑
k=0

(
ω−auv

)k
, (3.1)

and these satisfy

1 =

m−1∑
a=0

ev,a and uv =

m−1∑
a=0

ωaev,a.

The set {ev,a : v ∈ I, 0 ≤ a ≤ m − 1} is another set of generators for
C[F(n,m)].

We let I(G) denote the 2-sided *-closed ideal in C[F(n,m)] generated by
the set

{ev,aew,b | λ(v, w, a, b) = 0}
and refer to it as the ideal of the game G. We define the *-algebra of
G to be the quotient

A(G) = C[F(n,m)]/I(G).

A familiar case occurs when we are given two graphs G and H and G
is the graph homomorphism game from G to H. Then A(G) = A(G,H),
where the algebra on the right hand side is the algebra introduced in [24],
so we shall continue that notation in this instance. Recall that A(G,Kc) is
then the algebra of the c-coloring game for G.

Definition 3.1. We say that a game has a perfect algebraic strategy if A(G)

is nontrivial. Given graphs G and H, we write G
alg−→ H if A(G,H) is

nontrivial. We define the algebraic chromatic number of G to be

χalg(G) = min{c | A(G,Kc) is nontrivial}

The following is a slight generalization of [24, Theorem 4.7].

Theorem 3.2. Let G = (I,O, λ) be a synchronous game.

(1) G has a perfect deterministic strategy if and only if there exists a
unital *-homomorphism from A(G) to C.

(2) G has a perfect q-strategy if and only if there exists a unital *-
homomorphism from A(G) to B(H) for some non-zero finite dimen-
sional Hilbert space.
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(3) G has a perfect qc-strategy if and only if there exists a unital C*-
algebra C with a faithful trace and a unital *-homomorphism π :
A(G)→ C.

Hence, if G has a perfect qc-strategy, then it has a perfect algebraic strategy
and so χqc(G) ≥ χalg(G) for every graph G.

Proof. We start with the third statement. Since the game is synchronous,
any perfect strategy p(a, b|v, w) must also be synchronous. By [26, Theo-
rem 5.5], any synchronous density is of the following form: p(a, b|v, w) =
τ(Ev,aEw,b), where τ : C → C is a tracial state for a unital C*-algebra C
generated by projections {Ev,a} satisfying

∑
aEv,a = I for all v.

If we take the GNS representation [12] of C induced by τ , then the image
of C under this representation will be a quotient of C with all the same prop-
erties and the additional property that τ is a faithful trace on the quotient.

Now if, in addition, p(a, b|v, w) belongs to the smaller family of perfect
q-strategies, then by [26, Theorem 5.3] the C*-algebra C will be finite di-
mensional. Hence, the second statement follows.

Lastly, if p(a, b|v, w) belongs to the smaller family of perfect loc-strategies,
then the C*-algebra C will be abelian, and hence, the first statement follows.

�

Remark 3.3. After this paper was written a characterisation of the exis-
tence of perfect qa-strategies was given in [14, Corollary 3.7]: G has a perfect
qa-strategy if and only if there exists a unital *-homomorphism of A(G) into
the von Neumann algebra Rω.

3.2. Hereditary chromatic number χhered. The *-algebra C[F(n,m)]
also possesses an order defined as follows: let P be the cone generated by
all elements of the form f∗f for f ∈ C[F(n,m)]. If h, k ∈ C[F(n,m)] are self-
adjoint elements, we write h ≤ k if k − h ∈ P. Next, notice that P induces
a cone on A(G), which we regard as the positive elements, by setting

A(G)+ = {p+ I(G) : p ∈ P}.
Given two self-adjoint elements h, k ∈ A(G), we again write h ≤ k if and
only if k − h ∈ A(G)+. In the language of Ozawa [25] this makes A(G) into
a semi-pre-C*-algebra.

A self-adjoint vector subspace V ⊆ C[F(n,m)] is called hereditary pro-
vided that 0 ≤ f ≤ h and h ∈ V implies that f ∈ V .

Problem 3.4. Let G be a synchronous game. Find conditions on the game
so that the 2-sided ideal I(G) is hereditary.

Later we will see an example of a game such that I(G) is not hereditary.
The following result shows why the hereditary condition is important.

Proposition 3.5. Let G be a synchronous game and let I(G) be the ideal
of the game. Then I(G) is a hereditary subspace of C[F(n,m)] if and only
if
(
A(G)+

)
∩
(
−A(G)+

)
= (0).



ALGEBRAS, SYNCHRONOUS GAMES, AND CHROMATIC NUMBERS 339

Proof. Let x = x∗ ∈ C[F(n,m)]. We begin by characterizing when the
equivalence class x+I(G) is contained in A(G)+∩

(
−A(G)+

)
. By definition,

this occurs if and only if there are elements p = p∗, q = q∗ in I(G) such that
x+ p ≥ 0 and −x+ q ≥ 0. This is equivalent to 0 ≤ x+ p ≤ p+ q.

Now suppose that x = x∗ and that the equivalence class x+ I(G) is non-
zero in A(G). If the class is contained in

(
A(G)+

)
∩
(
−A(G)+

)
then choosing

p and q as in the previous paragraph, the element x+ p demonstrates that
I(G) is not hereditary.

Conversely, if I(G) is not hereditary, then there exists x = x∗ /∈ I(G) and
q ∈ I(G) such that 0 ≤ x ≤ q. The inequality 0 ≤ x implies that x+ I(G) ∈
A(G)+, while 0 ≤ q − x implies that q − x + I(G) = −x + I(G) ∈ A(G)+.
Clearly, this element is non-zero. �

We let Ih(G) denote the smallest ideal that contains I(G) which is a
hereditary subspace; we refer to this as the hereditary closure of I(G).
We define the hereditary *-algebra of the game G to be the quotient

Ah(G) = C[F(n,m)]/Ih(G).

Note that Ah(G) is a quotient of A(G).

Definition 3.6. We say that a game has a perfect hereditary strategy if

Ah(G) is nontrivial. Given graphs G and H, we write G
hered−→ H if Ah(G,H)

is nontrivial. We define the hereditary chromatic number of G by

χhered(G) = min{c | Ah(G,Kc) is nontrivial}.

We define the positive cone in Ah(G) by setting

Ah(G)+ = {p+ Ih(G) : p ∈ P},

so that Ah(G) is also a semi-pre-C∗-algebra. The following is immediate:

Proposition 3.7. Let G be a synchronous game, then(
Ah(G)+

)
∩
(
−Ah(G)+

)
= (0).

Thus, the “positive” cone on Ah(G) is now a proper cone and Ah(G) is an
ordered vector space.

Proposition 3.8. If Kn
hered−→ Kc then n ≤ c. Consequently, χhered(Kn) =

n.

Proof. Suppose, that Kn
hered−→ Kc. We let Ev,i = ev,i + Ih(Kn,Kc) ∈

Ah(Kn,Kc), where Ah is defined as in §3. Then we have that
∑c−1

i=0 Ev,i = I
for all v. Set Pi =

∑
v Ev,i. Since Ev,iEw,i = 0, we have that Pi = P ∗i = P 2

i .
Hence, Qi = I − Pi is also a “projection” in the sense that Qi = Q∗i = Q2

i .
Now

∑
i Pi = cI −

∑
iQi. But also,∑

i

Pi =
∑
v

∑
i

Ev,i = nI.
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Hence,
∑

iQ
2
i =

∑
iQi = (c − n)I. By definition,

∑
iQ

2
i ∈ Ah(G,H)+. If

c < n, then (c−n)I ∈ −(Ah(G,H)+) and by Proposition 3.7, we have I = 0;

that is, 1 ∈ Ih(Kn,Kc) which contradicts our hypothesis that Kn
hered−→ Kc.

Hence, c ≥ n. This shows that χhered(Kn) ≥ n.

For the other inequality, note that if Kn
hered−→ Kc, then χhered(Kn) ≤ c.

By the results of [24], if G is any graph with c = χqc(G), then there is
a unital *-homomorphism from A(G,Kc) into a C*-algebra with a trace.
The kernel of this homomorphism is a hereditary ideal and so must contain
Ih(G,Kc). Hence, this latter ideal is proper and c ≥ χhered(G). Thus,
χhered(Kn) ≤ χqc(Kn) ≤ χ(Kn) = n. Hence, n = χhered(Kn) ≤ c. �

The above proof also shows that:

Proposition 3.9. If Kn
alg→ Kc and −I /∈ A(Kn,Kc)

+, then n ≤ c.

3.3. The C∗-chromatic number χC∗. The next natural question is if
Ah(G) is a pre-C∗-algebra in the sense of [25]. The answer is that this
cone will need to satisfy one more hypothesis.

Definition 3.10. Let G be a synchronous game and let Ic(G) denote the
intersection of the kernels of all unital ∗-homomorphisms from C[F(n,m)]
into the bounded operators on a Hilbert space (possibly 0 dimensional) that
vanish on I(G). Let Ac(G) = C[F(n,m)]/Ic(G).

Proposition 3.11. Let G be a synchronous game. Then Ih(G) ⊆ Ic(G) and

Ic(G) = {x ∈ C[F(n,m)] : x∗x+ I(G) ≤ ε1 + I(G), ∀ε > 0, ε ∈ R}.

There exists a (non-zero) Hilbert space H and a unital *-homomorphism
π : C[F(n,m)]→ B(H) that vanishes on I(G) if and only if Ac(G) 6= (0).

Proof. The kernel of every *-homomorphism is a hereditary ideal and the
intersection of hereditary ideals is a hereditary ideal, hence Ic(G) is a hered-
itary ideal containing I(G). So, Ih(G) ⊆ Ic(G).

We have that x ∈ Ic(G) if and only if x + I(G) is in the kernel of every
*-homomorphism of A(G) into the bounded operators on a Hilbert space.
In [25, Theorem 1] it is shown that this is equivalent to x + I(G) being in
the “ideal of infinitesimal elements” of A(G), which is the ideal defined by
the right-hand side of the above formula. The last result comes from the
fact that the ideal of infinitesimal elements is exactly the intersection of the
kernels of all such representations. �

Definition 3.12. We say that a game G has a perfect C*-strategy pro-

vided that Ac(G) is nontrivial. We write G
C∗−→ H provided that for given

graphs G and H, the algebra Ac(G,H) is nontrivial. We define the C*-
chromatic number of G to be

χC∗(G) = min{c | Ac(G,Kc) is nontrivial}.
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It is easily seen that our definition of G
C∗−→ H is equivalent to the defini-

tion given in [24], since they only consider the case of non-trivial C*-algebras.
The following is immediate.

Proposition 3.13. If G is a graph, then χqc(G) ≥ χC∗(G) ≥ χhered(G) ≥
χalg(G).

This motivates the following question.

Problem 3.14. Let G be a synchronous game. Is Ic(G) = Ih(G)?

Problem 3.15. If Ih(G) 6= C[F(n,m)], then does there exist a non-zero
Hilbert space H and a unital *-homomorphism, π : C[F(n,m)] → B(H)
such that π(Ih(G)) = (0), that is, if Ih(G) 6= C[F(n,m)], then is Ic(G) 6=
C[F(n,m)]?

3.4. Determining if an ideal is hereditary. Here we mention some lit-
erature on determining if an ideal I is hereditary and the issue of computing
its “hereditary closure.” In the real algebraic geometry literature, a heredi-
tary ideal is called a real ideal. For a finitely generated left ideal I in R(F(k))
the papers [3, 2] present a theory and a numerical algorithm to test (up to
numerical error) if I is hereditary. The algorithm also computes the “heredi-
tary radical” of I. The computer algorithm relies on numerical optimization
(semidefinite programming) and hence it is not exact but approximate.

For two sided ideals [4] and [15] contain some theory. Also the first author
and Klep developed and crudely implemented a hereditary ideal algorithm
under NCAlgebra. However, it is too memory consuming to be effective, so
we leave this topic for future work.

A moral one can draw from this literature is that computing hereditary
closures is not broadly effective at this moment.

3.5. Clique numbers. The clique number of a graph ω(G) is defined as
the size of the largest complete subgraph of G. It is not hard to see that
G contains a complete subgraph of size c if and only if there is a graph
homomorphism from Kc to G. Hence, there is a parallel theory of quantum
clique numbers that we shall not pursue here, other than to remark that for
each of the cases t ∈ {loc, q, qa, qc, C∗, hered, alg} we define the t-clique
number of G by

ωt(G) = max{c | Kc
t−→ G},

so that

ω(G) = ωloc(G) ≤ ωq(G) ≤ ωqa(G)

≤ ωqc(G) ≤ ωC∗(G) ≤ ωhered(G) ≤ ωalg(G).

Lovasz [17] introduced his theta function ϑ(G) of a graph. The famous
Lovasz sandwich theorem [9] says that for every graph G, if G denotes its
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graph complement, then ω(G) ≤ ϑ(G) ≤ χ(G). In [24, Proposition 4.2] they
showed the following improvement of the Lovasz sandwich theorem:

ωC∗(G) ≤ ϑ(G) ≤ χC∗(G).

We shall show later that χalg(K5) = 4 while ϑ(K5) = 5. Hence the sandwich
inequality fails for the algebraic version.

This motivates the following problem:

Problem 3.16. Is ωhered(G) ≤ ϑ(G) ≤ χhered(G) for all graphs?

4. The case of 1, 2 and 3 colors

It is a classic result that deciding if χ(G) ≤ 3 is an NP-complete prob-
lem. In [10] it was shown that deciding if χq(G) ≤ 3 is NP-hard, and, in
particular, there is no known algorithm for deciding if this latter inequality
is true. For these reasons it is interesting to see what can be said about
the new inequalities, χC∗(G) ≤ 3, χhered(G) ≤ 3, and χalg(G) ≤ 3. Ad-
dressing the first two inequalities would require one to compute Ic(G,K3)
and Ih(G,K3), and unfortunately these ideals contain elements not just de-
termined by simple algebraic relations. However, studying A(G,K2) and
A(G,K3) is rewarding, as we shall now see. Throughout the section, we use
the notation Ev,i = ev,i + I(Kn,Kc).

Proposition 4.1. Let G be a graph. Then χalg(G) = 1 if and only if G is
an empty graph. Hence, χalg(G) = 1 ⇐⇒ χ(G) = 1.

Proof. For each vertex we only have one idempotent Ev,1 and since these
sum to the identity, necessarily Ev,1 = I. But if there is an edge (v, w) then
I = I · I = Ev,1Ew,1 = 0. �

Proposition 4.2. If G is a graph, then χalg(G) = 2 ⇐⇒ χ(G) = 2.

Proof. If χ(G) = 2, then 1 ≤ χalg(G) ≤ χ(G) = 2. Proposition 4.1 shows
that χalg(G) 6= 1, so χalg(G) = 2.

Now suppose χalg(G) = 2. Again by Proposition 4.1, we know χ(G) > 1.
Fix a vertex v and set P0 = Ev,0 and P1 = Ev,1. Note P0 + P1 = I. Let
(v, w) ∈ E(G), then P0Ew,0 = 0 and P1Ew,1 = 0. Hence, Ew,0 = (P0 +
P1)Ew,0 = P1Ew,0 and similarly, Ew,0 = Ew,0P1. Also, P1 = P1(Ew,0 +
Ew,1) = P1Ew,0 = Ew,0.

Thus, whenever (v, w) ∈ E(G), then Ev,i = Ew,i+1, i.e., there are two
projections and they flip. By using a path from v to an arbitrary w in the
connected component of v, we see that {Ew,0, Ew,1} = {P0, P1}.

Now we wish to 2-color the connected component of v. Define the color
of any such vertex w to be 0 if Ew,0 = P0 and 1 if Ew,0 = P1. This yields a
2-coloring. Applying this argument on each connected component of G, we
have shown χ(G) ≤ 2. Since we already know χ(G) > 1, we have shown the
result. �
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Proposition 4.3. If (v, w) ∈ E(G) then Ev,iEw,j = Ew,jEv,i ∈ A(G,K3)
for all i, j. In particular, if G is complete, then A(G,K3) is abelian.

Proof. For 0 = Ev,0Ev,1 = Ev,0(Ew,0 + Ew,1 + Ew,2)Ev,1 = Ev,0Ew,2Ev,1.
Similarly, Ev,iEw,jEv,k = 0 whenever {i, j, k} = {0, 1, 2}.

Now Ew,0 = (Ev,0 +Ev,1 +Ev,2)Ew,0(Ev,0 +Ev,1 +Ev,2) = Ev,1Ew,0Ev,1 +
Ev,2Ew,0Ev,2. Similarly, Ew,j = Ev,j+1Ew,jEv,j+1 + Ev,j+2Ew,jEv,j+2.

Hence, for i 6= j, Ev,iEw,j = Ev,iEw,jEv,i = Ew,jEv,i, while when i = j,
Ev,iEw,i = 0 = Ew,iEv,i. �

In the case that the algebra A(G,K3) can be represented as operators on
a Hilbert space, the above result was already shown in [10, Lemma 2].

Theorem 4.4. χalg(Kj) = j for 1 ≤ j ≤ 4.

Proof. We know χalg(K1) = 1 and χalg(K2) = 2 by Propositions 4.1 and
4.2, respectively. Now if χalg(K3) = 2 then by Proposition 4.2, we see
χ(K3) = 2, which is a contradiction. Hence, 3 ≤ χalg(K3) ≤ χ(K3) = 3.

Finally, if χalg(K4) = 3, then by Proposition 4.3, we have that A(K4,K3)
is a non-zero abelian complex *-algebra. But every unital, abelian ring
contains a proper maximal ideal M , and forming the quotient we obtain
a field F. The map λ1 → λ1 + M embeds C as a subfield. Now we use
the fact that A(K4,K3) is generated by projections and that the image of
each projection in F is either 0 or 1 in order to see that the range of the
quotient map is just C. Thus, F = C and we have a unital homomorphism π :
A(K4,K3)→ C and again using the fact that the image of each projection is
0 or 1 and that the projections commute, we see that π is a *-homomorphism.
Hence, by [24, Theorem 4.12], we have χ(K4) ≤ 3, a contradiction.

Thus, 3 < χalg(K4) ≤ χ(K4) = 4 and the result follows. �

Corollary 4.5. I ∈ I(K4,K3).

5. *-Algebra versus free algebra

The original motivation for the construction of the algebra of a game
comes from projective quantum measurement systems which are always
given by orthogonal projections on a Hilbert space, i.e., operators satis-
fying E = E2 = E∗. This is why we have defined the algebra of a game to
be a *-algebra. But a natural question is whether or not one really needs
a *-algebra or is there simply a free algebra with relations that suffices? In
this section we show that as long as one introduces the correct relations then
the assumption that the algebra be a *-algebra is not necessary.

To this end let F(nm) := C〈xv,a | 0 ≤ v ≤ n−1, 0 ≤ a ≤ m−1〉 be the free
unital complex algebra on nm generators and let B(n,m) = F(nm)/I(n,m)
where I(n,m) is the two-sided ideal generated by

x2v,a − xv,a,∀v, a; 1−
m−1∑
a=0

xv,a,∀v; xv,axv,b,∀v,∀a 6= b.
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We let pv,a denote the coset of xv,a in the quotient so that

p2v,a = pv,a, ∀v, a; 1 =
m−1∑
a=0

pv,a, ∀v; pv,apv,b = 0,∀v,∀a 6= b.

Proposition 5.1. There is an isomorphism π : B(n,m)→ C[F(n,m)] with
π(pv,a) = ev,a,∀v, a, where ev,a are defined as in the previous section.

Proof. Let ρ : F(nm) → C[F(n,m)] be the unital algebra homomorphism
with ρ(xv,a) = ev,a. Then ρ vanishes on I(n,m) and so induces a quotient
homomorphism π : B(n,m) → C[F(n,m)]. It remains to show that π is
one-to-one.

To this end set ω = e2πi/m and let yv =
∑m−1

a=0 ω
apv,a. It is readily checked

that ymv =
∑m−1

a=0 ω
ampv,a = 1. Since pv,a = 1

m

∑m−1
k=0 (ω−ayv)

k we have that
{yv : 0 ≤ v ≤ n− 1} generates B(n,m).

Now by the universal property of C[F(n,m)] there is a homomorphism
γ : C[F(n,m)] → B(n,m) with γ(uv) = yv and hence, this is the inverse of
π. �

Corollary 5.2. Let G = (I,O, λ) be a symmetric synchronous game with
|I| = n and |O| = m. Then A(G) is isomorphic to the quotient of F(nm)
by the 2-sided ideal generated by

x2v,a − xv,a,∀v, a; 1−
m−1∑
a=0

xv,a,∀v

and

xv,axw,b,∀v, w, a, b such that λ(v, w, a, b) = 0.

Proof. Recall that A(G) = C[F(n,m)]/I(G), where I(G) is the smallest *-
closed ideal containing the set S = {ev,aew,b | λ(v, w, a, b) = 0}. In our case,
G is symmetric and so the set S is already closed under the * operation. As
a result, I(G) is the ideal generated by the set S.

In Proposition 5.1, we showed that the quotient map ρ : F(nm) →
C[F(n,m)] given by ρ(xv,a) = ev,a, induces an isomorphism B(n,m) :=
F(nm)/I(n,m) ' C[F(n,m)]. Thus, A(G) is the quotient of F(nm) by
I(n,m) and the 2-sided ideal generated by ρ−1(S); this is precisely the 2-
sided ideal given in the statement of the corollary. �

Corollary 5.3. A symmetric synchronous game G = (I,O, λ) has a per-
fect algebraic strategy if and only if 1 is not in the 2-sided ideal of F(nm)
generated by

x2v,a − xv,a,∀v, a; 1−
m−1∑
a=0

xv,a,∀v,

and

xv,axw,b,∀v, w, a, b such that λ(v, w, a, b) = 0.
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Before moving on to discuss base change in §5.1, we remark that when
m = 3 the condition xv,axv,b = 0,∀a 6= b is a consequence of the other
hypotheses and is not needed in the definition of the ideal I(n,m). To
see this, suppose a unital algebra contains 3 idempotents, p1, p2, p3 with
p1 + p2 + p3 = 1. Then p1 + p2 = 1 − p3 is idempotent, and squaring
yields p1p2 + p2p1 = 0. Thus, 0 = p1(p1p2 + p2p1) = p1p2 + p1p2p1 and
0 = (p1p2 + p2p1)p1 = p1p2p1 + p2p1, from which it follows that p1p2 = p2p1
and so 2p1p2 = 0. Similarly, we see pipj = 0 for i 6= j.

For m ≥ 4 however, it is necessary to include the relation xv,axv,b in
the ideal in order to guarantee that the quotient B(n,m) is isomorphic to
C[F(n,m)]. This is because in a complex algebra it is possible to have 4
idempotents that sum to the identity but whose products are not 0. We
thank Heydar Radjavi for pointing this out to us.

If a set of self-adjoint projections on a Hilbert space, P1, ..., Pm sum to
the identity then it is easily checked that they project onto orthogonal sub-
spaces and so PiPj = 0, ∀i 6= j. Thus, in any C*-algebra when self-adjoint
idempotents sum to the identity, their pairwise products are 0. But the
situation is not so clear for self-adjoint idempotents in a *-algebra and we
have not been able to resolve this question. So we ask:

Problem 5.4. Let A be a unital *-algebra and let p1, ..., pm satisfy pi =
p2i = p∗i and p1 + · · ·+ pm = 1. Then does it follow that pipj = 0,∀i 6= j?

5.1. Change of field. The following is important for Gröbner basis cal-
culations. Let 1 ∈ K ⊆ C be any subfield. We set FK(nm) equal to the
free K-algebra on nm generators xv,i, so that FC(nm) = F(nm). Given
any symmetric synchronous game G with n inputs and m outputs, we let
IK(G) ⊆ FK(nm) be the 2-sided ideal generated by

x2v,a − xv,a, ∀v, a; 1−
m−1∑
a=0

xv,a,∀v,

and
xv,axw,b,∀v, w, a, b such that λ(v, w, a, b) = 0.

We let AK(G) = FK(nm)/IK(G). By Corollary 5.3, G has a perfect algebraic
strategy if and only if 1 6∈ IC(G), or equivalently AC(G) 6= 0.

We show that this computation is independent of the field K.

Proposition 5.5. If K is a field containing Q, then

AK(G) = AQ(G)⊗Q K.
Furthermore, AK(G) = 0 if and only if AQ(G) = 0.

Proof. By definition, we have a short exact sequence

0→ IQ → FQ → AQ → 0

of Q-vector spaces. Since K is flat over Q, we obtain a short exact sequence

0→ IQ ⊗Q K→ FQ ⊗Q K→ AQ ⊗Q K→ 0.
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Since the generators are independent of the field, one checks that FQ⊗QK =
FK and that the image of IQ⊗QK→ FK is equal to IK. Since this latter map
is injective, we see IQ ⊗Q K = IK. Hence, the above short exact sequence
shows AK(G) = AQ(G)⊗Q K.

Lastly, K/Q is faithfully flat. So, AK(G) = 0 if and only if AQ(G) = 0. �

6. Algebraic 4-colorability theorem

This section gives a machine-assisted proof which analyzes 4 algebraic
colors. We prove:

Theorem 6.1. For any graph G, we have χalg(G) ≤ 4.

Remark 6.2. As mentioned in the Introduction, our proof of Theorem 6.1
is computer-assisted, using a Gröbner basis approach to show A(G, 4) 6= 0.
One may be tempted to find a simple direct proof of this fact without the
use of computational techniques; we have spent considerable effort to find
such a proof, but an essential difficulty in such attempts is that many of
the ∗-algebras A(G, 4) have no non-trivial ∗-representations as algebras of
operators on a Hilbert space. For example, consider the ∗-algebra A(K5, 4).
If we let ev,i = xv,i + I(K5,K4), 1 ≤ v ≤ 5, 1 ≤ i ≤ 4 denote the canon-
ical self-adjoint idempotent generators of this algebra, then we have that
ev,iev,j = 0,∀i 6= j and that ev,iew,i = 0,∀v 6= w. Arguing as in the proof of
Proposition 3.8, if we set pi =

∑
v ev,i, 1 ≤ i ≤ 4, then pi = p∗i = p2i , 1 ≤ i ≤

4. Hence, qi = 1− pi is also a set of self-adjoint idempotents. Finally,

4∑
i=1

qi = 4 · 1−
4∑
i=1

pi = 4 · 1−
5∑
v=1

4∑
i=1

ev,i = 4 · 1− 5 · 1 = −1,

so that the algebra A(K5, 4) contains a set of 4 self-adjoint idempotents that
sum to −1. From this it follows that any ∗-homomorphism from A(K5, 4)
into the algebra of operators on a Hilbert space must send each qi to 0, and
hence map −1 to 0 as well.

This proves the algebra A(K5, 4) has no non-trivial ∗-representation on a
Hilbert space. So to prove that the algebra is non-trivial, we need a proof
that avoids representations.

Theorem 6.1 is equivalent to the statement that for any graph G, we
have 1 6∈ I(G,K4). A natural, albeit computational, way to prove such a
statement is through the use of (noncommutative) Gröbner bases. For a
brief effective exposition to noncommutative Gröbner basis algorithms, see
Chapter 12.3 [8] or [21, 28, 16].

For those readers already familiar with (commutative) Gröbner bases,
we explain the key differences with the noncommutative setting. Let I =
(p1, . . . pk) be a two-sided ideal, and prescribe a monomial order. A noncom-
mutative Gröbner basis B of I is a set of generators such that the leading
term of any element of I is in the monomial ideal generated by the leading



ALGEBRAS, SYNCHRONOUS GAMES, AND CHROMATIC NUMBERS 347

terms of B. A noncommutative Gröbner basis is produced in the same way
as in the commutative case. Let mj be the leading term of pj and notice
that any two mj ,mk have as many as 4 possible least common multiples,
each of which produces syzygyies. One repeatedly produces syzygyies and
reduces to obtain a Gröbner basis in the same way as the commutative set-
ting. However, unlike the commutative case, a Gröbner basis can be infinite.
Very fortunately the Gröbner bases that arise in our coloring computations
below are finite. The key property we use is that p is in I if and only if the
reduction of p by a Gröbner basis for I yields 0.

Recall that I(G,K4) is generated by the following relations:

xv,ixv,j ∀i 6= j; 1−
3∑
i=0

xv,i ∀v; xv,ixw,i ∀(v, w) ∈ E(G), ∀i.

To prove Theorem 6.1 we will make use of the following theorem:

Theorem 6.3. For any n ≥ 3 a Gröbner basis for I(Kn,K4) under the
graded lexographic ordering with

x0,0 < x0,1 < x0,2 < x0,3 < x1,0 < x1,1 < . . . < xn−1,3 (6.1)

consists of relations of the following forms:

(1)
xv,ixv,j

with i, j ≤ 2 i 6= j
(2)

x2v,i − xv,i
with i ≤ 2

(3)
xv,3 + xv,2 + xv,1 + xv,0 − 1

(4)
xv,ixw,i

with v 6= w, i ≤ 2
(5)

xv,2xw,1 + xv,2xw,0 + xv,1xw,2 + xv,1xw,0 + xv,0xw,2 + xv,0xw,1

−xv,2 − xv,1 − xv,0 − xw,2 − xw,1 − xw,0 + 1

with v 6= w
(6)

xv,2xw,0xv,1 − xv,1xw,2xv,0 − xv,1xw,0xv,2 − xv,0xw,2xv,0
−xv,0xw,1xv,2 − xv,0xw,1xv,0 + xv,1xw,2 + xv,1xw,0

+xv,0xw,2 + xv,0xw,1 + xw,2xv,0 + xw,1xv,2 + xw,1xv,0

+xw,0xv,2 − xv,2 − xv,1 − xv,0 − xw,2 − xw,1 − xw,0 + 1

with v 6= w



348 J. W. HELTON, K. P. MEYER, V. I. PAULSEN AND M. SATRIANO

(7)

xv,2xw,0xu,1 − xv,1xw,2xu,0 − xv,1xw,0xu,2 − xv,0xw,2xu,0 − xv,0xw,1xu,2
−xv,0xw,1xu,0 + xv,2xu,0 + xv,1xw,2 + xv,1xw,0

+2xv,1xu,2 + 2xv,1xu,0 + xv,0xw,2 + xv,0xw,1 + 2xv,0xu,2

+xv,0xu,1 + xw,2xu,0 + xw,1xu,2 + xw,1xu,0 + xw,0xu,2

−xv,2 − 2xv,1 − 2xv,0 − xw,2 − xw,1 − xw,0 − 2xu,2 − xu,1 − 2xu,0 + 2

with v 6= w 6= u 6= v

Specifically I(Kn,K4) has a Gröbner basis that does not contain 1 and
thus 1 6∈ I(Kn,K4).

Remark 6.4. Each of the relations (1)–(7) correspond to a set of relations
obtained by taking all choices of v, w, u in V (Kn). However because of the
monomial ordering chosen, the leading terms are always of the forms:

(1) xv,ixv,j (2) x2v,i (3) xv,3 (4) xv,ixw,i
(5) xv,2xw,1 (6) xv,2xw,0xv,1 (7) xv,2xw,0xu,1

Additionally for every 1 ≤ i ≤ 7, all the vertices of Kn which appear in
the terms of relation (i) also appear in the leading term of (i).

Proof. Let the ideal generated by these relations be denoted by J , we will
first show that these relations form a Gröbner basis for J , and then show
that J = I(Kn,K4).

Before we begin our calculations pertaining to an algebra over C we note
that all of the coefficients that appear will be in Q. Section 5.1 bears on
this.

To see that these relations form a Gröbner basis we must show that the
syzygy between any two polynomials in this list is zero when reduced by the
list. First by Remark 6.4 each of the relations has variables corresponding to
at most three different vertices of Kn and reducing by a relation will not in-
troduce variables corresponding to different vertices. Thus when calculating
and reducing the syzygy between any two relations, variables corresponding
to at most 6 vertices of Kn will be involved. Therefore we can verify that all
syzygies reduce to zero by looking at the case n = 6 which we verify using
NCAlgebra 5.0 and NCGB running under Mathematica (see the file QCGB-
9-20-16.nb, available at: https://github.com/NCAlgebra/UserNotebooks ).
This proves that the relations (1) – (7) form a Gröbner basis.

We now show that J = I(Kn,K4). We will first show that all of the
generators of J are contained in I(Kn,K4). The elements of types (1),
(3), and (4) are self-evidently in I(Kn,K4) since they are elements of the
generating set of I(Kn,K4). For type (2) we note that under the relations
generating I(Kn,K4) that

xv,i(1−
3∑
j=0

xv,j) = xv,i − x2v,i −
∑
j 6=i

xv,ixv,j = xv,i − x2v,i,
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and thus elements of type (2) are in I(Kn,K4). For type (5) we use the
relations generating I(Kn,K4) to get that

xv,3xw,3 = (1− xv,2 − xv,1 − xv,0)(1− xw,2 − xw,1 − xw,0)

= xv,2xw,1 + xv,2xw,0 + xv,1xw,2 + xv,1xw,0 + xv,0xw,2

+xv,0xw,1 − xv,2 − xv,1 − xv,0 − xw,2 − xw,1 − xw,0 + 1.

Finally type (6) is obtained by reducing

(xv,2xw,1 + xv,2xw,0 + xv,1xw,2 + xv,1xw,0 + xv,0xw,2 + xv,0xw,1

−xv,2 − xv,1 − xv,0 − xw,2 − xw,1 − xw,0 + 1)xv,1 − xv,2(xw,1xv,1)
using the relations of types (1)–(5), and type (7) is obtained by reducing

(xv,2xw,1 + xv,2xw,0 + xv,1xw,2 + xv,1xw,0 + xv,0xw,2 + xv,0xw,1

−xv,2 − xv,1 − xv,0 − xw,2 − xw,1 − xw,0 + 1)xu,1 − xv,2(xw,1xu,1)
using the relations of types (1)–(5). These two reductions are verified with
Mathematica in QCGB-9-20-16.nb. Thus all of the generating relations of
J are in I(Kn,K4) and we have that J ⊂ I(Kn,K4).

Next we will show that all the generators of I(Kn,K4) are contained in
J . The only generating relations of I that are not immediately seen to be
in J are

xv,3xv,j , xv,ixv,3,

and

xv,3xw,3.

To see that xv,ixv,3 is in J we consider xv,i(xv,3 + xv,2 + xv,1 + xv,0 − 1).
This is an element of J since (xv,3 +xv,2 +xv,1 +xv,0−1) is in J , and when
multiplied out all terms except xv,ixv,3 are in J , and thus xv,ixv,3 is in J ,
similarly xv,3xv,j is in J . Finally, we consider the equation

xv,3xw,3 = (xv,3 + xv,2 + xv,1 + xv,0 − 1)(xw,3 + xw,2 + xw,1 + xw,0 − 1)

−(xv,2xw,1 + xv,2xw,0 + xv,1xw,2 + xv,1xw,0 + xv,0xw,2 + xv,0xw,1

−xv,2 − xv,1 − xv,0 − xw,2 − xw,1 − xw,0 + 1)− xv,2xw,2 − xv,1xw,1 − xv,0xw,0,
the right-hand side is a sum of relations in J and is thus in J , and thus the
left-hand side is also in J , specifically xv,3xw,3 is in J . Therefore all of the
generating relations of I(Kn,K4) are in J , so that I(Kn,K4) ⊂ J . Since
we have shown inclusion both ways, we have that I(Kn,K4) = J and we
are done. �

Lemma 6.5. If G, H are graphs such that V (H) = V (G) and E(H) ⊃
E(G), then I(H,Km) ⊃ I(G,Km) and thus 1 6∈ I(H,Km) =⇒ 1 6∈
I(G,Km).

Proof. The relations generating I(H,Km) contains the relations generating
I(G,Km) and thus the result follows. �



350 J. W. HELTON, K. P. MEYER, V. I. PAULSEN AND M. SATRIANO

Proof of Theorem 6.1. Let G be a graph on n vertices. By Theorem
6.3, 1 6∈ I(Kn,K4). Additionally E(G) ⊂ E(Kn), and thus by Lemma 6.5,
1 6∈ I(G,K4). Therefore χalg(G) ≤ 4. �

Problem 6.6. What is the complexity of deciding if χalg(G) = 4, i.e., of
deciding if 1 ∈ I(G,K3)?

7. Locally commuting algebra

In the final two sections of the paper, we consider a variant of χalg. We
show that by adding mild commutativity relations to the algebra A(G, c), we
obtain a chromatic number χlc which exhibits behavior much more akin to
χ, χq, χqa, and χqc. For example, in this section we prove χlc(Kn) = n, and
in the following section we show it behaves well with respect to products.
We also obtain an a priori new type of clique number ωlc, although we prove
in this section that ωlc = ω, see Theorem 7.4.

Since our algebras were initially motivated by quantum chromatic num-
bers, it is natural to look to quantum mechanics for further relations to
impose. In the case of a graph, we can imagine each vertex as correspond-
ing to a laboratory and think of two vertices as connected whenever those
laboratories can conduct a joint experiment. In this case, all of the mea-
surement operators for the two labs should commute, i.e., whenever (v, w)
is an edge, then the commutator [ev,i, ew,j ] := ev,iew,j − ew,jev,i = 0. Note
that this commutation rule is exactly the rule that we were able to derive
in the case of three colors in Proposition 4.3. This motivates the following
definitions.

Definition 7.1. Let G = (I,O, λ) be a synchronous game with |I| = n and
|O| = m. We say that v, w ∈ I are adjacent and write v ∼ w provided
that v 6= w and there exists a, b ∈ O such that λ(v, w, a, b) = 0. We define
the locally commuting ideal of the game to be the 2-sided ideal Ilc(G) in
C[F(n,m)] generated by the set

{ev,aew,b | λ(v, w, a, b) = 0} ∪ {[ev,a, ew,b] | v ∼ w, ∀a, b ∈ O}.

We set Alc(G) = C[F(n,m)]/Ilc(G) and call this the locally commuting
algebra of G.

In the case that G and H are graphs and G is the graph homomorphism
game from G to H we set

Ilc(G,H) = Ilc(G)

and

Alc(G,H) = Alc(G).

We write G
lc→ H if Ilc(G,H) 6= C[F(n,m)] and set

χlc(G) = min{c | G lc→ Kc}.
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We similarly define

ωlc(G) = max{c | Kc
lc→ G}.

Note that in the case of the graph homomorphism game from G to H we
have that I = V (G) and v ∼ w ⇐⇒ (v, w) ∈ E(G). Thus, the relationship
∼ extends the concept of adjacency to the inputs of a general synchronous
game.

Thus, Alc(G,Kc) is the universal *-algebra generated by self-adjoint pro-
jections {Ev,i : v ∈ V (G), 1 ≤ i ≤ c} satisfying

•
∑c

i=1Ev,i = I, ∀v,
• v ∼ w =⇒ Ev,iEw,i = 0,∀i,
• v ∼ w =⇒ [Ev,i, Ew,j ] = 0,∀i, j

and χlc(G) is the least c for which such a non-trivial *-algebra exists.

Lemma 7.2. If there exists a morphism G → H, then Alc(G,H) 6= 0,

i.e. G
lc→ H.

Proof. Let φ : G → H be a graph homomorphism. Consider the map
Alc(G,H)→ C sending ev,φ(v) to 1 and ev,x to 0 for x 6= φ(v). It is easy to
see this is a well-defined C-algebra map and hence surjective. As a result,
Alc(G,H) 6= 0. �

Corollary 7.3. We have χlc(G) ≤ χ(G) and ω(G) ≤ ωlc(G).

Proof. There is a graph homomorphism G → Kχ(G) so by Lemma 7.2, we

have G
lc→ Kχ(G) and hence χlc(G) ≤ χ(G). The inequality for ω is shown

in an analogous fashion. �

We are now ready to prove the main result of this section.

Theorem 7.4. Let H be a graph and n ≥ 1. Then

(1) Alc(Kn, H) is the abelianization of A(Kn, H),
(2) Alc(Kn, H) 6= 0 if and only if H has an n-clique,
(3) ω(H) = ωlc(H),
(4) χlc(Kn) = n.

Proof. It is immediate from the definition thatAlc(Kn, H) is the quotient of
A(Kn, H) where we impose all commutation relations among the generators,
hence Alc(Kn, H) is the abelianization of A(Kn, H).

Applying Theorem 3.2 (1) to the graph homomorphism game, we see
A(Kn, H) has an abelian representation if and only if there is a graph ho-
momorphism Kn → H, i.e. if H has an n-clique. We conclude by noting
that A(Kn, H) has an abelian representation if and only if its abelianization
Alc(Kn, H) does if and only if Alc(Kn, H) 6= 0.

Statement (3) and follows immediately from (2): the quantity ωlc(H) is
the minimal n for which Alc(Kn, H) 6= 0, and we have shown this n =
ω(H). Statement (4) is also immediate: χlc(Kn) is the minimal c for which
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Alc(Kn,Kc) 6= 0; since non-vanishing of this algebra is equivalent to Kc

containing an n-clique, the minimum such c is n itself. �

Problem 7.5. We do not know if the Lovasz sandwich result holds in this
context, i.e., if ωlc(G) ≤ ϑ(G) ≤ χlc(G).

8. Some further properties of Alc and χlc

Our main goal is to distinguish χlc from χ, χq, and χvect. This is done
in Theorem 8.18 of Subsection 8.3, and will follow from analysis of how χlc
behaves with respect to graph suspension and certain graph products. Sub-
section 8.1 is concerned with the study of graph suspension. As a corollary,
we also obtain a more refined version of Theorem 7.4: the theorem only tells
us when Alc(Kn, H) is non-zero, but tells us nothing more about the struc-
ture of the algebra; in Corollary 8.10, we compute the algebra structure of
Alc(Kn, H). In Subsection 8.2, we turn to the behavior of χlc under graph
products. We use our results to explicitly compute χlc(C5 �K3), which is
used in the proof of Theorem 8.18.

Throughout this section we shall write ' to indicate that two algebras
are isomorphic. We shall use Cn to denote the abelian algebra of complex-
valued functions on n points. For ease of notation, we will frequently write
v ∈ G instead of v ∈ V (G).

Recall Alc(G,H) is the quotient of C〈evx | v ∈ G, x ∈ H〉 by the ideal
generated by the following relations

(1)
∑

x∈H evx = 1,

(2) e2vx = evx,
(3) evxevy = 0 for x 6= y,
(4) evxewy = 0 if v ∼ w and x 6∼ y, and
(5) [evx, ewy] = 0 for v ∼ w.

and recall that we write G
lc→ H if Alc(G,H) 6= 0.

8.1. Behavior of χlc under suspension and a more refined version
of Theorem 7.4.

Lemma 8.1. If G
lc→ H and H

lc→ K, then G
lc→ K.

Proof. If Alc(G,H) and Alc(H,K) are non-zero, then we must prove that
Alc(G,K) is non-zero as well. To see this, consider the map

C〈evr | v ∈ G, r ∈ K〉 → Alc(G,H)⊗Alc(H,K)

given by

evr 7→
∑
x∈H

evx ⊗ exr

and suppose that it vanishes on Ilc(G,K). Hence, there would be a well-
defined map on the quotient,

Alc(G,K)→ Alc(G,H)⊗Alc(H,K)
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evr 7→
∑
x∈H

evx ⊗ exr.

If 1 = 0 in Alc(G,K), then the same would be true in Alc(G,H)⊗Alc(H,K),
since this map sends units to units.

Thus it remains to show that the above map vanishes on Ilc(G,K). In
order to do this, it is sufficient to check that each generating relation is sent
to zero. This is easily checked, for example,∑

r∈K

∑
x∈H

evx ⊗ exr =
∑
x∈H

evx ⊗
∑
r∈K

exr =
∑
x∈H

evx ⊗ 1 = 1.

Checking the other relations is left to the reader. �

Corollary 8.2. If G
lc→ H, then χlc(G) ≤ χlc(H).

Proof. Let c = χlc(H). Then we have H
lc→ Kc and hence G

lc→ Kc. Thus,
χlc(G) ≤ c = χlc(H). �

We also have the following consequence of the proof of Lemma 8.1.

Theorem 8.3. The assignment

(Graphs)× (Graphs) −→ (C-algebras)

(G,H) 7−→ Alc(G,H)

is a functor, which is covariant in the first factor and contravariant in the
second.

Proof. If φ : G → G′ is a morphism, then we have a map Alc(G,H) →
Alc(G′, H) given by ev,x 7→ eφ(v),x. On the other hand, if φ : H → K is a

morphism, then we have H
lc→ K and so from the proof of Lemma 8.1, we

have

Alc(G,K)→ Alc(G,H)⊗Alc(H,K).

Since φ is a morphism of graphs, we have a map Alc(H,K) → C as in the
proof of Lemma 7.2. Composing with the above, we have Alc(G,K) →
Alc(G,H). Explicitly, this map is given by sending evx ∈ Alc(G,K) to∑

φ(r)=x evr. �

We now show how the functor Alc interacts with various natural graph
operations. To begin, recall that if G is a graph, its suspension ΣG is defined
by adding a new vertex v and an edge from v to each of the vertices of G.

Given an algebra A we shall let Ac denote the algebra of c-tuples with
entries from A, i.e., the tensor product A ⊗ Cc ' A⊕c where Cc can be
identfied with the algebra of C-valued functions on c points.
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Proposition 8.4. Let G and H be any graphs. For y ∈ H we let Ny denote
the neighborhood of y, i.e., the induced subgraph of H with vertices adjacent
to y; notice y /∈ Ny. Then we have an algebra isomorphism

Alc(ΣG,H) '
⊕
y∈H
Alc(G,Ny).

In particular, if H is vertex transitive and y is any vertex of H with neigh-
borhood N , then

Alc(ΣG,H) ' Alc(G,N)|H|.

Proof. Let u be the new vertex added to ΣG, i.e., u ∈ ΣG \G. Since u is
adjacent to every vertex of G, we see eux commutes with evy for all v ∈ G and
x, y ∈ H. Furthermore, the defining relations of Alc tell us euxeuy = δx,yeux
where δ denotes the Kronecker delta function. So, considering the ring
Alc(G,H)[eux] of polynomials in eux with coefficients in Alc(G,H), we have
an isomorphism

Alc(ΣG,H) ' Alc(G,H)[eux]/(
∑
x

eux − 1, euxeuy = δx,yeux).

In other words, the eux for x ∈ H are commuting orthogonal idempotents,
which shows

Alc(ΣG,H) '
⊕
y∈H
Alc(G,H)euy '

⊕
y∈H
Alc(G,H)/(evx : x 6∼ y),

where the last equality comes from the fact that evxeuy = 0 for x 6∼ y.
Now note that evx remains non-zero in the quotient Alc(G,H)/(evx : x 6∼

y) if and only if x ∼ y. Thus,

Alc(G,H)/(evx : x 6∼ y) ' Alc(G,Ny),

which establishes the first assertion of the proposition. The second assertion
easily follows from the first since all neighborhoods are isomorphic. �

Corollary 8.5. For all non-empty graphs G, we have Alc(ΣG,K1) = 0. If
c ≥ 2, then

Alc(ΣG,Kc) ' Alc(G,Kc−1)
c.

Proof. This is an immediate consequence of Proposition 8.4 using that Kc

is vertex transitive. �

Corollary 8.6. For all graphs G, we have χlc(ΣG) = χlc(G) + 1.

Proof. By the above isomorphism, the least c such that Alc(ΣG,Kc+1) 6=
(0) is equal to the least c such that Alc(G,Kc) 6= (0). �

Remark 8.7. In [19] an example of a graph G is given for which χq(ΣG) =
χq(G). Hence, either χlc(ΣG) 6= χq(ΣG) or χlc(G) 6= χq(G).
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Corollary 8.8. If c ≥ n, then

Alc(Kn,Kc) ' Cc(c−1)...(c−n+1).

If c < n, then Alc(Kn,Kc) = 0.

Proof. One easily checks that Alc(K1, G) ' C|G| for any graph G. In
particular, our desired statement holds for n = 1. The proof then follows
from induction on n by applying Corollary 8.5 and using that Kn = ΣKn−1.

�

Remark 8.9. In Theorem 7.4, we proved χlc(Kn) = n. Corollary 8.8
gives another proof of this result which tells us the specific structure of
Alc(Kn,Kc) whereas the theorem merely tells us it is non-zero.

Using Proposition 8.4, we can easily understand iterated suspensions.

Corollary 8.10. If H is a graph, then

Alc(Kn, H) '
⊕
S⊆H

Cn! ' CNn!,

where S ranges over the n-cliques of H, and N denotes the number of n-
cliques.

Remark 8.11 (ωlc = ω). Corollary 8.10 gives another proof that ωlc = ω.
The corollary gives more information than our previous proof in Theorem
7.4. The theorem tells us Alc(Kn, H) 6= 0 if and only if n ≥ ω(H), but the
corollary tells us the structure of algebra Alc(Kn, H).

Proof of Corollary 8.10. We leave the n = 1 case to the reader. Itera-
tively applying Proposition 8.4, we see

Alc(Kn, H) '
⊕
x∈H
Alc(Kn−1, Nx) ' · · · '

⊕
(xn−1,...,x2,x1)

Alc(K1, Nxn−1 . . . Nx2Nx1)

where the index of the direct sum runs over all sequences (xn−1, . . . , x2, x1)
with xi+1 ∈ NxiNxi−1 . . . Nx1 ; recall that NxiNxi−1 . . . Nx1 is the set of all
z ∈ Nxi−1 . . . Nx1 that are adjacent to xi.

We show by induction that the x1, . . . , xi form an i-clique and N{x1,...,xi}
equals NxiNxi−1 . . . Nx1 ; recall the definition given in the statement of the
corollary that NS = {z ∈ H | z ∼ x ∀x ∈ S} for any clique S. For
i = 1 this is just the definition. For i > 1, observe that by construction
xi ∈ Nxi−1 . . . Nx1 = N{x1,...,xi−1} and since x1, . . . , xi−1 forms an (i − 1)-
clique, we see x1, . . . , xi forms an i-clique. Next, NxiN{x1,...,xi−1} is the
set of z ∈ N{x1,...,xi−1} that are adjacent to xi, which is the definition of
N{x1,...,xi}.

This shows

Alc(Kn, H) '
⊕

(xn−1,...,x2,x1)

Alc(K1, N{x1,...,xn−1}),
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and by the n = 1 case, each summand is isomorphic to |N{x1,...,xn−1}|
copies of C. Now notice that N{x1,...,xn−1} is independent of the order
of the sequence, and hence this term arises (n − 1)! times. This shows

Alc(Kn, H) '
⊕

T⊆H C|NT |(n−1)! as T ranges over the (n − 1)-cliques in H

and NT = {z ∈ H | z ∼ x ∀x ∈ T}. This yields the desired statement since
|NT | is equal to the number of n-cliques containing T . �

8.2. Two explicit examples, and the behavior of χlc under graph
products. We end the paper by considering how χlc interacts with several
graph products. We then use our results to calculate χlc in two examples.
Consider the graph products G �H and G�H; they both have vertex set
V (G)×V (H). In the former, (v, x) ∼ (w, y) if and only if v = w and x ∼ y,
or v ∼ w and x = y. In the latter, (v, x) ∼ (w, y) if and only if v ∼ w and
x ∼ y, or v = w and x ∼ y, or v ∼ w and x = y. The products � and �
are referred to as the Cartesian and strong products, respectively.

For any pair of graphs we have χ(G �H) = max{χ(G), χ(H)}. We show
that the same is true for χlc.

Theorem 8.12 (χlc of Cartesian product). For any graphs G and H, we
have

χlc(G �H) = max{χlc(G), χlc(H)}.

Proof. We have at least |H|mapsG→ G �H, so Lemma 7.2 and Corollary
8.2 show χlc(G) ≤ χlc(G �H). Similarly for H, so max{χlc(G), χlc(H)} ≤
χlc(G �H). To prove the result, it now suffices to show we have a map

Alc(G �H,Kc)→ Alc(G,Kc)⊗Alc(H,Kc).

Indeed, ifAlc(G,Kc) andAlc(H,Kc) are non-zero, then so isAlc(G �H,Kc)
since the above map would send 0 to 0 and 1 to 1, and if 0 = 1 in
Alc(G �H,Kc), then 0 = 1 inAlc(G,Kc)⊗Alc(H,Kc), which is not the case.
Taking c = max{χlc(G), χlc(H)}, this would then show χlc(G �H,Kc) ≥ c.

We now construct the above map. We define it by:

e(x,y),k 7→
∑
i∈Z /c

ex,i ⊗ ey,k−i

and show it is well-defined. First suppose that (x, y) ∼ (x′, z) and k 6∼ `.
Then k = ` and without loss of generality x = x′ and y ∼ z. Then

e(x,y),ke(x,z),` 7→
∑
i,j

ex,iex,j ⊗ ey,k−iez,`−j = 0

since ex,iex,j = 0 if i 6= j, and if i = j, then k−i = `−j and so ey,k−iez,`−j =
0.

Next, if y ∼ z, then the images of e(x,y),ke(x,z),` and e(x,z),`e(x,y),k are equal
since

e(x,y),ke(x,z),` 7→
∑
i,j

ex,iex,j ⊗ ey,k−iez,`−j
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and ey,k−iez,`−j = ez,`−jey,k−i as y ∼ z, and ex,iex,j = δijex,i = ex,jex,i.
We next see that

∑
k e(x,y),k maps to∑

i

∑
k

ex,i ⊗ ey,k−i =
∑
i

∑
k

ex,i ⊗ ey,k =
∑
i

ex,i ⊗
∑
k

ey,k = 1⊗ 1.

If k 6= `, then

e(x,y),ke(x,y),` 7→
∑
i,j

ex,iex,j ⊗ ey,k−iey,`−j = 0

since ex,iex,j = 0 if i 6= j, and if i = j, then k−i 6= `−j and so ey,k−iey,`−j =
0.

Lastly,

e2(x,y),k 7→
∑
i,j

ex,iex,j ⊗ ey,k−iey,k−j =
∑
i

e2x,i ⊗ e2y,k−i

since ex,iex,j = 0 if i 6= j. Thus, e2(x,y),k and e(x,y),k have the same image.

This completes the proof that the map is well-defined. �

Lemma 8.13. If G
lc→K and H

lc→K ′, then G · H lc→K · K ′ for any · ∈
{×, �,�}.

Proof. It suffices to construct a map

Alc(G ·H,K ·K ′)→ Alc(G,K)⊗Alc(H,K ′).
We define it by

e(x,y),(k,k′) 7→ ex,k ⊗ ey,k′ .
One readily checks that this map is well-defined. For example, in the case of
the Cartesian product � we show that if (x, y) ∼ (z, w) and (k, k′) 6∼ (`, `′),
then e(x,y),(k,k′)e(z,w),(`,`′) maps to 0. Without loss of generality, we can
assume that x = z and y ∼ w. Then the image is ex,kex,` ⊗ ey,k′ew,`′ , which
is automatically 0 if k 6= `. So, we may assume k = `, in which case k′ 6∼ `′

since (k, k′) 6∼ (`, `′). But then ey,k′ew,`′ = 0. �

Corollary 8.14. We have χlc(G�H) ≤ χlc(G)χlc(H).

Proof. This follows immediately from Lemma 8.13 after observing that
Kn �Km = Knm. �

In [5], the authors showed that 8 = χ(C5�K3) = χq(C5�K3) > χvect(C5�
K3) = 7. Thus, separating χq from χvect. Later, [26] showed that χqc(C5 �
K3) = 8, separating the potentially smaller χqc from χvect. We show below
that χlc(C5 �K3) = 8 as well.

Before considering C5 �K3 we begin with a simpler example.

Example 8.15 (C5�K2). Let G = C5�K2. It is easy to see that ω(G) = 4
and χ(G) = 5, so a priori χlc could be 4 or 5. We show

χlc(C5 �K2) = 5.
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We need to show that Alc(G,K4) = 0. The graph G is made up of 2
pentagons stacked on top of each other. Let one of the pentagons have
vertices x, y, z, w, s labeled clockwise and let the other pentagon have vertices
x′, y′, z′, w′, s′ with x and x′ having the same neighbors. For ease of notation,
we denote ev,i by vi. It is not difficult to see that

1 =
∑
σ∈S4

(sσ(3)s
′
σ(4) + s′σ(3)sσ(4))xσ(1)x

′
σ(2)yσ(3)y

′
σ(4)(zσ(1)z

′
σ(2) + z′σ(1)zσ(2)).

Multiplying on both the left and right by w1w
′
2, we see that the only non-

zero terms in the sum must have σ(3), σ(4) ∈ {3, 4} or else w1w
′
2sσ(3)s

′
σ(4) +

s′σ(3)sσ(4)) = 0. However, this forces σ(1), σ(2) ∈ {1, 2} and so (zσ(1)z
′
σ(2) +

z′σ(1)zσ(2))w1w
′
2 = 0. We therefore see

w1w
′
2 = w1w

′
2(s3s

′
4 + s′3s4)(x1x

′
2 + x′1x2)(y3y

′
4 + y′3y4)(z1z

′
2 + z′1z2)w1w

′
2 = 0.

Similarly, we find wiw
′
j = 0 for all i, j. As a result,

1 =
∑
i,j

wiw
′
j = 0

and so Alc(G,K4) = 0.

Example 8.16 (C5 �K3). Let G = C5 �K3. We see ω = 6 and χ = 8, so
a priori χlc could be 6, 7, or 8. We show

χlc(C5 �K3) = 8 = χ(C5 �K3).

We must show Alc(G,K7) = 0. We follow the same notational conventions
as in Example 8.15. Let x, y, z, w, s be the vertices of C5 labeled clockwise
and denote the next two copies of C5 by x′, . . . , s′ resp. x′′, . . . , s′′ where x,
x′, x′′ have the same neighbors in G. We also let vi = ev,i.

As in the previous example,

w1w
′
2w
′′
3 = w1w

′
2w
′′
3SXY Zw1w

′
2w
′′
3 ,

where S =
∑

i,j,k sis
′
js
′′
k and analogously for X,Y, Z. We show that every

term occurring in the sum on the righthand side of the above equation
is 0. The indices i, j, k occurring in the sum S must all lie in {4, 5, 6, 7}
otherwise the term vanishes (since it is multiplied by w1w

′
2w
′′
3). Our goal

is to show that all terms in the sum in the righthand side vanish, so we
can fix a summand in S and assume i, j, k equal 4, 5, 6 respectively. Then
the indices in X must be 3 of {1, 2, 3, 7}. We also see that the indices in Z
must be 3 of {4, 5, 6, 7}. Fix a summands xax

′
bx
′′
c and zpz

′
qz
′′
r of X and Z,

respectively. Then {1, 2, . . . , 7}\{a, b, c, p, q, r} has size at most 2. Therefore,
every summand t of Y satisfies XtZ = 0. So, w1w

′
2w
′′
3 = 0, and analogously

we see wiw
′
jw
′′
k = 0 for all i, j, k. So,

1 =
∑
i,j

wiw
′
jw
′′
k = 0
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showing that Alc(G,K7) = 0. As a result, χlc(G) = 8.

8.3. Distinguishing χlc from χ, χq, and χvect.

Problem 8.17. Since the definition of χlc is not obviously related to rep-
resentations on Hilbert spaces, it is unclear how to relate it to χt for t ∈
{loc, q, qa, qc, vect}. Where does χlc fit within this hierarchy?

As a partial answer to Problem 8.17, we have:

Theorem 8.18. χlc 6= χ, χlc 6= χq, and χlc 6= χvect.

Proof. By Remark 8.7 we know χlc 6= χq. In Example 8.16, we established
χlc(C5 �K3) = 8 and in [5], the authors showed that χvect(C5 �K3) = 7,
so χlc 6= χvect.

Finally, in [19], the authors construct a graph G with χq(G) = 3 and
χ(G) > 3. Since χq(G) = 3, by Theorem 3.2 there is a non-trivial finite-
dimensional representation π : A(G,K3) → B(H), and by Proposition 4.3,
π factors through the quotient map A(G,K3) → Alc(G,K3). This yields a
non-trivial finite-dimensional representation of Alc(G,K3), hence χlc(G) ≤
3 < χ(G). �
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