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Traces and Pedersen ideals of tensor
products of nonunital C*-algebras

Cristian Ivanescu and Dan Kučerovský

In memory of Gert K. Pedersen.

Abstract. We show that positive elements of a Pedersen ideal of a ten-
sor product can be approximated in a particularly strong sense by sums
of tensor products of positive elements. This has a range of applications
to the structure of tracial cones and related topics, such as the Cuntz-
Pedersen space or the Cuntz semigroup. For example, we determine the
cone of lower semicontinuous traces of a tensor product in terms of the
traces of the tensor factors, in an arbitrary C*-tensor norm. We show
that the positive elements of a Pedersen ideal are sometimes stable un-
der Cuntz equivalence. We generalize a result of Pedersen’s by showing
that certain classes of completely positive maps take a Pedersen ideal
into a Pedersen ideal. We provide theorems that in many cases compute
the Cuntz semigroup of a tensor product.
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1. Introduction

A unital C∗-algebra is a noncommutative generalization of the algebra
C(X) of continuous functions on a compact topological space; in the nonuni-
tal case, it is a generalization of the algebra C0(X) of continuous functions
that vanish at infinity, or more accurately, functions that are each arbitrarily
small outside a sufficient large compact set. This paper studies the struc-
ture and applications of the Pedersen ideals of tensor products of nonunital
C∗-algebras. The Pedersen ideal of a nonunital C∗-algebra is a noncommu-
tative analogue of the space of compactly supported functions in the space of
continuous complex-valued functions on a locally compact Hausdorff space.
One would therefore expect the Pedersen ideal of the tensor product of two
C∗-algebras to multiply in an obvious sense. However, while this might
be expected, the situation is complicated by the fact that there is, in gen-
eral, more than one C∗-norm that one can put on the tensor product of
C∗-algebras. Our theorem 3.1 shows that the Pedersen ideals nevertheless
multiply in a very strong sense. Since there is more than one possible norm
on the tensor product in this so-called non-nuclear case, it would be fur-
ther expected that the topology that Pedersen found is natural for Pedersen
ideals behaves in a complicated way under tensor products. However, we
find that there are at least some quite good properties under approxima-
tion by elements of the Pedersen ideals of the tensor factors, even without
assuming nuclearity. More specifically, we show a technical property of the
Pedersen ideal of a tensor product; that positive elements of the Pedersen
ideal can be approximated by elements from the Pedersen ideals of the tensor
factors that have a particularly strong form of positivity. See Corollary 3.2.
We investigate applications to maps of Pedersen ideals (Corollary 4.7 and
Proposition 4.8) and to the Cuntz semigroup, using the theory of usually
densely finite lower semi-continuous traces on C*-algebras. We determine
the cone of lower semi-continuous traces on a tensor product in terms of the
tracial cones of the tensor factor, see corollary 2.2 and theorem 3.6

Pedersen introduced the minimal dense ideal that bears his name [44, th.
1.3], and found numerous properties of it in a series of papers [44, 46, 47]. In
particular, the Pedersen ideal provides a common core for the domain of the
densely finite lower semi-continuous traces. Cuntz and Pedersen [16] found
a real Banach space, which we refer to as the Cuntz-Pedersen space, upon
which traces are represented as positive linear functionals. See corollary 4.15
for our main result on Cuntz-Pedersen spaces and tensor products.

Effros introduced a topology for the faces of the cone of lower semi-
continuous traces [22]. Perdrizet [53] and Davis [19] separately studied the
cone of densely finite lower semi-continuous traces, with the weak topology
coming from the Pedersen ideal. They showed the cone is closed; they also
showed that it is well-capped in the separable case (implying a theorem
of Krein-Milman type); and they studied properties of the faces. Elliott,
Robert, and Santiago [24] compactified the cone of densely defined lower
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semi-continuous traces, within a larger cone of traces, and investigated ap-
plications to the Cuntz semigroup. In general, the larger cone of all traces on
a C*-algebra is not cancellative, implying that it doesn’t embed as bounded
elements into any vector space. This apparent technicality has subtle conse-
quences when one tries to study such traces. We will focus here on densely
finite lower semi-continuous traces. This is because of the aforementioned
fundamental relationship between Pedersen ideals and such traces: namely,
that the Pedersen ideal provides a common core for all such linear func-
tionals, and densely finite lower semi-continuous traces become continuous
linear functionals when restricted to the Pedersen ideal.

The Cuntz semigroup has become a standard technical tool for the study
of C*-algebras. The Cuntz semigroup Cu(A) can be defined to be an ordered
semigroup with elements given by the positive elements of A⊗K, modulo an
equivalence relation [43]. The projection-class elements are those elements
that are equivalent to projections of A ⊗ K. The projection-class elements
of the Cuntz semigroup of a tensor product C*-algebra are in good cases
determined by the classical Künneth sequence [59] from K-theory. The
remaining elements are called the purely positive elements, and it seems
interesting to determine how the purely positive elements are related to the
Cuntz semigroups of the tensor factors. See corollary 5.4 and theorem 6.1. In
good cases, the subsemigroup of purely positive elements is in an appropriate
sense a tensor product of the subsemigroups of purely positive elements
of the tensor factors. Since the projection-class elements are already well
understood (see Appendix A) this means that in good cases we can compute
the Cuntz semigroup of a tensor product. We do not assume nuclearity.

In section 2, we study finite traces. In section 3 we consider the Peder-
sen ideal of a tensor product and give some applications. In section 4, we
consider Cuntz semigroups and Cuntz-Pedersen spaces.

In the final section, we consider traces which are densely finite on closed
ideals of a given C*-algebra. There are two appendices. Appendix A is
on the Künneth sequence for projection-class elements, and Appendix B
contains some suggestions for extending the first steps of Grothendieck’s
Memoire [30] to the case of Cuntz semigroups.

Namioka and Phelps [42] define several different tensor products for com-
pact convex sets. The different constructions coincide in that the tensor
product of extreme points is extreme in the product. It may be more in-
formative to make use of tensor products of dual objects instead. Thus, in
the early paper [35], we defined a tensor product of Cuntz semigroups by
first representing them as a class of affine functions on the tracial simplexes
and then declaring that the tensor product is given by a similar class of
bi-affine functions on the two simplexes. See [42, top of p. 475] [60, p. 304]
for a similar approach to (projective) tensor products. In the current paper
we prove first some results on tensor products of Pedersen ideals (theorem
3.1), deduce a dual result on the tensor product of tracial cones (theorem
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3.6), and then by using a different flavour of duality, deduce a result on
the tensor product of Cuntz-Pedersen spaces (corollary 4.15). We consider
tensor products of Cuntz semigroups (corollaries 5.4 and 6.1, see also the
appendices).

2. Commuting representations and tensor products

Suppose that we are considering a tensor product C := A1 ⊗β A2 with
respect to some given tensor product C*-norm β. Let π be the universal
representation of C on a Hilbert space Hβ. Guichardet, as part of his study of
tensor product norms [31, 32], shows that π has associated with it a canonical
pair of commuting representations π1 : A1 → L(Hβ) and π2 : A2 → L(Hβ)
such that π(a� b) = π1(a)π2(b) for all a ∈ A1, b ∈ A2.

For a C∗-algebra A with tracial state space T (A), let ∂eT (A) be the set
of extreme points of the convex set T (A). The tensor product of linear
functionals gives a tensor product of T (A) and T (B), denoted T (A)⊗T (B).
See [63, Appendix T] for more information on the tensor product of linear
functionals. The natural map from T (A) ⊗ T (B) to T (A ⊗β B) will be
denoted T . The following result is known, see [32, pg. 49], but we give a more
streamlined proof, which was kindly pointed out to us by Rob Archbold:

Theorem 2.1. Let C := A1⊗βA2 be a C∗-tensor product of C*-algebras A1

and A2, and suppose that τ is a tracial state of C. The following conditions
are equivalent.

(1) τ ∈ ∂eT (C).
(2) There exist unique τi ∈ ∂eT (Ai) (i = 1, 2) such that τ = τ1⊗βτ2.

Proof. (1) ⇒ (2) If τ is extremal, then it is factorial by [21, cor. 6.8.6].
Guichardet [32, pg. 26-27] shows that the restriction(s) by the above map(s)
πi preserves factoriality. Thus, τ1 := τ ◦ π1 : A → C is a positive extremal
tracial functional, of norm not greater than 1. From Guichardet’s definitions,
it follows that τ1 = limλ∈Λ τ(a ⊗ bλ) where bλ is the universal increasing
approximate unit of B, consisting of all positive elements of B that have
norm no greater than one. It follows from the fact that τ is a state, that
the limit of τ1, with respect to an approximate unit, is 1. Thus, for positive
b in B of norm no greater than 1, we note that for all positive a we have
τ(a ⊗ b) ≤ τ1(a). Thus, for each such b there exists a non-negative scalar
t2, such that τ(a ⊗ b) = t2τ1(a). Clearly t2 depends on b, say t2 = τ2(b).
Considering an approximate unit for A, we see that τ2(b) = limλ∈Λ τ(aλ⊗b).
Thus, τ2 is the restriction of τ by π2, and as before is extremal. Thus,
τ = τ1 ⊗ τ2 is a tensor product of extremal tracial states.

Thus there exists at least one factorization τ = τ1 ⊗ τ2 of the required
form. If there were a different such factorization, say τ = τ ′1⊗τ ′2, then for at
least one value of i, there would exist elements of A+

i that separate τi from
τ ′i . But then by tensoring these elements by an element of an approximate
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unit of the other tensor factor, we could separate τ1⊗ τ2 from τ ′1⊗ τ ′2, giving
a contradiction.

(2) ⇒ (1). Suppose that τ = τ1 ⊗ τ2 with τi ∈ ∂eT (Ai) (i = 1, 2). By
[21, 6.8.6], τi is a factorial state of finite type (i = 1, 2). Hence τ1 ⊗ τ2 is a
factorial state [32, p. 25], necessarily of finite type since the state is tracial.
By [21, 6.8.6], τ is extreme. �

Denote by TC the cone of finite traces of a C*-algebra.

Corollary 2.2. Let C := A1⊗βA2 be a C*-tensor product of C*-algebras A1

and A2. Then T is a homeomorphism from TC(A1)⊗TC(A2) onto TC(C).

Proof. The map T is injective on algebraic elements (see for example Corol-
lary 1.3.5 in [17]), and the domain has the induced norm ‖T (·)‖; in other
words, the map is injective by construction.

The cone of finite traces on a C*-algebra is the weak* closure of the convex
hull of its extremal rays and extremal points. This is because the unit ball
provides a cap, in Choquet’s sense [11], for the cone of finite traces, and then
there is a theorem of Krein-Milman type, see Theorem 2.2 in [8]. Theorem
2.1 implies that the range of the map T : TC(A1) ⊗ TC(A2) → TC(C)
contains the extreme points of the range. A standard scaling argument
and the fact that the tracial cone intersected with the closed unit ball is
weak* compact [21, prop. 6.8.7], shows that the range of the map T is
closed, and hence that T is surjective. In fact, a similar argument shows
that by restricting the domain to the compact Hausdorff space given by
intersecting TC(A1)⊗TC(A2) with a multiple of the unit ball, the restricted
map T becomes a homeomorphism onto its range. Thus, again by a scaling
argument, T is a homeomorphism. �

3. Pedersen ideal of a tensor product

Pedersen’s ideal was originally defined as a minimal dense ideal, and is
a common core for the lower semi-continuous densely finite traces. Ped-
ersen uncovered various properties and characterizations of this ideal in
a remarkable series of papers [44, 46, 45, 47]. We recall that Pedersen’s
ideal, denoted by him K(A), is generated in a suitable sense [44, p.133] by
K+

0 (A) := {a ∈ A+ : ∃b ∈ A+, [a] ≤ b}, where [a] denotes the range projec-
tion of a in A∗∗. We should mention that the set K+

0 (A) is generally not the
same as the positive cone K(A)+ of K(A). Recall that Pedersen ideals are
[45, Theorem 2.1] locally convex topological vector spaces with a topology
denoted τ. There also exists a weak topology. The underlying τ -topology
is stronger than the norm topology coming from the ambient C*-algebra.
Thus density with respect to the τ -topology, as provided by the following
τ -density theorem, is a very strong property.

We denote by � the algebraic tensor product. Then
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Theorem 3.1 (τ -density). Let A1 and A2 be C*-algebras. Then

(1) K+
0 (A1⊗βA2) ⊇ K+

0 (A1)⊗K+
0 (A2),

(2) K(A1⊗βA2) ⊇ K(A1)⊗K(A2),
(3) K(A1)�K(A2) is τ -dense in K(A1⊗βA2), and
(4) K(A1)+ �K(A2)+ is τ -dense in K(A1⊗βA2)+,

Proof. (1) Let a be an element, with norm not greater than one, of K+
0 (A1),

having range projection majorized by ac and let b be an element, with norm
not greater than one, of K+

0 (A2), having range projection majorized by
bc. Let π1 and π2 be the homomorphisms that embed Ai in the universal
representation of A1⊗βA2. Since majorization of the range projection implies

that π1(a1/n) ≤ π1(ac) and π2(b1/n) ≤ π2(bc), we apply π2(bc)
1/2 from left

and right in the first inequality, then use commutativity and the second
inequality, to conclude π1(a1/n)π2(b1/n) ≤ π1(ac)π2(bc). Taking the strong
limit in (A1⊗βA2)∗∗ as n → ∞ shows that the range projection of a ⊗ b
is majorized by π1(ac)π2(bc). This proves (1). Taking linear combinations
proves (2).

(4) We first show that

C++ := K(A1)+ �K(A2)+

is weakly dense in K(A1⊗βA2)+. A positive continuous linear functional,

f(x) on K+
0 (A1⊗βA2)+, extends to a lower semi-continuous function on

the ambient C*-algebra, A1⊗βA2, given by [44] the pointwise supremum
of the set of positive linear functionals {g ∈ (A1⊗βA2)∗+| g(x) ≤ f(x), x ∈
K(A1⊗βA2)+}. Each bounded positive functional in the set is determined by
its values on C++, which is a linearly norm-dense subset of the C*-algebra,
A1⊗βA2. Thus f is determined by sup{g ∈ (A1⊗βA2)∗+| g(x) ≤ f(x), x ∈
C++}. It follows that a positive linear functional is determined by its values
on C++.

We show that the same is true for self-adjoint continuous linear function-
als. Supposing that a self-adjoint linear functional had two such extensions,
then we would have a self-adjoint linear functional h that is zero on C++

but isn’t zero. Pedersen’s Jordan decomposition [48, pg.127], decomposes
h uniquely into the difference of two positive continuous orthogonal linear
functionals, f1 and f2. It was shown in the previous paragraph that each
continuous positive linear functional is determined by its values on C++.
Since by, hypothesis, f1 and f2 become equal when restricted to C++, it
follows that actually they are equal everywhere, and therefore the given
self-adjoint linear functional h must be zero everywhere. Thus, self-adjoint
continuous linear functionals in fact extend uniquely from C++. Then, by
Hahn-Banach, the convex set C++ is weakly dense in K(A1⊗βA2)+. The
celebrated Mazur theorem for locally convex topological vector spaces [26,
Cor. 3.46] implies density with respect to the topology τ.

To prove (3), if there exists some element x in K(A1⊗βA2) that is not a
Moore-Smith limit of elements of C, the usual decomposition of an element
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into a linear combination of four positive elements, which still holds in a
Pedersen ideal, shows that there is a positive element x in K(A1⊗βA2)+ that
is not a Moore-Smith limit of elements of C. But this contradicts (4). �

The above key result will be very useful. The first application will be to
computing the cone of lower semi-continuous traces of a tensor product.

Before proceeding with this, there is still one more result that can be
drawn from the same well as theorem 3.1 above. Simple tensors of positive
elements are sometimes called super-positive elements, see [2, p.5]. The next
corollary provides approximations in the τ -topology by such sums. It is
perhaps unexpected that we can approximate from below by such elements.

Corollary 3.2. Let x be a nonzero positive element of the Pedersen ideal
K(A⊗βB). We can approximate x from below, in the τ -topology, by finite
sums

∑
ai ⊗ bi where the ai are positive elements of K(A) and the bi are

positive elements of K(B).

Proof. Recalling that the τ -topology on K(A⊗βB) is hereditarily convex
[45, pg.67], we then use Theorem 3.1.(4) to approximate x from below by
elements of K(A1)+ �K(A2)+. �

3.1. On lower semi-continuous tracial cones of tensor products. A
lower semi-continuous trace on a tensor product A⊗βB is determined by its
values on the Pedersen ideal. From theorem 3.1 it follows that in fact it is
sufficient, for any norm β, to know what the values are on the elementary
tensors k1⊗k2 where the tensor factors belong to the positive part(s) of the
Pedersen ideals K(A)+ and K(B)+. Since after all the lower semi-continuous
traces become bounded on the Pedersen ideal, it then follows from the case
of bounded traces (Corollary 2.2) that LTC(A)⊗LTC(B) is homeomorphic
to LTC(A⊗βB), where LTC denotes the cone of densely finite lower semi-
continuous traces. For the reader wishing more detail, we provide lemma
3.3, proposition 3.4, and corollary 3.5; then proving the claimed result in
theorem 3.6.

Lemma 3.3. The tensor product of lower semi-continuous traces on A1 and
A2 is a lower semi-continuous trace on C := A1⊗βA2. Positive continuous
linear functionals on K(A1) � K(A2) extend to positive continuous linear
functionals on K(A1⊗βA2)

Proof. We are given positive linear functionals τ1 and τ2 on K+
0 (A1)+ and

K+
0 (A2)+. The linear functional τ1(·) ⊗ τ2(·) defines a positive linear func-

tional τ on K+
0 (A1)+ � K+

0 (A2)+, but by Theorem 3.1.(4) we can extend
the domain to all of K+

0 (A1⊗βA2)+. The tracial property τ(ab) = τ(ba) is
straightforward to check. The second part is similar, using Theorem 3.1.(3)
and an extension theorem [26, Theorem 3.31]. �

The next two known propositions will be needed. The first one is [46,
Prop. 4], with a shorter proof than the original, see also [52, Prop. 2.1].
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Proposition 3.4. Let a be an element of K(A). The hereditary subalgebra
generated by a is contained in the Pedersen ideal.

Proof. By Cohen’s factorization theorem [13] [51, p. 150–151], an element b
of the hereditary subalgebra generated by a in a C*-algebra A can be written
as f(a)a′, where f is a continuous non-negative function on the spectrum of
a with f(0) = 0 and f ≤ 1, and a′ is some element of A that can be chosen
arbitrarily close, in norm, to the given element b. It follows from the spectral
theorem and the fact that f(0) = 0 that the range projection [f(a)] of f(a)
is majorized by the range projection [a] of a. But then, f(a) is in K+

0 (A)
when a is. Since the Pedersen ideal is an algebraic two-sided ideal, see the
end of Lemma 1.1 in [44], it follows that the given element, b = f(a)a′ is in
the Pedersen ideal, K(A). �

Corollary 3.5. Let A be a C*-algebra. Let k be a element of K+
0 (A). Let

B be the hereditary subalgebra kAk. Then a lower semi-continuous trace τ
of A becomes a bounded trace when restricted to B.

Proof. By Proposition 3.4, an element τ of the cone of lower semi-continuous
traces, LTC(A), becomes a pointwise finite positive linear functional when
restricted to B. If this positive functional were not bounded on B, then we
could find a sequence xn in the positive unit ball, B+

1 , such that τ(xn) >
n2−n. But then x :=

∑
2−nxn is in the positive unit ball of B and τ(x) ≥

2−nτ(xn) > n, for all n, which is a contradiction. �

Recall Pedersen showed [45] that Pedersen ideals are topological vector
spaces in a suitable topology, and that densely finite lower semicontinuous
traces LTC(Ai) can be identified with continuous linear functions on Ped-
ersen ideals. When we form a tensor product of C*-algebras, the Pedersen
ideals inherit a tensor product, and thus so do the continuous linear func-
tionals on the Pedersen ideals. By, for example, Corollary 1.3.5 in [17],
we have a canonical algebraic injection T : K(A)∗ � K(B)∗ → (K(A) �
K(B))∗, and this provides (lemma 3.3) an injection into (K(A⊗βB))∗. We
define LTC(A1)⊗βLTC(A2) to be the closure, with respect to the Pedersen
topology induced by evaluation on elements of K(A1⊗βA2), of LTC(A1)�
LTC(A2). Let A1 and A2 be C*-algebras, and let C := A1⊗βA2 be their
tensor product. Let T be the natural mapping T : LTC(A1)⊗βLTC(A2)→
LTC(C) after the above identification.

Next, we in effect show that under this mapping, the cone of lower
semi-continuous traces, LTC(C), is equal to the closure of {τ1 ⊗ τ2 : τi ∈
LTC(Ai)}, where LTC(Ai) denotes the cone of lower semi-continuous traces
on Ai, and the topology is the weak topology σ(LT (C),K(C)) provided by
the Pedersen ideal. More precisely, we show that there is a homeomorphism
at the level of topological cones:
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Theorem 3.6. Let C := A1⊗βA2 be a C*-tensor product of C*-algebras
A1 and A2. Then T is a homeomorphism from LTC(A1)⊗βLTC(A2) onto
LTC(C).

Proof. Denote by {kλ} and {k′λ′} the set of positive elements of norm less

than 1 of K+
0 (A1) and K+

0 (A2) respectively. By [50, th. 1.4.2 and par. 1.4.3]
each of these sets becomes a net, and approximate unit, under the usual
partial ordering inherited from the ambient C*-algebra. By proposition 3.1,
the tensor product kλ⊗ k′λ′ , with index set given by the product order, is in

K+
0 (C). By corollary 3.5, the inclusion map

ι : (kλ ⊗ k′λ′)C(kλ ⊗ k′λ′)→ C

induces a restriction map

ι∗ : LTC(C)→ TC((kλ ⊗ k′λ)C(kλ ⊗ k′λ′)).

Similarly, there are inclusions, also denoted ι, of kλA1kλ into A1 and of
k′λ′A2k′λ′ into A2, and the associated restriction maps.

By [24, Th. 3.12]†, dualize the trivial inductive limit(s) that have canon-
ical homomorphisms given by the inclusion maps ι. This gives projective
limit decompositions of the lower semi-continuous tracial cones:

TC((kλ ⊗ k′λ′)C(kλ ⊗ k′λ′)) �
lim

ι∗
LTC(C)

TC(kλA1kλ)⊗βTC(k′λ′A2k′λ′)

T
6

�
lim

ι∗ ⊗ ι∗
LTC(A1)⊗βLTC(A2).

T
6

Because of the simple form of the inclusion maps, it is clear that the map(s)
in the left column are just restrictions of the map in the right column.
The rows are projective limits, and the diagram commutes: in other words,
the restrictions of the map T are coherent with respect to the projection
maps. Corollary 2.2 shows that the vertical arrows in the left column are
homeomorphisms. Proposition 2.5.10 in [25] shows, in effect, that the limit of
homeomorphisms is a homeomorphism, and then by the universal property
of projective limits, which ensures that the map provided by that proposition
coincides with T , the map in the right column is a homeomorphism. �

Question 3.7. Does a result similar to the above hold for Pedersen’s [49]
C*-integrals?

†Note that our LTC(A) is denoted TA(A) in [24]: we first apply their theorem 3.12 to
get a projective limit decomposition of their T (A), and then restrict using their proposition
3.11 to TA(A).
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4. Applications

The Pedersen ideal is closely related to the Cuntz-Pedersen space [16].
Both are spaces upon which a class of traces act as bounded linear func-
tionals. We are thus able to expand upon some of the results of [16], see
Corollaries 4.15 and 4.16. In a similar vein, dimension functions on a Cuntz
semigroup are constructed in a slightly complicated way from the traces on
the underlying C*-algebra. Thus, we expect some, possibly subtle, connec-
tion between Pedersen ideals and Cuntz semigroups.

One fundamental comment on Pedersen ideals and Cuntz semigroups is
that the Pedersen ideal is in fact the (smallest) ideal linearly generated
by the relatively compact elements of the Cuntz semigroup (see a Remark
without proof after 3.1 in [62]). After demonstrating this fact, in Proposition
4.2, we then apply a Cuntz semigroup technique to prove a generalization of
Pedersen’s result [46, Corollary 6] that a surjective homomorphism maps the
Pedersen ideal into and onto the Pedersen ideal. We then further show that
the property of being a positive element of the Pedersen ideal is preserved
under Cuntz equivalence in the stable rank 1 case. This may be surprising
because the Pedersen ideal is after all not norm closed.

The original definition of the property that a is compact with respect to
b was phrased in terms of Hilbert modules [15]. An equivalent definition is:

Definition 4.1. Given two positive elements a and b of a C*-algebra A,
we say that a is compact with respect to b if some positive element e of the
hereditary subalgebra generated by b acts as the unit on a. Thus, ae = a.
We say that a is compact if it is compact with respect to itself.

The above definition is implicit in [15] but is given more explicitly in
[43, Prop. 4.10]. For example, if A is unital then every positive element is
compact with respect to the unit.

Proposition 4.2. Elements that are compact with respect to some element
of A⊗K are contained in K+

0 (A⊗K). Furthermore, sums of these elements
generate, as a hereditary subalgebra, K+

0 (A⊗K).

Proof. Consider then a positive element a of A ⊗ K such that some other
element a′ in A⊗K acts as the unit on it. This means that aa′ = a. However,
one of Pedersen’s characterizations [49] of the Pedersen ideal is as follows:

Let the set K+
00(A ⊗ K) be {b ∈ A ⊗ K : bb′ = b for some b′ ∈ A ⊗ K}.

Let K+
1 (A ⊗ K) be the elements x ∈ A ⊗ K+ such that x ≤

∑
xi for

some finite sum of xi in K+
00(A ⊗ K). Then the linear span of K+

1 (A ⊗ K)
is the Pedersen ideal. But comparing the definition of K+

00(A ⊗ K) with
the property described in the first paragraph, we see that the proposition
follows. �

It has been suggested [64] that the appropriate class of morphisms of the
Cuntz semigroup are maps induced by orthogonality preserving completely
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positive maps. The term completely positive order zero map is also used.
Recall that the orthogonality preserving completely positive maps are equiv-
alently cross-sections of certain homomorphisms. This result is simplest to
state for contractions, but any orthogonality preserving completely positive
map can be made into a contraction by multiplying by a scalar.

Lemma 4.3 ([64, Cor. 4.1]). Let A and B be C*-algebras, and φ : A →
B a given contractive orthogonality preserving completely positive map .
Let f ∈ C((0, 1]) be the identity map, f(x) = x. Then, there exists a *-
homomorphism ρ : C0((0, 1]) ⊗ A → B such that the slice map given by
ρ(f ⊗ a) is equal to the given map φ(a). Also, any given *-homomorphism
ρ : C0((0, 1])⊗A→ B induces a orthogonality preserving completely positive
map φ : A→ B via φ(a) := ρ(f ⊗ a).

We now show that such maps take the Pedersen ideal into the Pedersen
ideal. Recall that [47, Theorem 2.3 and 2.4] that the τ -topology on a Peder-
sen ideal is given by seminorms, and the seminorms are in fact the faithful
finite invariant convex functionals on the Pedersen ideal. These seminorms
can be extended to lower semi-continuous faithful finite invariant convex
functionals on the positive cone of the ambient C*-algebra. Conversely, a
lower semi-continuous faithful finite invariant convex functional is finite on
the Pedersen ideal. For the reader’s convenience we recall that invariant
positive convex functionals have the properties:

(1) τ(αx) = ατ(x), for positive real α,
(2) τ(x+ y) ≤ τ(x) + τ(y), for positive elements x and y
(3) For all v, τ(vv∗) = τ(v∗v), and
(4) If x ≥ y then τ(x) ≥ τ(y).

Now a simple but useful lemma:

Lemma 4.4. If φ : A→ B is a faithful orthogonality preserving completely
positive map , and τ is a lower semi-continuous faithful finite invariant
convex functional on B, then τ ◦ φ is a lower semi-continuous faithful finite
invariant convex functional on A.

Proof. The only property that is not immediate is that

τ(φ(vv∗)) = τ(φ(v∗v)).

However, expanding the left side as sections of a homomorphism ρ, giving
τ(ρ(f1/2⊗ v)ρ(f1/2⊗ v)∗) and the right side similarly, the property follows.

�

Proposition 4.5. A *-homorphism φ : A → B maps the Pedersen ideal of
A into the Pedersen ideal of B.

Proof. One of Pedersen’s characterizations [49] of the Pedersen ideal K(A)
of A is that it is generated by K+

00(A) := {a ∈ A+ : ∃b ∈ A+, ab = a}.
A*-homomorphism will preserve the property ab = a and thus maps K+

00(A)
into K+

00(B). �
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Now we will show a result that is similar to Pedersen’s result [46, Corollary
6] that a surjective homomorphism maps the Pedersen ideal into and onto
the Pedersen ideal.

Theorem 4.6. A faithful surjective orthogonality preserving completely pos-
itive map φ : A→ B maps the Pedersen ideal of A into the Pedersen ideal of
B, if B is either simple, prime, or has finite-dimensional centroid Z(M(B)).

Proof. Let us suppose thatB has finite dimensional centroid C := Z(M(B)).
Suppose that a is some positive element of the Pedersen ideal of A. The ho-
momorphism provided by lemma 4.3 has the property [64, Cor. 4.2] that
ρ(g, a) = g(z)π(a) where z commutes with and multiplies the range of the
given map φ, and π is a homomorphism. Note that z is thus in the centroid
C. Let f ∈ C0((0, 1]) be the identity map, f(x) = x. Because the cen-
troid is finite-dimensional, we can find a function g ∈ C0((0, 1]) such that
g(z) is a projection and g acts as the identity on f. But then we have that
φ(a) = ρ(f, a) = f(z)ρ(g, a) The map a 7→ ρ(g, a) = g(z)π(a) has range con-
tained in B by lemma 4.3, and is a homomorphism because the element g(z)
is a central projection and because π is a homomorphism. Thus this map
takes the Pedersen ideal of A into the Pedersen ideal of B. Thus ρ(g, a) is an
element of the Pedersen ideal of B, and thus when multiplied by f(z) we get
again an element of the Pedersen ideal. Thus φ(a) = ρ(f, a) = f(z)ρ(g, a) is
in the Pedersen ideal. This proves the result in the case that B has finite di-
mensional centroid, and the other cases then follow from the Dauns-Hoffman
theorem [50, Cor. 4.4.8]. �

Corollary 4.7. Let ρ : D⊗βA→ B be a *-homomorphism. Let f be either
a compact element of D or an element of D such that 0 is isolated in the
spectrum of |f |. The slice map ρ : A → B given by a 7→ ρ(f ⊗ a) maps the
Pedersen ideal of A into the Pedersen ideal of B.

Proof. Suppose that that 0 is isolated in the spectrum of the given element
|f |. Then C∗(f) is unital. We may restrict the given homomorphism to
ρ : C∗(f)⊗βA→ B. Since C∗(f) is unital, by Theorem 3.1.(3) the Pedersen
ideal of C∗(f)⊗βA contains C∗(f)⊗βK(A). Then by Proposition 4.5 this
is mapped by ρ into the Pedersen ideal of B, and thus we have shown the
first case. In the second case, namely that f is compact, it follows from
Definition 4.1 that the hereditary subalgebra generated by f in D is unital.
We then restrict the given homomorphism to ρ : fDf⊗βA→ B, and proceed
similarly. �

The above shows that techniques used to study Cuntz semigroups are also
useful with the Pedersen ideal. To show that the orthogonality condition is
not necessary, we give one more result:
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Proposition 4.8. Suppose that t is a lower semi-continuous trace of A.
Then, the slice map t⊗ Id : A⊗βB → B maps the Pedersen ideal of A⊗βB
into the Pedersen ideal of B.

Proof. The tensor product of a lower semi-continuous trace and a lower
semi-continuous faithful finite invariant convex functional is readily seen
to be a lower semi-continuous faithful finite invariant convex functional on
A⊗βB. But then if w is a positive element of the Pedersen ideal of A⊗βB, so
that corollary 3.2 provides approximations from below of the form

∑n
1 ai⊗bi,

where the terms ai and bi come from the Pedersen ideals of the tensor factors,
we note that when we apply a faithful finite invariant convex functional of
B to the image

∑n
1 t(ai)bi of this sequence under the slice map, we obtain

a sequence that is increasing and bounded above, hence convergent. Thus,
the image (t ⊗ Id)(w) of w under the slice map is in the Pedersen ideal of
b. �

The above slice map is completely positive but not generally orthogonality-
preserving, leading to a question:

Question 4.9. What class of completely positive maps φ : A → B does in
general map the Pedersen ideal of A into the Pedersen ideal of B?

In some cases we can prove a very strong property: that the Pedersen ideal
is itself stable under Cuntz equivalence. What we prove precisely is that the
property of being a positive element of the Pedersen ideal is preserved under
Cuntz equivalence in the stable rank 1 case. This case arises because then
a normally finer equivalence relation, denoted a ∼s b, becomes the same as
Cuntz equivalence. We need some preliminaries.

We recall an equivalence relation on positive elements of a C*-algebra, A,
that was considered by Blackadar [9], and is denoted here by a ∼s b. This
equivalence relation is generated by the following two equivalence relations:

(1) positive elements a and b are equivalent in a C*-algebra A if they
generate the same hereditary subalgebra of A, and

(2) positive elements a and b are equivalent in a C*-algebra A if there
is an element x ∈ A such that a = x∗x and b = xx∗.

We say that a is Cuntz subequivalent to b, denoted a �Cu b, if there
is a sequence xn such that x∗nbxn goes to a in norm. Thus, for example,
e∗xe �Cu x. We say that a and b are Cuntz equivalent, and write a ∼Cu b, if
we have both a �Cu b and a �Cu b.

The following known Lemma relates the equivalence relation ∼s on posi-
tive elements to Cuntz equivalence and to properties of the Hilbert submod-
ules of A that are generated by the given positive elements:

Lemma 4.10. Let A be a C*-algebra, and let a and b be positive elements
of A. The following are equivalent:

(1) a ∼s b, and
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(2) aA and bA are isomorphic as Hilbert A-modules.
(3) If A has stable rank 1, then the above is equivalent to a ∼Cu b in the

Cuntz semigroup.

Proof. The equivalence of the first two is [43, Prop. 4.3]. The equivalence
of the last two, in the presence of the stable rank 1 property, is [15]. �

By A⊗H we mean Kasparov’s standard Hilbert module over A, see [41,
pgs. 34-5].

Theorem 4.11. Let A be a C*-algebra, and let a and b be positive elements
of A⊗K. If A is of stable rank 1, then if a and b are are Cuntz equivalent,
then if a is in the Pedersen ideal of A⊗K, so is b. Without stable rank 1, we
have that if a(A⊗H) and b(A⊗H) are isomorphic as Hilbert A-modules,
then if a is in the Pedersen ideal of A⊗K, so is b.

Proof. In view of lemma 4.10, it is sufficient to prove that if a ∼s b, and if
a is in the Pedersen ideal of A ⊗ K, then b is in the Pedersen ideal. Now,
the equivalence relation ∼s is generated by two equivalence relations, which
we consider one at a time. First, we have the equivalence relation given
by the condition that two positive elements generate the same hereditary
subalgebra. Suppose that, as above, one of them is in fact in the Pedersen
ideal K(A ⊗ K). But proposition 3.4 shows that then the entire hereditary
subalgebra is in the Pedersen ideal K(A ⊗ K), so then a generator of the
hereditary subalgebra is in the Pedersen ideal. Secondly, consider the equiv-
alence relation where positive elements a and b are equivalent in a C*-algebra
A if there is an element x ∈ A such that a = x∗x and b = xx∗. But then,
for example, by proposition 5.6.2 in [50], if a in the Pedersen ideal, then so
is b. This completes the proof that if a ∼s b, and a is in the Pedersen ideal
of A⊗K, then b is in the Pedersen ideal. �

Remark 4.12. It follows that in the stable rank 1 case, elements of a C*-
algebra which are in the class of a projection in the Cuntz semigroup are
contained in the Pedersen ideal. Generally there are also purely positive
elements in the Pedersen ideal, as can be seen from proposition 4.2.

The next result would be evident if c1 and c2 were simple tensors, and the
bidual were of finite type. Hence, this result suggests that open projections
of a tensor product behave somewhat like simple tensors.

Corollary 4.13. Let C := A1⊗βA2 be a separable and stably finite C*-
tensor product, with almost unperforated Cuntz semigroup. Let c1 and c2

be positive elements of C. Then the open projection associated with c1 is
Murray-von Neumann subequivalent to the open projection associated with

c2 if and only if limn→∞(τ1 ⊗ τ2)(c
1/n
1 ) ≤ limn→∞(τ1 ⊗ τ2)(c

1/n
2 ) for each

τ1 ∈ LTC(A1) and τ2 ∈ LTC(A2).

Proof. Combine Theorem 3.6 above with [43, Th. 5.8]. �
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A relation with the Cuntz semigroup becomes more evident if we specialize
the situation somewhat.

Corollary 4.14. Let C := A1⊗βA2 be a separable, simple, and stably finite
C*-tensor product. Assume also that the Cuntz semigroup is almost un-
perforated. Let c1 and c2 be positive elements of C whose open projections
are not contained in C. Then c1 is Cuntz subequivalent to c2 if and only if

limn→∞(τ1⊗ τ2)(c
1/n
1 ) ≤ limn→∞(τ1⊗ τ2)(c

1/n
2 ) for each τ1 ∈ LTC(A1) and

τ2 ∈ LTC(A2).

Proof. By remark 3′′ in section 5 of [43], with these hypotheses Murray von
Neumann subequivalence of open projections implies Cuntz subequivalence
of the elements ci. Thus this corollary follows from the more general one
above. �

4.1. Tensor products of Cuntz-Pedersen spaces. Recall that two pos-
itive elements x and y are said to be equivalent in the Cuntz-Pedersen sense
if x =

∑
a∗i ai and y =

∑
aia
∗
i , where the sums are norm-convergent or

finite. Let us denote this form of equivalence by ∼cp . Cuntz and Pedersen
defined a real Banach space Aq that is the quotient of A by the subspace A0

of elements of the form x− y, where x ∼cp y.
The finite-dimensional case of the following is [16, Proposition 6.12]. The

norm on Aq⊗βBq is defined in the last two lines of the proof.

Corollary 4.15. Let A and B be C*-algebras. Then (A⊗βB)q = Aq⊗βBq.

Proof. Recall that � denotes the algebraic tensor product. Lemma 6.11 in
[16] implies that

(A�B) ∩ (A⊗βB)0 = A0 �B0,

where the subscripts denote the abovementioned subspace of elements of the
form x− y, where x ∼cp y. There is thus an injective map

ı :
A

A0
� B

B0
→

A⊗βB
(A⊗βB)0

.

Let T now denote the real linear linear space of self-adjoint tracial functionals
on a C*-algebra. If the image of the map ı is not weakly dense, then by
Hahn-Banach some nonzero element τ of T (A⊗βB) is zero on the image

ı
(
A
A0
� B

B0

)
. On the other hand, elements of the convex hull of T (A)⊗T (B)

are zero on the image of ı but have been shown to be weakly dense in
T (A⊗βB). Thus, the Hahn-Banach theorem provides a contradiction unless
the image of the map ı is weakly dense. The image is a convex set, so it is
norm-dense with respect to the norm β. Since the map ı is injective, we define
the norm β on A

A0
� B

B0
= Aq � Bq by x 7→ ‖ı(x)‖β. Taking the completion

of A
A0
� B

B0
with respect to this norm, we have Aq⊗βBq = (A⊗βB)q. �
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Cuntz and Pedersen showed [16, th.7.5] that for simple C*-algebras, two
positive elements are Cuntz-Pedersen equivalent if and only if they are equal
under all lower semi-continuous traces. It turns out that simplicity is not
necessary [54]. We thus have the Corollary:

Corollary 4.16. Consider a C*-algebraic tensor product A⊗βB. The fol-
lowing are equivalent, for positive elements:

(1) c⊗ d ∼cp a⊗ b,
(2) λc ∼cp a and d ∼cp λb for some positive scalar λ.

Proof. By the above remarks, we may as well redefine ∼cp to mean equality
under all lower semi-continuous traces. Suppose that (2) holds, so that
λc ∼cp a and d ∼cp λb. Let τ1 and τ2 be lower semi-continuous traces of
A and B respectively, taking values in [0,∞]. By a routine argument with
monotone sequences, τ1(a) = λτ1(c) and λτ2(b) = τ2(d). By Theorem 3.6
and a convexity argument, it follows that τ(a ⊗ c) = τ(b ⊗ d) for all lower
semi-continuous traces τ on A⊗βB.

Now, suppose that (1) holds. Thus, c⊗d and a⊗b are equal under traces.
There are two cases: either these are zero under all traces, or they are not. If
not, then, applying the slice map τ⊗Id coming from a lower semi-continuous
trace τ of A, we note that τ(c)d and τ(a)b are equal under all lower semi-
continuous traces of B. Then λd ∼cp b for some positive scalar λ. Similarly,
λ′c ∼cp a for some scalar λ′, and we can use the fact that c⊗ d and a⊗ b are
equal under traces to show that λ · λ′ = 1. Thus, (2) holds. If, on the other
hand, c⊗ d and a⊗ b were zero under all traces, then these elements are in
fact zero (for example, by [16, Th.4.8]) and again (2) holds. �

5. Towards a Künneth sequence for Cuntz semigroups

We begin with a discussion.
In the simple and stably finite case, it can be shown that the purely pos-

itive elements coincide with the purely non-compact elements. The purely
non-compact elements are defined [24] to be those elements which, if they
are compact in some quotient, are in fact properly infinite in that quotient.
The purely non-compact elements have the useful technical property that
they form a subsemigroup of the Cuntz semigroup, and in this respect they
can be easier to handle, in the nonsimple case, than the purely positive
elements.

In the simple and exact case, we obtain a large amount of information
about the purely noncompact elements by combining our tensor product
result with the fact that the dual F (Cu(·)) of the (subsemigroup of) purely
noncompact elements of the Cuntz semigroup Cu(·) consists of dimension
functions coming from lower semi-continuous traces.

In the simple, exact, and stably finite case, all dimension functions come
from densely finite lower semi-continuous traces. The Cuntz semigroup
Cu(A) can be defined to be an ordered semigroup defined by the set of open
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projections of A ⊗ K, modulo an equivalence relation on open projections
[43]. In this picture of the Cuntz semigroup, the dimension functions are
given by the natural pairing between open projections and traces extended
to weights on the double dual.

Now, recall that for compact manifolds, X and Y , one could use partitions
of unity to prove that a continuous positive function on X × Y can be
approximated pointwise from below by a finite sum of positive functions∑
fi(x)gi(y). Dini’s theorem then implies uniform approximation. We prove

a similar result in the setting of additive and homogeneous functions on
cones, using the C*-algebraic structure at hand. This generalizes the main
technical lemma of [35]. Since we are in a not necessarily nuclear situation
we give a detailed proof.

Lemma 5.1. Let h ∈ A⊗βB be a positive element of the Pedersen ideal
of the tensor product C*-algebra A⊗βB. Then, the additive and homoge-

neous function ĥ on LTC(A) × LTC(B) given by evaluating the open pro-
jection associated with h on LTC(A)×LTC(B) is continuous and is approxi-
mated pointwise from below by sums of additive, homogeneous, non-negative,
and continuous functions

∑
fi(x)gi(y), where x is in LTC(A) and y is in

LTC(B).

Proof. Corollary 3.5 implies the well-known fact that the function ĥ on
dimension states given by pairing the open projection limh1/n with lower
semi-continuous traces extended from A⊗βB is pointwise finite. Continuity

follows from [24, Prop. 5.3]. By Corollary 3.2 we can approximate h1/n

from below by finite sums of elementary tensors of positive elements, of
the form

∑
ai ⊗ bi. When such a sum is evaluated on an extremal trace

τ of A⊗βB, by Theorem 2.1, the trace τ factorizes as τa ⊗ τb, and thus
τ(
∑
ai⊗ bi) =

∑
τa(ai)⊗ τb(bi). Taking pointwise suprema we approximate

ĥ. The case of non-extremal traces follows by a convexity argument. �

An abelian semigroup endowed with a scalar multiplication by strictly
positive real numbers is termed a non-cancellative cone in [24]. A real-valued
function on a partially ordered set is called lower semi-continuous if it pre-
serves directed suprema. Thus, we have a class of lower semi-continuous
functions on non-cancellative cones. Denoting by T (A) the cone of all, pos-
sibly not densely finite, traces on a C*-algebra A, we may consider the
additive and homogeneous lower semi-continuous functions on T (A). De-
note by L(T (A)) those lower semi-continuous functions that are suprema of
sequences (hn) where hn is continuous at each point where hn+1 is finite.
For the cone of densely defined lower semi-continuous traces, the situation
is technically simplified, as we have seen, by the fact that these traces be-
long to the topological vector space of continuous linear functionals on the
Pedersen ideal.
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We recall the well-known fact that in the Z-stable case, the purely non-
compact part of the Cuntz semigroup is determined by its dual [55]. Spe-
cializing slightly, this implies:

Proposition 5.2. Let A be a simple, exact, stably finite, and Z-stable C*-
algebra. The ordered semigroup of purely positive elements of Cu(A) is iso-
morphic to the ordered semigroup L(LTC(A)).

Proof. Since A is Z-stable, its Cuntz semigroup is unperforated. Then
Theorem 6.6 in [24] states that the ordered semigroup of purely non-compact
elements of the Cuntz semigroup is isomorphic to L(F (Cu(A))). Here, F
denotes the cone of dimension functions on the Cuntz semigroup and L
is a dual space of lower-semi-continuous functions. In the simple case the
purely non-compact elements are either infinite projections or purely positive
elements [24, Prop. 6.4.iv]. But we have assumed that there are no infinite
projections.

Blanchard and Kirchberg [10, pg.486], see also [24, Prop. 4.2], show
that there is a one-to-one correspondence between lower semi-continuous di-
mension functions and locally lower semi-continuous local quasi-traces, but
as they point out, results of Haagerup’s [33] imply that the quasi-traces
are traces when the algebra is exact. Thus, there is in the exact, simple,
and stably finite case a structure-preserving one-to-one correspondence be-
tween lower semi-continuous traces in LSC(A) and dimension functions in
F (Cu(A)). We conclude that the semisubgroup of purely positive elements
is isomorphic to L(LTC(A)), where LTC(A) denotes the cone of densely
finite lower semi-continuous traces on the C*-algebra A, and L is as defined
above. �

We may drop simplicity in the above if we strengthen the stable finiteness
condition:

Corollary 5.3. Let A be an exact, residually stably finite, and Z-stable C*-
algebra. The ordered semigroup of purely non-compact elements of Cu(A) is
isomorphic to the ordered semigroup L(LTC(A)).

One could ask when the Cuntz semigroup of a tensor product is a tensor
product of Cuntz semigroups. We will show that this is in essence true for
the purely positive elements. Without some such restriction, injectivity may
fail.

We now consider the map Cu(A) × Cu(B) → Cu(A⊗βB) defined, at the
level of positive operators, by (a, b) 7→ a⊗ b. It is routine to check that this
map is compatible with the equivalence relation, i.e. that a⊗ b is equivalent
to a′ ⊗ b if a is equivalent to a′. This map is in principle well-understood
for projection-class elements, see Appendix B for an exposition. Thus, we
are interested in the case of purely non-compact elements. We will show
that the map is sometimes surjective onto such elements. Injectivity cannot
generally be expected.
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The above bilinear map factors through a map of tensor products, [3,
sect. 6.4], because we have a natural Cuntz semigroup morphism from
Cu(A) ⊗ Cu(B) to Cu(A ⊗max B), and then the tensor quotient map takes
Cu(A ⊗max B) onto Cu(A⊗βB). The range is a sub-object of the Cuntz
semigroup, i.e. is closed under sequential suprema, and we may ask when
the purely non compact elements are contained in the range.

The following corollary computes the purely positive part of the Cuntz
semigroup of a tensor product in many cases, and in [35] we used an early
similar result as a definition of a tensor product of Cuntz semigroups. Since
the Künneth sequence in principle computes the projection class part of the
Cuntz semigroup, at least in many cases (see Appendix B), we thus have
determined the Cuntz semigroup of a tensor product.

Corollary 5.4. Suppose that A and B are simple, Z-stable, and exact.
Then if the C*-tensor product C := A⊗βB is separable and stably finite, the
map Cu(A)⊗Cu(B)→ Cu(A⊗βB)is onto the subsemigroup of purely positive
elements of Cu(A⊗βB).

Proof. Proposition 5.2 shows that the purely positive elements of A⊗βB are
given by L(LTC(A⊗βB)), and that the purely positive elements of A and of
B are given by L(LTC(A) and L(LTC(B)), respectively. On the other hand,
by Theorem 3.6, a densely defined extremal lower semi-continuous trace τ
on C is a tensor product τ1⊗τ2 of traces on A and on B, respectively. Thus,
we consider the map

L(LTC(A))× L(LTC(A))→ L(LTC(A)× LTC(A)).

In the separable case, Lemma 5.1 provides a sequence of continuous func-
tions of the form

∑
fi(x)gi(y) that approximates (pointwise, from below) a

continuous function in L(LTC(A) × LTC(A)). On the other hand, in the
simple and stably finite case, any element of L(LTC(A)×LTC(A)) can be
obtained as a supremum of continuous functions. It then follows that the
range of the above map contains the purely positive elements. The above
map factors through a tensor product because of the universal property of
tensor products, and the factored map is still surjective onto the purely
positive elements. �

The above result generalizes a result from [35]. Injectivity of the ten-
sor product map on the whole of the Cuntz semigroup cannot generally be
expected, for example because of the fact that the tensor product of a pro-
jection and a purely positive element will usually be purely positive. It is
quite rare for the tensor product map to induce an isomorphism of Cuntz
semigroups. For an example, recall:

Corollary 5.5 ([35, Cor. 4.3]). If an unital C*-algebra A is simple, stably
projectionless, stably finite, nuclear, Z-stable, satisfies the UCT, has stable
rank one, has K1(A) = 0 and A⊗A has stable rank one then the tensoring
map t : Cu(A)⊗ Cu(A)→ Cu(A⊗A) is an isomorphism.
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6. Ideals

We now consider lower semi-continuous traces on two-sided closed ideals
of C*-algebras. This is motivated by Blanchard and Kirchberg’s introduc-
tion of dimension functions that are densely defined on such ideals, see [10,
Prop. 2.24.ix]. If we assume exactness, then the dimension functions are
determined by lower semi-continuous traces, rather than quasi-traces. Let
us thus define TI(A) to be the cone of lower semi-continuous traces on A+

that are densely defined on a closed two-sided ideal I, and are not necessar-
ily densely defined outside I. We regard them as having the value ∞ in the
extended real number system rather than actually being undefined. Traces
of this type were studied systematically in [10, 24]. In some cases there may
be traces which are nontrivial but are not densely defined on an ideal: we
have essentially nothing to say about this case. However, the case of traces
densely defined on an ideal is somewhat approachable, especially if the ideal
lattice is finite.

The key observation is due to Blanchard and Kirchberg, [10, Prop. 2.16],
which is that in the exact case, every ideal is, up to closure, the linear sum
of the elementary ideals J1⊗J2 that it contains. We recall, see [24, pg. 980],
that the ideals form a continuous lattice, within T (A), and that the natural
topology on TI(A) is the topology of pointwise convergence on the positive
elements of the Pedersen ideal of I.

We can extend our main result to this setting by simply replacing, in the
proof, the Pedersen ideal of Ai by the Pedersen ideal of a given closed ideal
Ji.

Corollary 6.1. Let C := A1⊗βA2 be a C*-tensor product of C*-algebras
A1 and A2. Let V be an ideal of C that is of the form J1 ⊗ J2. Then T is
a homeomorphism from LTCJ1(A1)⊗βLTCJ2 onto LTCV (C), where LTCV
denotes the cone of lower semi-continuous traces that are densely defined on
V.

Proof. Let kλ and k′λ be increasing approximate units (nets) contained in

K+
0 (J1) and K+

0 (J2) respectively. Then kλ⊗ k′λ′ , with the product order on
the index set, is an approximate unit for the ideal V, and we proceed as in
the proof of Theorem 3.6. �

Remark 6.2. The above theorem gives us a reasonably concrete expression
for the traces which are densely defined on an elementary ideal J1⊗J2. Note
that the traces are not necessarily infinite outside the given ideal, thus this
is a large class of traces in general. We can then intersect TJ1⊗J2 and TJ3⊗J4
within T (C) to obtain the traces that are densely defined on both J1 ⊗ J2

and J3 ⊗ J4. Thus we can in principle compute T (C), and hence Cu(C), in
some cases.



THE TENSOR PRODUCT OF CUNTZ SEMIGROUPS... 443

Recall that in [61] was defined a notion of K-nuclearity, weaker than nu-
clearity, and a characterization was found in terms of bivariant KK-theory.
The equivalent question for the Cuntz semigroups would be:

Question 6.3. We say that a C∗-algebra A is Cu-nuclear if the map ı : A⊗max
B → A ⊗min B induces an isomorphism of Cuntz semigroups for all C*-
algebras B. Are such C*-algebras necessarily nuclear?

Also, it is possible that it is an interesting problem to fully determine
the Pedersen ideals of not necessarily elementary closed ideals of tensor
products in terms of the tensor factors, because this would lead to a better
understanding of traces that are densely defined on such ideals. Even partial
information, as we have seen, can be useful.

7. Appendix A: a topological vector space approach to
tensor products of Cuntz semigroups

In the early paper [35], we defined a tensor product of Cuntz semigroups
by first representing them as affine functions on the tracial simplexes and
then declaring that the tensor product is the set of bi-affine functions on
the two simplexes. At the level of simplexes this is known as the projective
tensor product construction, see Semadeni [60, p. 304] and also [42, p.475].
In [35] we computed the resulting tensor product of Cuntz semigroups in
a few cases. But might there not be other tensor products that could be
defined, much as in the case of topological vector spaces?

Of course, the Cuntz semigroups are not topological vector spaces. How-
ever, let us attempt to take guidance from the theory of topological vector
space tensor products. The first question that arises is if there exists any
natural topology on the elements of a Cuntz semigroup. The natural topol-
ogy on the projection-class elements of the Cuntz semigroup is the discrete
topology. However, when considering purely positive elements, the set of all
dimension functions is much like a set of seminorms defining a topological
vector space. We attempt to press the analogy further.

Recall that there exists a very general definition of the so-called inductive
(or injective) tensor product of topological vector spaces, due to Grothen-
dieck, see [30, définition 3]. Generalizing this definition to the setting of
Cuntz semigroups, we form the algebraic tensor product of abelian semi-
groups, see [28], and then view elements of Cu(A)⊗alg Cu(B) as functions
on D(A) × D(B), where D(A) and D(B) denote the dimension functions
on the Cuntz semigroup(s). The inductive topology is the (initial) topol-
ogy induced by this embedding. We then take the topological completion
of Cu(A) ⊗alg Cu(B) with respect to this topology (see [37, ex. 6.L, and
pp. 195-6] for information on completions). We only need to perform the
above construction on the set of those elements whose image under the ten-
sor product map is purely positive. For brevity we refer to these elements as
the purely positive elements. We have that for the purely positive elements
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of Cu(A) ⊗alg Cu(B), an increasing sequence xn converges (pointwise) to
an element of the completion if and only if (d1, d2)(xn) converges for all
d1 ∈ D(A) and d2 ∈ D(B). The limit of the sequence exists in the com-
pletion, and we define the inductive tensor product of Cuntz semigroups,
denoted Cu(A) ⊗ Cu(B), to be Cu(A) ⊗alg Cu(B) augumented by the set
of all such limits. In the nonunital setting, we would have to allow the
extended real number system.

We also define the minimal embedding tensor product, given as follows.
Consider the natural tensor product map t : Cu(A)⊗algCu(B)→ Cu(A⊗min
B). This map induces a uniformizable topology on its domain (sometimes
called the inital topology). Taking, then, the completion of the domain with
respect to this topology, and proceeding as in the previous paragraph, we
obtain the minimal embedding tensor product, Cu(A) ⊗min Cu(B). If, in
the above, we replace Cu(A⊗min B) by Cu(A⊗max B), then we obtain the
maximal embedding tensor product, denoted Cu(A)⊗max Cu(B).

Comparing the tensor product of [3] with the above tensor products could
be interesting, since the definition there is based on a completely different
approach.

In the presence of a separability condition, we can also introduce a Haus-
dorff type pseudometric d(x, y) :=

∑
2−ndn(x, y) where x and y are purely

positive elements and dn is some countable dense set of dimension func-
tions. A different approach, based on unitary orbits in the algebra, also
gives a pseudometric in the special case considered in [12].

8. Appendix B: dimension monoids of tensor products

In this mostly expository appendix, we consider the projection class ele-
ments of the Cuntz semigroup under the tensor product map. For algebras
of stable rank one, the Cuntz class of a positive element is given by a pro-
jection if and only if 0 is not in the spectrum or if it is an isolated point of
the spectrum.

If a ∈ M∞(A)+, b ∈ M∞(B)+ are positive elements then it follows that
a⊗b is a positive element in M∞(A⊗B)+. This induces a bilinear morphism
from Cu(A)×Cu(B) to Cu(A⊗B) which in turn induces a natural Cuntz
semigroup map

t : Cu(A)⊗alg Cu(B)→ Cu(A⊗B)

t([a]⊗ [b]) = [a⊗ b].
We expect that in favorable cases, the Universal Coefficient Theorem can

be used to study the above map:

Lemma 8.1. If a C*-algebra A is simple, separable, unital, nuclear, Z-
stable, stably finite, has finitely generated K0(A), K1(A) = {0}, and satisfies
the UCT, then the natural map

Cu(A)⊗alg Cu(A)→ Cu(A⊗A),
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given by

([a]⊗ [b]) 7→ [a⊗ b]
is an isomorphism from V (A)⊗alg V (A) to V (A⊗A), i.e.

V (A)⊗alg V (A) ∼= V (A⊗A).

Proof. We remark that the hypotheses on A imply stable rank 1 by [56].
Since the tensor product, A ⊗ A, also is simple, separable, unital, nuclear,
and Z-stable, it follows that the tensor product, A⊗A, also has stable rank
one. The K-theory group K0(A) is determined by the subsemigroup V (A)
of the Cuntz semigroup, in the sense that K0(A) is the Grothendieck group
generated by V (A):

K0(A) = G(V (A)).

Our algebra A is assumed to satisfy the UCT, so then A will satisfy the
Künneth formula for tensor products in K-theory [59], see also the partial
counterexample due to Elliott in [57] which means that we must assume
finitely generated K0-group:

0→ K0(A)⊗K0(A)⊕K1(A)⊗K1(A)→ K0(A⊗A)→
Tor(K0(A),K1(A))⊕ Tor(K1(A),K0(A))→ 0.

It follows from the above exact sequence that

K0(A)⊗K0(A)→ K0(A⊗A)

is an injective map. Since K1(A) = {0} it follows that we have an order-
preserving isomorphism

t : K0(A)⊗K0(A)→ K0(A⊗A).

We will show that when restricted to the positive cones, this isomorphism
becomes equivalent to the given map. Since A has stable rank 1, there is
an injective map i : V (A)→ K0(A) and V (A) has the cancellation property.
Taking algebraic tensor products of semigroups, we consider V (A)⊗algV (A).
Taking the (semigroup) tensor product of maps, we obtain a map i ⊗alg
i : V (A)⊗alg V (A)→ K0(A)⊗alg K0(A) where K0(A)⊗alg K0(A) is a semi-
group tensor product of abelian groups. Moreover, the semigroup tensor
product of abelian groups coincides with the usual tensor product of abelian
groups (by Proposition 1.4 in [28] and the remarks after that Proposition).
We note that the map i⊗alg i is an injective map (using Lemma 8.2 below).
Since A is stably finite and the positive cone of a tensor product of finitely
generated ordered abelian groups is the tensor product of the positive cones
of the ordered abelian groups, it follows that the range of the map i ⊗alg i
is exactly the positive cone of K0(A)⊗K0(A).

Composing with the above injective map t, we obtain an injective map
from V (A)⊗alg V (A) to K0(A⊗A), which takes an element p⊗alg q to p⊗q.
Since t is an order isomorphism, the range of t ◦ (i ⊗alg i) is exactly the
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positive cone of K0(A⊗A). We now observe that the map we have obtained
is in fact equal to the given map, because, as A ⊗ A has stable rank 1 and
is stably finite, it follows that V (A ⊗ A) is embedded in K0(A ⊗ A) as the
positive cone. It then follows that t ◦ (i ⊗alg i), which acts on elements
by taking p ⊗alg q to p ⊗ q, is in fact an injection of V (A) ⊗alg V (A) onto
V (A⊗A). Evidently, this map coincides with the given map.

�

The technical lemma on semigroups referred to above is Proposition 17
in [27]:

Lemma 8.2. Let V be a semigroup, and let G denote the formation of the
enveloping group. We have

G(V ⊗ V ) = G(V )⊗Z G(V ),

where ⊗ denotes the tensor product of semigroups, and ⊗Z denotes the ten-
sor product of abelian groups.
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Fasc. XXIX. Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964. xi+382 pp.
MR0171173 (30 #1404), Zbl 0152.32902. 426, 427

[22] Effros, Edward G. Structure in simplexes. Acta Math. 117 (1967), 103–121.
MR0203435 (34 #3287), Zbl 0154.14201, doi: 10.1007/BF02395042. 424

[23] Effros, Edward G.; Hahn, Frank. Locally compact transformation groups
and C*-algebras. Memoirs of the American Mathematical Society, 75. American
Mathematical Society, Providence, R.I., 1967. 92 pp. MR0227310 (37 #2895), Zbl
0184.17002.

[24] Elliott, George A.; Robert, Leonel; Santiago, Luis. The cone of
lower semicontinuous traces on a C*-algebra. Amer. J. Math. 133 (2011),
no. 4, 969–1005. MR2823868 (2012f:46120), Zbl 1236.46052, arXiv:0805.3122,
doi: 10.1353/ajm.2011.0027. 424, 431, 438, 439, 440, 442

[25] Engelking, Ryszard. General topology. Second edition. Sigma Series in Pure Math-
ematics, 6. Heldermann Verlag, Berlin, 1989. viii+529 pp. ISBN: 3-88538-006-4.
MR1039321 (91c:54001), Zbl 0684.54001. 431
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[48] Pedersen, Gert Kjaergȧrd. Measure theory for C*-algebras, IV. Math Scand. 25
(1969), 121–127. MR0259627 (41 #4263), Zbl 0189.44504, doi: 10.7146/math.scand.a-
10948. 428
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