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Degree product formula in the case of
a finite group action

Piotr Bartłomiejczyk, Bartosz Kamedulski
and Piotr Nowak-Przygodzki

Abstract. Let V,W be finite dimensional orthogonal representations
of a finite group G. The equivariant degree with values in the Burnside
ring of G has been studied extensively by many authors. We present
a short proof of the degree product formula for local equivariant maps
on V and W .
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Introduction

One of the basic properties of the topological degree is the product prop-
erty. Recall that a continuous map from an open subset of Rn into Rn is
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called local if its set of zeros is compact. For such maps the classical Brouwer
degree deg is well-defined and the product property holds. Namely,

Product property ([6, Prop. 8.7]). Let f : Df ⊂ Rm → Rm and f ′ : Df ′ ⊂
Rn → Rn be local maps. Then f × f ′ : Df ×Df ′ → Rm+n is also a local map
and

deg(f × f ′) = deg f · deg f ′.

Our main goal is to present a short proof of an equivariant version of
the product formula for equivariant local maps in the case of a finite group
action. In that case the formula has an analogous form

degG(f × f ′) = degG f · degG f
′,

but since the equivariant degree degG has its values in the Burnside ring of
a finite group G, the multiplication on the right side of the formula takes
place in this Burnside ring. It is worth pointing out that in [7] the authors
proved the equivariant product formula in much more general setting i.e. in
the case of a compact Lie group action. Unfortunately, this proof seems to be
rather sketchy in some parts. We hope that our proof has the advantage of
being straightforward and complete and can be seen as the first step towards
proving the general case.

The paper is organized as follows. Section 1 contains preliminaries. In Sec-
tion 2 we recall the concept of the equivariant degree degG. Our main result
is stated in Section 3. In Section 4 we introduce standard and polystandard
maps and study their properties needed in the next section. Finally, Section
5 contains the proof of our main result.

1. Basic definitions

1.1. Local maps. The notation A b B means that A is a compact subset
of B. For a topological space X, we denote by τ(X) the topology on X. For
any topological spaces X and Y , let M(X,Y ) be the set of all continuous
maps f : Df → Y such that Df is an open subset of X. Let R be a family
of subsets of Y . We define

Loc(X,Y,R) := { f ∈M(X,Y ) | f−1(R) b Df for all R ∈ R}.
We introduce a topology in Loc(X,Y,R) generated by the subbasis consisting
of all sets of the form

• H(C,U) := { f ∈ Loc(X,Y,R) | C ⊂ Df , f(C) ⊂ U } for C b X
and U ∈ τ(Y ),
• M(V,R) := { f ∈ Loc(X,Y,R) | f−1(R) ⊂ V } for V ∈ τ(X) and
R ∈ R.

Elements of Loc(X,Y,R) are called local maps. The natural base point of
Loc(X,Y,R) is the empty map. Let t denote the union of two disjoint local
maps. Moreover, in the case when R = {{y}} we will write Loc(X,Y, y)
omitting double curly brackets. For more details we refer the reader to [4].
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1.2. Equivariant maps. Assume that V is a real finite dimensional orthog-
onal representation of a finite group G. Let X be an arbitrary G-space. We
say that f : X → V is equivariant, if f(gx) = gf(x) for all x ∈ X and g ∈ G.
We will denote by CG(X,V ) the space {f ∈ Loc(X,V, 0) | f is equivariant}
with the induced topology. Assume that Ω is an open invariant subset of V .
Elements of CG(Ω, V ) are called equivariant local maps.

1.3. Otopies. Let I = [0, 1]. We assume that the action of G on I is trivial.
Any element of CG(I × Ω, V ) is called an otopy. Each otopy corresponds to
a path in CG(Ω, V ) and vice versa. Given an otopy h : Λ ⊂ I × Ω → V we
can define for each t ∈ I:

• sets Λt = {x ∈ Ω | (t, x) ∈ Λ},
• maps ht : Λt → V with ht(x) = h(t, x).

In this situation we say that h0 and h1 are otopic. Otopy gives an equivalence
relation on CG(Ω, V ). The set of otopy classes will be denoted by CG[Ω, V ].

Remark 1.1. Observe that if f ∈ CG(Ω, V ) and U is an open invariant subset
of Df such that f−1(0) ⊂ U , then f and f� U are otopic. In particular, if
f−1(0) = ∅ then f is otopic to the empty map.

1.4. G-actions. If H is a subgroup of G then
• (H) stands for the conjugacy class of H,
• NH is the normalizer of H in G,
• WH is the Weyl group of H i.e. WH = NH/H.

Recall that Gx = {g ∈ G | gx = x}. We define the following subsets of V :

V H = {x ∈ V | H ⊂ Gx},
ΩH = {x ∈ Ω | H = Gx},

Ω(H) = {x ∈ Ω | (H) = (Gx)}.

The set Iso(Ω) := {(H) | H is a closed subgroup of G and ΩH 6= ∅} is par-
tially ordered. Namely, (H) ≤ (K) if H is conjugate to a subgroup of K.

We will make use of the following well-known facts:
• V H is a linear subspace of V and an orthogonal representation of
WH,
• ΩH is open in V H ,
• the action of WH on ΩH is free,
• Ω(H) is a G-invariant submanifold of Ω,
• if (H) is maximal in Iso(Ω) then Ω(H) is closed in Ω.

1.5. Splitting of CG[Ω, V ]. Let Ω be an open invariant subset of a real
finite dimensional orthogonal representation of a compact Lie group G. As-
sume that orbit types appearing in Ω are indexed (according to the partial
order) by natural numbers 1, 2, . . . , m. Recall two splitting results concern-
ing the set CG[Ω, V ].
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Theorem 1.2 ([1, Thm 5.4]). There is a natural bijection

CG[Ω, V ] ≈ CWHm

[
ΩHm , V

Hm
]
× CG

[
Ω \ Ω(Hm), V

]
. (1.1)

Naively, it would seem that it is enough to define the above bijection by
taking the otopy classes of the respective restrictions

[f ] 7→
([
f�Df∩ΩHm

]
,
[
f�Df\Ω(Hm)

])
.

Unfortunately, in general, it is not true that f�Df\Ω(Hm)
∈ CG

(
Ω \ Ω(Hm), V

)
.

For that reason, we first need to perturbate f within its otopy class to guar-
antee that the restriction of the perturbation to the set Df \ Ω(Hm) is an
element of CG

(
Ω \ Ω(Hm), V

)
. Moreover, our perturbation does not change

f on Ω(Hm). This procedure is described in detail in [1, Sec. 5].
If we apply induction to (1.1), we get immediately the following result.

Corollary 1.3 ([1, Thm 6.1]). There is a natural bijection

Ψ: CG[Ω, V ]→
m∏
i=1

CWHi

[
ΩHi , V

Hi
]
. (1.2)

For k = 1, 2, . . . ,m, let

πk :
m∏
i=1

CWHi

[
ΩHi , V

Hi
]
→ CWHk

[
ΩHk

, V Hk
]

denote the natural projection.

1.6. Burnside ring. Assume again that G is finite. Let A+(G) be the set
of isomorphism classes of finite G-sets. While disjoint union of finite G-sets
induces addition on A+(G), cartesian product with diagonal action induces
multiplication, i.e.

[X] + [Y ] = [X t Y ], [X] · [Y ] = [X × Y ],

where [X], [Y ] are isomorphism classes of finite G-sets. The resulting struc-
ture is a commutative semi-ring with identity.

Since every finite G-set is a disjoint union of its orbits, each element of
the semi-ring can be presented uniquely as

∑
d(H)[

G/H ], where each d(H)

is a non-negative integer and [G/H ] is the isomorphism class of G/H , which
depends only on the conjugacy class of H. The problem of decomposing
G/H × G/K into orbits makes multiplication in A+(G) non-trivial.

The Grothendieck ring constructed from A+(G) is denoted by A(G) and
called the Burnside ring of G. Additively, it is a free abelian group generated
by isomorphism classes [G/H ] of G/H . A(G) is a commutative ring with the
unit [G/G].



366 P. BARTŁOMIEJCZYK, B. KAMEDULSKI AND P. NOWAK-PRZYGODZKI

1.7. Local cross sections of a vector bundle. All manifolds considered
are without boundary. Assume p : E → M is a smooth (i.e., C1) vector
bundle. We will identify M with the zero section of E. A local cross section
of a bundle p : E → M is a continuous map s : U → E, where U is open in
M , s−1(M) is compact and p ◦ s = IdU . Let Γ(M,E) denote the set of all
local cross sections of E over M .

Assume that rankE = dimM and E is orientable as a manifold. Let us
denote by I(s) the oriented intersection number of a local cross section s (see
for instance [9, 10]), which is an integer. The intersection number is otopy
invariant i.e., if two local cross sections are otopic then they have the same
intersection number. Moreover, the following result holds. We write here
Γ[M,E] for the set of otopy classes of local cross sections of E over M .

Theorem 1.4 ([2, Thm 5.2]). IfM is connected then the intersection number
I : Γ[M,E]→ Z is a bijection.

2. Degree degG

In papers [2, 3, 7] the authors introduce the equivariant degree degG :
CG(V, V ) → A(G) for the action of a compact Lie group G and prove that
the degree has the following expected properties.

Additivity property. If f, f ′ ∈ CG(V, V ) and Df ∩Df ′ = ∅ then
degG(f t f ′) = degG f + degG f

′.

Otopy invariance. Let f, f ′ ∈ CG(V, V ). If f and f ′ are otopic then

degG f = degG f
′.

Solution property. If degG f 6= 0 then f(x) = 0 for some x ∈ Df .

In order to formulate the next property, it is necessary to introduce some
notation and make some assumptions. Let B(p, r) denote the open r-ball in
V around p. Assume that G is finite, x ∈ V and f : ∪y∈Gx B(y, ε) → V ,
where ε < 1

2 min{|a− b| | a, b ∈ Gx, a 6= b}.

Normalization property. If f(y + v) = v for y ∈ Gx and |v| < ε, then
f ∈ CG(V, V ), f−1(0) = Gx and degG f = [G/Gx].

Remark 2.1. The equivariant degree, as an element of the Burnside ring,
consists of multiple coefficients. Examination of these allows not only to
find orbits of zeros, but also to analyze their orbit types.

Recall here that the main goal of this paper is to show that the degree
degG has the product property as well.

3. Main result

Assume that
• G is a finite group,
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• V andW are real finite dimensional orthogonal representations of G.
Recall that CG(V, V ) denotes the space of equivariant local maps in V .

Main Theorem. If f ∈ CG(V, V ) and f ′ ∈ CG(W,W ), then f×f ′ ∈ CG(V ⊕
W,V ⊕W ) and

degG(f × f ′) = degG f · degG f
′,

where “·” denotes the multiplication in the Burnside ring A(G).

4. Standard and polystandard maps

In this section we introduce standard and polystandard maps and study
their basic properties. These maps will play the crucial role in the proof of
Main Theorem in the next section. Let us start with recalling the definition
of an ε-normal neighbourhood. Assume that:

• Y is a linear subspace of Rn,
• U is an open subset of Y .

Let Y ⊥ denote the orthogonal complement of Y in Rn. For ε > 0 let us
denote by U ε the set U ε = {x + v | x ∈ U, v ∈ Y ⊥, |v| < ε}. Any such set
will be called an ε-normal neighbourhood of U .

Now we are ready to introduce two important classes of maps: standard
and polystandard. A map f ∈ CG(V, V ) is called standard if

• f−1(0) = Gx0 for some x0 ∈ Df ,
• there is an open subset U of VH , where H = Gx0 , and ε > 0 such
that:
– f−1(0) ∩ U = {x0},
– U ε ⊂ Df ,
– f(x+ v) = f(x) + v for all x ∈ U, v ∈ (V H)⊥, |v| < ε.

In such situation we also say that f is standard with respect to x0, U and
ε. A map f ∈ CG(V, V ) is called m-standard if there are standard maps fi
(i = 1, . . . ,m) with disjoint domains such that:

f−1(0) ⊂ tmi=1Dfi ⊂ Df .

If a map is m-standard for some m, we call it polystandard. A finite disjoint
union of standard maps is called strictly polystandard. By Remark 1.1, any
polystandard map is otopic to a strictly polystandard one.

In what follows, we will need the notation that relates the classical topo-
logical and equivariant degrees. Let f be standard with respect to x, U and
ε and let α = Gx. Consider a map fx : U ⊂ VH → V H given by fx = f� U .
Let dx = deg(fx, U).

Proposition 4.1. For each g ∈ G the equality dx = dgx holds.

Proof. Let g ∈ G and K = Ggx. Then V K = gV H . Consider a map
fgx : gU ⊂ VK → V K satisfying fgx(y) = gfx(g−1y). Since g : V H → V K is
an isomorphism of linear spaces,

dgx = deg(fgx, gU) = deg(fx, U) = dx. �
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Define dα = dy, where y is any element of α. Proposition 4.1 guarantees
that the integer dα is well-defined. The main advantage of standard and
polystandard maps is that we can immediately compute their equivariant
degree degG if we know the value of dα. Namely, let f be a standard map
and α = Gx = f−1(0). Then

degG f = dα[G/Gx] = dα[α].

More generally, let f be a m-standard map, and let {αi}mi=1 denote the set
of orbits of zeros of f . Then

degG f =

m∑
i=1

dαi [αi].

5. Proof of Main Theorem

To prove Main Theorem we will need two lemmas.

Lemma 5.1. Let f, f ′ be standard maps and α = f−1(0), β = (f ′)−1(0).
Then f × f ′ is polystandard and for each orbit γ ⊂ α× β we have:

dγ = dα · dβ.
Moreover,

degG(f × f ′) = degG f · degG f
′.

Proof. First we show that f×f ′ is polystandard. Assume that f is standard
with respect to x0, U and ε and f ′ is standard with respect to x′0, U ′ and ε′.
Let H = Gx0 and K = Gx′0 . Note that (f × f ′)−1(0) = Gx0×Gx′0 is a finite

union of orbits and G(x0,x′0) = H ∩K. Since U ε×U ′ε
′
is open in V ⊕W and

(x0, x
′
0) ∈ VH ×WK ⊂ (V ⊕W )H∩K ,

there exists an open subset U ′′ ⊂ (V ⊕W )H∩K and ε′′ > 0 such that (f ×
f ′)−1(0) ∩ U ′′ = {(x0, x

′
0)} and U ′′ε

′′
⊂ U ε × U ′ε

′
.

Now let us check that (f × f ′)(x′′+w′′) = (f × f ′)(x′′) +w′′ for x′′ ∈ U ′′,
w′′ ∈ ((V ⊕W )H∩K)⊥, |w′′| < ε′′. Note that since U ′′ ⊂ U ε × U ′ε

′
, x′′ has

the unique representation as (x, x′) + (v, v′), where (x, x′) ∈ U × U ′ and
(v, v′) ∈ (V H)⊥ ⊕ (WK)⊥. Moreover, since

((V ⊕W )H∩K)⊥ ⊂ (V H)⊥ ⊕ (WK)⊥,

w′′ can be uniquely written as (w,w′) with w ∈ (V H)⊥ and w′ ∈ (WK)⊥.
Hence

(f × f ′)(x′′ + w′′) = (f × f ′)(x+ v + w, x′ + v′ + w′)

=
(
f(x+ v + w), f ′(x′ + v′ + w′)

)
=
(
f(x) + v + w, f ′(x′) + v′ + w′

)
=
(
f(x+ v) + w, f ′(x′ + v′) + w′

)
= (f × f ′)(x′′) + w′′,

which proves that f × f ′ is polystandard.
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Next we show the formula dγ = dα ·dβ . Let (x0, x
′
0) ∈ γ ⊂ α×β. Observe

that

dα = dx0 = deg(fx0 , U)
1
= deg(f, U ε),

dβ = dx′0 = deg(f ′x′0
, U ′)

1
= deg(f ′, U ′

ε′
).

Thus we get

dγ = d(x0,x′0) = deg((f × f ′)(x0,x′0), U
′′)

1
= deg(f × f ′, U ′′ε

′′
)

2
= deg(f × f ′, U ε × U ′ε

′
)

1
= deg(f, U ε) · deg(f ′, U ′

ε′
) = dα · dβ.

In the above we used two properties of the classical topological degree: the
product formula (1) and the localization of zeros (2).

Finally, we prove the product formula for standard maps. As we have
shown, f × f ′ is m-standard for some m. Decompose α× β into the disjoint
union of orbits

⊔m
i=1 γi. We have dγi = dα · dβ for each i = 1, 2, . . . ,m. Thus

we get

degG(f × f ′) =
m∑
i=1

dγi [γi] =
m∑
i=1

dαdβ[γi] = dαdβ

m∑
i=1

[γi]

= dαdβ[α× β] = dα[α] · dβ[β] = degG f · degG f
′,

which establishes the desired formula. �

We precede the next lemma by recalling the following notation. Orbit
types in V are indexed (according to the partial order) by natural numbers
i = 1, 2, . . . ,m. In particular, H1 = G. Write Mi = VHi/WHi and Ei =(
VHi × V Hi

)
/WHi. Recall that pi : Ei → Mi is a vector bundle such that

rankEi = dimMi and Ei is orientable as a manifold. Moreover, the bundle
Ei →Mi is naturally isomorphic to the tangent bundle TMi →Mi.

Recall that Γ(Mi, Ei) (Γ[Mi, Ei]) stands for the set of (otopy classes of)
local cross sections of the bundle pi. Moreover, let us denote by

Θi : CWHi

(
VHi , V

Hi
)
→ Γ(Mi, Ei)

the function defined by the formula Θi(f)([x]) = [(x, f(x))], where x ∈ VHi

and by
Ξi : CWHi

[
VHi , V

Hi
]
→ Γ[Mi, Ei]

the function given by Ξi([f ]) = [Θi(f)]. Since WHi acts freely on VHi , both
Θi and Ξi are bijections (see [2, Thm 4.1]).

Let {Mij}j denote the set of connected components of the manifold Mi

and n(i) denote the number of these components, which is finite or countable.
Observe that, by Theorem 1.4, the function

Ii : Γ[Mi, Ei]→
n(i)∑
j=1

Z
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defined by Ii ([s]) = {I
(
s�Mij

)
}n(i)
j=1 is a bijection.

Now we are ready to define the function

Φ: CG(V, V )→
m∏
i=1

( n(i)∑
j=1

Z
)

required in the formulation of the next lemma. Namely, let

Φ(f) := {(Ii ◦Ξi ◦ πi ◦Ψ)([f ])}mi=1

with the notation Ψ and πi introduced in Subsection 1.5. By [2, Thm 5.2]
the function Φ has the following properties

• Φ(CG(V, V )) =


∏m
i=1

(∑n(i)
j=1 Z

)
if dimV G > 0,

{0, 1} ×
∏m
i=2

(∑n(i)
j=1 Z

)
if dimV G = 0,

• the function induced by Φ on CG[V, V ], which will be denoted by the
same letter, is an injection.

Lemma 5.2. For any system {cij} ∈ Φ(CG(V, V )) there is a strictly poly-
standard map f such that Φ(f) = {cij}.

Proof. We need to consider two cases.
Case 1: dimV G > 0. Under that assumption we have dimMi > 0 for each
i = 1, 2, . . . ,m. Fix {cij} ∈ Φ(CG(V, V )), where cij ∈ Z. On the component
Mij choose |cij | points together with their disjoint disc neighbourhoods. Let
us denote by Pij the set of these points and by Fij the union of their neigh-
bourhoods. By Corollary A.2 from Appendix A, there is a local cross section
sij : Fij ⊂Mij → Ei such that

s−1
ij (Mij) = Pij and I(sij) = cij .

Next we define a local cross section si : Fi ⊂Mi → Ei as a disjoint union si =

tn(i)
j=1sij . Note that the set ∪i,jPij is finite, because only a finite number of cij

are nonzero. Set fi = Θ−1
i (si). By the definition of Θi, fi ∈ CWHi

(
VHi , V

Hi
)

and by the construction of si, the domain Dfi is the union of disjoint discs
around all points in f−1

i (0). Consequently, the set D := ∪mi=1Dfi is a finite
disjoint union of discs Rk such that every disc contains one zero of a given
fi. Thus D = tkRk. Observe that there is ε > 0 such that the sets Rεk
are pairwise disjoint. Since any point of tkRεk can be uniquely represented
in the form gx + gv, where x ∈ Dfi , v ∈ (V Hi)⊥, |v| < ε, let us define
f : Df := tkRεk → V by

f(gx+ gv) = gfi(x) + gv

for all g ∈ G, x ∈ Dfi , v ∈ (V Hi)⊥, |v| < ε. Our construction guarantees
that

• f ∈ CG(V, V ),
• f is strictly polystandard,
• Φ(f) = {cij}.
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Case 2: dimV G = 0. In that situation, M1 = {0} and dimMi > 0 for
i > 1. Analogously as in the previous case, we define f : Df → V , but now
in the construction of f we take into account Mi only for i > 1. By choosing
the disc neighbourhoods small enough, we can guarantee that 0 6∈ cl(Df ).
Hence there is δ > 0 such that B(0, δ) ∩Df = ∅, where B(0, δ) denotes the
open δ-ball in V around the origin. Set

f̃ =

{
f if c11 = 0,

f t Id�B(0,δ) if c11 = 1.

It is easy to see that Φ
(
f̃
)

= {cij}. �

Corollary 5.3. In each otopy class in CG(V, V ) there is a strictly polystan-
dard map.

Proof. Recall that Φ: CG[V, V ] →
∏(∑

Z
)
is an injection. Let [f ] ∈

CG[V, V ]. By Lemma 5.2, there is a strictly polystandard map f ′ ∈ CG(V, V )
such that Φ([f ′]) = Φ([f ]). From the injectivity of Φ, f ′ ∈ [f ]. �

It occurs that Main Theorem is now a consequence of Lemma 5.1 and
Corollary 5.3.

Proof of Main Theorem. The fact that f × f ′ ∈ CG(V ⊕W,V ⊕W ) is
obvious. By Corollary 5.3, f and f ′ are otopic to strictly polystandard maps
tkfk and tlf ′l respectively, where fk and f ′l are standard. In consequence,
f × f ′ is otopic to tkfk × tlf ′l = tk,l(fk × f ′l ). Hence

degG(f × f ′) 1
= degG tk,l(fk × f ′l )

2
=
∑
k,l

degG(fk × f ′l )

3
=
∑
k,l

degG fk · degG f
′
l =

(∑
k

degG fk

)
·
(∑

l

degG f
′
l

)
2
=
(

degG tkfk
)
·
(

degG tlf ′l
)

1
= degG f · degG f

′

from the otopy invariance property (1), the additivity property (2) and
Lemma 5.1 (3). This completes the proof. �

Remark 5.4. Apart from the equivariant degree degG, the equivariant gra-
dient degree deg∇G with values in the Euler-tom Dieck ring U(G) is also
considered, studied and applied (see for example [3, 5, 8, 11]). In many sit-
uations deg∇G gives more information than degG. However, for a finite group
the Burnside ring A(G) and the Euler-tom Dieck ring U(G) are identical.
Moreover, degG = deg∇G if we restrict ourselves to equivariant gradient lo-
cal maps. In consequence, in the case of a finite group action the product
formula holds also for deg∇G .
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Appendix A.

Assume that p : E → M is a vector bundle over a manifold M such that
dimM > 0, rankE = dimM and E is orientable as a manifold.

Lemma A.1. For any q ∈M , any disc neighbourhood D of q and any α ∈
{−1, 1} there is a local cross section s : D ⊂M → E such that s−1(M) = {q}
and I(s) = α.

Proof. Let B = {x ∈ Rn | |x| < 1} and TB = B × Rn. Consider a local
cross section sA : B → TB given by sA(x) = (x,Ax), where A is linear and
detA = α. Observe that I(sA) = α.

Let us note that we can identify TD with E |D. Take a diffeomorphism
ϕ : B → D such that ϕ(0) = q. It induces a tangent map Tϕ : TB →
TD. Finally, define a local cross section s : D → E by formula s(x) =
Tϕ(sA(ϕ−1(x))). It is easy to see that s−1(M) = q and I(s) = I(sA) =
α. �

An immediate consequence of the above lemma is the following result.

Corollary A.2. Let l ∈ Z\{0}. For any set Q of |l| distinct points inM and
any set of disjoint disc neighbourhoods of these points there is a local cross
section s defined on the union of these neighbourhoods such that s−1(M) = Q
and I(s) = l.
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