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On the cohomology of meromorphic
open-string vertex algebras

Fei Qi

ABSTRACT. This paper generalizes Huang’s cohomology theory of grad-
ing restricted vertex algebras to meromorphic open-string vertex alge-
bras (MOSVAs hereafter), which are noncommutative generalizations
of grading restricted vertex algebras introduced by Huang. The vertex
operators for these algebras satisfy associativity but do not necessar-
ily satisfy the commutativity. Moreover, the MOSVA and its bimodules
considered in this paper do not necessarily have finite-dimensional homo-
geneous subspaces, though we do require that they have lower-bounded
gradings. The construction and results in this paper will be used in a
joint paper by Huang and the author to give a cohomological criterion
of the reductivity for modules for grading-restricted vertex algebras.
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1. Introduction

In [H2], Huang introduced the cohomology of a grading-restricted vertex
algebra. Vertex (operator) algebras are algebraic structures formed by ver-
tex operators satisfying both commutativity and associativity. They arose
naturally in both mathematics and physics (see [BPZ], [Bo] and [FLM]). In
the context of quantum field theory, the commutativity of vertex operators
is closely related to the locality of meromorphic fields. The associativity of
vertex operators is a strong form of the operator product expansion. Thus,
a vertex algebra can be viewed as an analogue to commutative associative
algebras. The cohomology introduced in [H2] can be viewed as an analogue
of Harrison cohomology.
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In the present paper, we introduce the cohomology of a meromorphic
open-string vertex algebra. The notion of meromorphic open-string vertex
algebra (MOSVA) was introduced by Huang in [H1]. It is a noncommuta-
tive generalization of the notion of vertex algebra, as the vertex operators in
a MOSVA satisfy associativity but do not necessarily satisfy commutativ-
ity. Thus a MOSVA can be viewed as an analogue to associative algebras.
The cohomology introduced in this paper can be viewed as an analogue of
Hochschild cohomology.

In the study of associative algebras and commutative associative algebras,
the Hochschild cohomologies and the Harrison cohomologies play important
roles. Let A be an associative algebra. For an A-bimodule M, we use
H "(A, M) to denote the n-th Hochschild cohomology of A with coefficients
in M. When A is commutative and M is a module (viewed as A-bimodule
with the left and right A-module structures to be both the one from the
original A-module structure), we use H"(A, M) to denote the the n-th Har-
rison cohomology of A with coefficients in M. Then the following results
are well-known:

(1) The first Hochschild cohomology H'(A, M) is isomorphic to the quo-
tient of the space of derivations from A to M by the space of inner
derivations from A to M. When A is commutative, the first Harri-
son cohomology H'(A, M) is isomorphic to the space of derivations
from A to M.

(2) The second Hochschild cohomology H?(A, A) is in one-to-one corre-
spondence with the set of first-order deformations of A. When A is
commutative, the second Harrison cohomology H?(A, A) is in one-
to-one correspondence with the set of the first-order deformations of
A.

(3) All the left A-modules are completely reducible if and only if for
every A-bimodules B and every n € Z., the Hochschild cohomology
H"(A,B) = 0.

In [H3], using the cohomology established in [H2], Huang established the
analogues of the results (1) and (2) for a grading-restricted vertex algebra
V and grading-restricted V-modules. To define this cohomology, Huang
introduced a larger complex in [H2] such that the complex for the grading-
restricted vertex algebra is a subcomplex, just as the Harrison complex is
a subcomplex of the Hochschild complex for the commutative associative
algebra. In particular, the larger complex can be viewed as the analogue of
the Hochschild complex. But this complex was defined in [H2] only for a
grading-restricted vertex algebra.

In this paper, we give the definition of this larger complex for meromorphic
open-string vertex algebras V and V-bimodules W that are not necessarily
grading-restricted but satisfy the pole-order condition. The pole-order was
introduced in [Q2] and is satisfied by all the existing examples of MOSVAs
and modules. Using the cohomology of this larger complex, we can establish



COHOMOLOGY OF MEROMORPHIC OPEN-STRING VERTEX ALGEBRAS 469

the analogues of results (1), (2) and (3). The results (1) and (3) will be
presented in [HQ]. The result (2) will be presented in future papers.

The paper is organized as follows:

In Section 2, we review the notions of the MOSVAs and modules defined
in [H1] and [Q2]. Since the opposite vertex operator map of the vertex
operator map for a right module defined in [Q2] will be used extensively in
this paper, we also discuss some of its properties that are not presented in
[Q2]. Analytic continuation is the main technical part of this study. We will
often quote those lemmas in [Q2] on the analytic extensions in this section.

In Section 3, for a MOSVA V' and a V-bimodule W = [[ W, we
neC
discuss W-valued rational functions, where W = [] Wi is the algebraic
neC
completion of W. We will also study series of W-valued rational functions

and prove that the associativity (of Yi and of YIfV(R)) and commutativity (of

YML, and Y;,(R)) hold when acting on W-valued rational functions satisfying
certain convergence conditions. .

In Section 4, we first study the maps from V®" to the space W, . .. of
W-valued rational function in 21, ..., z, with the only possible poles at z; =
zj. Such maps satisfying d-conjugation properties, D-derivative properties
and composable condition are used to construct the cochain complex of
the cohomology in this section. Our composable condition is formulated
differently from that in [H2], but it can be shown that they are equivalent by
analytic continuation. The coboundary operators for the cochain complex
is defined using the W-valued rational functions that the relevant series
converge to. These series might not have a common region of convergence.
But since the rational functions that they converge to have the same domain,
the coboundary operator is well defined. This is the key (as observed by
Huang) for the cohomology theory to work.

Acknowledgement. The author is very grateful to Yi-Zhi Huang, who
patiently discussed numerous technical details, provided lots insightful ob-
servations and corrected several mistakes in the earlier version of the paper.

2. Definitions and immediate consequences

2.1. Definition of the MOSVA. We first recall the notions of meromor-
phic open-string vertex algebra and its modules given in [H1] and [Q2].

Definition 2.1. A meromorphic open-string vertex algebra (MOSVA) is a
Z-graded vector space V = [, o, V(») (graded by weights) equipped with a
vertex operator map

Yv: VeV — VoY)
u®v — Yy(u,x)v

and a vacuum 1 € V satisfying the following axioms:
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(1) Axioms for the grading:
(a) Lower bound condition: When n is sufficiently negative, V{,,) =
0.
(b) d-commutator formula: Let dy : V — V be defined by dyv =
nv for v € V(). Then for every v € V

d
[dv, Yy (v,2)] = LU%YV(% z) + Yy (dyv, z).

(2) Axioms for the vacuum:
(a) Identity property: Let 1y be the identity operator on V. Then
Yv(l, x) = 1v.
(b) Creation property: For u € V, Yy (u,x)1 € V[[z]] and

lim Yy (u,2)1 = u.
z—0

(3) D-derivative property and D-commutator formula: Let Dy : V — V
be the operator given by

d
Dyv = lim —Yj 1
Vo= g )
for v € V. Then for v € V,

in(U, ac) = Yv(va,x) = [Dv, Y\/<’U,J})].

dz
(4) Rationality: Let V' = 11,4 Viny be the graded dual of V. For
Uty U, v € V,0' € V', the series

(W, Yy (u1, 21) - - Yy (tn, 2n)0)
converges absolutely when |z;| > --- > |2,| > 0 to a rational function
in z1,--+, 2z, with the only possible poles at z; = 0,7 =1,...,n and
zi =zj,1 <i# j <n. For uj,us,v € V and v’ € V', the series
(W, Yy (Yy (u1, 21 — 22)uz, 22)v)
converges absolutely when |z2| > |21 — 22| > 0 to a rational function
with the only possible poles at z; = 0,20 = 0 and z; = z».
(5) Associativity: For uy,ug,v € V and v' € V', we have
(W', Yy (ur, 21) Yy (ug, z2)v) = (v, Yy (Yy (u1, 21 — 22)ug, 22)v)
when |z1| > |2z2] > |21 — 22| > 0.
Such a meromorphic open-string vertex algebra is denoted by (V, Yy, 1)
or simply by V.

Definition 2.2. Let V be a MOSVA. We say that V satisfies the pole-order
condition if for every uy,v € V, there exists C' > 0, such that for every
v € V', us € V, the pole z; = 0 of the rational function determined by

(', Yy (u1, 21) Yy (uz, 22)v)
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has order less than C. In other words, the order of the pole in the rational
function is bounded above by a number that depends only on the choice of
uq and v.

Remark 2.3. If V has the pole-order condition for two vertex operators,
then it is proved in [Q2] that for every v' € V' uq,...,u,,v € V and for the
rational function determined by

(W', Yy (ur,21) -+ Yy (Un, 20)0)

the order of the pole z; = 0 is bounded above by a constant that depends
only on u; and w, 7 = 1,...,n; and the order of the pole z; = z; is bounded
above by a constant that depends only on u; and uj, 1 <i < j <n.

2.2. Left modules for MOSVAs. The notion of left modules for a mero-
morphic open-string vertex algebra was introduced in [H1]|. The philosophy
is similar to the modules for vertex algebras: all the defining properties of
a MOSVA that make sense hold.

Definition 2.4. Let (V, Yy, 1) be a meromorphic open-string vertex algebra.
A left V-module is a C-graded vector space W = [],,cc Wim) (graded by
weights), equipped with a vertex operator map

YiE:Vew — Wz az Y]
URQ W YV%/(u,m)w,
an operator dyy of weight 0 and an operator Dy of weight 1, satisfying the
following axioms:

(1) Axioms for the grading:
(a) Lower bound condition: When Re(m) is sufficiently negative,
W[m] =0.
(b) d-grading condition: for every w € Wi,,), dww = muw.
(¢) d-commutator formula: For u € V|

[dw, YV{:/(U, x)] = YV%/(dvu, x) + x%ij‘—;(u, x).

(2) The identity property: Yv%,(l,a?) =1lw.
(3) The D-derivative property and the D-commutator formula: For u €
v,
d

Vi (u,2) = Yif (Dvu,2) = [Dw, Vi (u,2))
atronality: For ui,...,uy, € V,w € and w' € , the series
4) Rationality: F V W and w’ € W', th i
(W', Vi (ur, 21) - - Yot (i, 20 )0)

converges absolutely when |z1| > --- > |2,| > 0 to a rational function
in z1,...,2, with the only possible poles at z; = 0 for i =1,...,n
and z; = zj for i # j. For ui,ug € V,w € W and w’ € W, the series

(w’, YI/%/(YV (ul, Z1 — ZQ)UQ, ZQ)U)
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converges absolutely when |z3| > |21 — 22| > 0 to a rational function
with the only possible poles at z; =0, zo0 = 0 and z; = 25.
(5) Associativity: For uy,us € V,w e W, w' € W,
(w', Vi (u1, 21) Yifr (ug, 22)v) = (W', Vi (Yo (u1, 21 — 22)uz, 22)v)
when |21| > |2z2| > |21 — 22| > 0.
We denote the left V-module just defined by (W, YV%,, dw, Dy ) or simply W
when there is no confusion.

2.3. Right modules for MOSVAs.

Definition 2.5. Let (V, Yy, 1) be a meromorphic open-string vertex algebra.
A right module for V is a C-graded vector space W =[], ..¢ Wi (graded
by weights), equipped with a vertex operator map
VR WwWeVv — Wz Y]
wou — Yii(w,z)u,
an operator dy and an operator Dy, of weight 1, satisfying the following
axioms:

(1) Axioms for the grading
(a) Lower bound condition: When Re m is sufficiently negative,
W[m] = 0.
(b) d-grading condition: for every w € Wim), dww = mw.
(¢) d-commutator formula: For w € W,
d
dy Y (w, z) — Vi (w, z)dy = Vii(dww, z) + :c%Yme(w, x).
(2) The Creation property: For w € W, Yt (w,z)1 € W([z]] and
. R .
ilg})YW(w,x)l = w.
(3) The D-derivative property and the D-commutator formula: For u €
v,
d < r

%Yw(w, x) = YVI‘?(DWw, x)

= Dy Y (w,z) — Vi (w,z)Dy.
(4) Rationality: For uq,...,u, € V,w € W and w’ € W, the series
(W', Vit (w, 21) Yy (u1, 22) -+ Yo (Un—1, 2n ) tin)
converges absolutely when |z;| > --- > |2,| > 0 to a rational function
in z1,..., 2, with the only possible poles at z;, =0 fori=1,...,n
and z; = zj for ¢ # j. For uj,us € V,w € W and w’ € W', the series
(w', Vit (Vi (w, 21 — z2)ua, 22)us)

converges absolutely when |z3] > |21 — 22| > 0 to a rational function
with the only possible poles at z; =0, zo0 = 0 and z; = 25.
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(5) Associativity: For uy,us € V,w e W, w' € W,

(W', Vi (w, 21) Yy (u1, 22)us) = (w', V(Y (w, 21 — 20)u1, 20)us)

when |2z1]| > |2z2| > |21 — 22| > 0.

When there is no confusion, we also denote the right V-module just de-
fined by (W, Ym@, dy, Dy ) or simply W.

2.4. Bimodules for MOSVAs.

Definition 2.6. Let (V, Yy, 1) be a meromorphic open-string vertex algebra.
A V-bimodule is a vector space equipped with a left V-module structure
and right V-module structure such that these two strutcure are compatible.
More precisely, a V -bimodule is a C-graded vector space

w=T]wy

neC

equipped with a left verter operator map

ViE:Vew — Wz,z Y]
u@w +—  Yi(u,z)v,

a right vertex operator map

VR WeVv — Wz Y]
wou — Yii(w,z)u,

and linear operators dyy, Dy on W satisfying the following conditions.
(1) (W,Y, dw, Dw) is a left V-module.
(2) (W,Y{t, dw, Dy ) is a right V-module.
(3) Compatibility:

(a)

Rationality of left and right vertex operator maps: For
ULy eeey Uny Un1y -y Un4m € Vv

and w € W, the series

<wl7 YI/%<U17 21) T YI/%(UTM ZN)YVII;(wﬂ Zn+1)YV(Un+1, Zn+2) T

YV (un+m—1 y 2n+m)un+m>

converges absolutely in the region |z1| > |z2] > -+ > |z,| >
|Znt1] > -+ > |zZn+m| > 0 to a rational function in z1,--- , 2y,
An+1y """ Antme-

Associativity for left and right vertex operator maps: For u,v €
V,we W and w’ € W/, the series

(W', Vi (u, 21) Vi (w, 22)v)
(W', i (Vi (u, 21 — 22)w, 2)0)
converges absolutely in the region |z1]| > |z2] > 0 and |za| >

|z1 — 22| > 0, respectively, to a common rational function in z;
and 2y with the only possible poles at 21,22 = 0 and 21 = 2.
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The V-bimodule just defined is denoted by (W, YV%,, YV[}}, dyw, Dy) or sim-
ply by W when there is no confusion.

Definition 2.7. Let V be a MOSVA that satisfies the pole-order condition.
Let W be a V-bimodule. We say W satisfies the pole-order condition if
(1) W satisfies the following pole-order condition as a left V-module:
for every u; € V,w € W, there exists C' > 0, such that for every
w' € W', uy € V, the pole z; = 0 of the rational functions determined
by
(W', Vi (w1, 21) Vi (ug, z2)w)
has order less than C'.
(2) W satisfies the following pole-order condition as a right V-module:
for every us € V,w € W, there exists C' > 0, such that for every
w’ € W, uy; € V, the pole z; = 0 of the rational functions determined
by
<w’,YV§(w,21)YV(u1,22)u2>
has order less than C.
(3) For every uj,us € V, there exists C' > 0, such that for every w’ €
W', w € W, the pole z; = 0 of the rational functions determined by

(W', Vi (un, 21) Vi (w, 22)us)
has order less than C.
Remark 2.8. Similarly as Remark 2.3, the pole-order condition for two

vertex operators implies the pole-order condition for any numbers of vertex
operators.

Remark 2.9. We will build the cohomology theory for MOSVAs and bi-
modules satisfying the pole-order condition. Though a cohomology theory
can also be built without this condition, the resulting theory is different and
has no applications at this moment. Hence we choose not to do that here.

2.5. Bimodules in terms of opposite algebras. Recall that in [Q2], we
proved that for a MOSVA (V, Yy, 1), the space V' with the following vertex
operator
Yi: VeV = Vi,
Y (u, z)v = e*PVYy (v, —2)u

and the vacuum 1 € V also forms a MOSVA, called the opposite MOSVA of
V and denoted V°P. We also proved that a right V-module (W, YV[R,, dw, Dw)
is equivalent to a left V°P-module (W, YV‘;,(R), dw, Dy ), where sz{/(R) is de-
fined by

YVS{/(R)(U, T)w = exDWYV[}?(w, —z)v.
Theorem 2.10. Let W be a V-bimodule. Then the compatibility condition
can be formulated in terms of YML/ and Y;,(R) as follows



COHOMOLOGY OF MEROMORPHIC OPEN-STRING VERTEX ALGEBRAS 475

(1) Foreveryn € Zy, l=1,...,n, uy,..,u, EV,we W, w € W,

(W', Vi (ur, z1) - il (ug, 2) Vi (gen, 21) - Y (i, 20)0)

converges absolutely when |z1| > - -+ > |2,| > 0 to a rational function
with the only possible poles at z; = 0,7 = 1,...,n and z; = 2,1 <
1<j<n.
(2) For every uy,us € V,w e W,w' € W/,
R
(', ik (ug, 20) Y5 (g, 20)w)
R
(w',Y;,( )(UQ,ZQ)YV%/(Ul,Zl)'LU>
converges absolutely to a common rational function in the region
|z1| > |22] > 0 and |22] > |z1| > 0, respectively.
Proof. We only give a sketch here. From the compatibility condition of YML,
and Y%,
<w,aYV%/(u17 z1 = Zl+1) T YI/%/(ulv Rl — Zl-‘rl)YI/I];(w: _ZZ-H)
Yy (uny —2141 + 20) - Yo (U2, — 2141 + 2142)uig)
converges absolutely when
|2:1 —Zl+1| > > ’Zl — Zl+1’ > |Zl+1| > |Zl+1 — Zn’ > > ‘Zl+1 — Zl+2’ >0

to a rational function with the only possible poles at z; = 0,7 = 1,...,n and
z; = zj,1 <1 < j < n. Then one repeatedly uses associativity and Lemma
4.7 in [Q2] to argue that

(W' Vi (ur, 21 = z141) -+ Yy (i, 20 — 2041)
YR (W, —20)tn, =201 + 20)un—1, -+, =241 + Z142)wig1)
converges absolutely when
|21 — 2101 > - > |21 — 21| > 201 — ziwe| + 0+ |2n—1 — 2a] + | 2al;
|zi — zit1| > |zit1 — zig2| + -+ |2n—1 — 2n| +|2a] > 0,i=1,...,n — 1.

to the same rational function. If we further expand the negative powers of
z; — 2141 as a power series in z;1q for ¢ = 1,...,], and further expand the
negative powers of —z; + z;11 as a power series z;41 fori =1+ 1,...,n — 1,
the resulting series in 21, ..., 2, is precisely

(w', e_Z’“DWYV]%/(ul, z1) -
YI/%/(ulv Zl)eZlJrlDWYV[I;(' o eanWYVI@(w7 _Zn)um Tty _Zl+l)ul+l>

One can repeatedly use Lemma 4.5 and Lemma 4.7 in [Q2] that this series
converges absolutely when

|z1] > - > |zn] >0
to the same rational function. Thus we proved that the series

(w', e 2 Pw Y (ug, 21) - Vil (wg, Zl)YVSV(R)(qu, Z41) - Y;}R)(Un, Zn )W)
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converges absolutely when |z1| > -+ > |z,| > 0. The conclusion of (1) then
follows from Remark 5.3 in [Q2], which allows us to apply another e+1Pw
to the front and keep the convergence (though the rational function might
change).

For (2), note that

(w', eZQDWYV%/(ul, 21 — ZQ)YW];(’U}, —29)Uug) =

(w', eZQDWYVI‘?(YV[(/(ul, 21)Ww, —22) U

when |21 — 23] > |22| > |z1] > 0. Both sides converge to the same rational
function. If the negative powers of z; — zo in the series on the left-hand-side
are expanded as a power series in 29, then the resulting series is precisely
(W', YiE (uy, Zl)YIi/(R)(UQ, z9)w) and converges absolutely in the region |z1| >
|z2| > 0,]21 — 22| > 0 to the same rational function. We then use Lemma 4.5
in [Q2] to see that (w’,YV’%,(ul,zl)Yv‘;,(R) (ug, z9)w) converges absolute when
|z1] > |2z2] > 0 to the same rational function as the right-hand-side, while
the right-hand-side is precisely (w', Y5, (R)(uz, 22)Y;5(u1, 21)w). Thus the
conclusion is proved. ([l

Remark 2.11. The pole-order condition can also be expressed in terms of

YV‘;(R). More precisely, if V' is a MOSVA and W is a V-bimodule, both of
which satisfy the pole-order condition, then

(1) For every u; € V,w € W, there exists C' > 0 such that for every
w' € W', uy € V, the pole 21 = 0 of the rational function determined
by

(w', YV‘;,(R) (uq, zl)YVsV(R)(UQ, z9)w)

has order less than C. In fact, C' can be chosen to be the same upper
bound of the order pole z; = 0 for (w’, Yif(w, 21)Yy (ug, 22)u1).

(2) For every uj,us € V, there exists C' > 0 such that for every w' €
W' w € W, the pole 21 = 25 of the rational function determined by

(W', Vi (w1, 20) Vil (ug, 20)w)

has order less than C. In fact, C' can be chosen to be the same upper
bound of the order pole z1 = 0 for (w', Vil (u1, 21) Vit (w, z2)uz).

Remark 2.12. Similarly as Remark 2.3, one can prove that for the rational
function determined by

(W, Vi (ur, 21) - Vil (ug, 2) Vil (wsn, 21) - - Vil (i, 20)w)

the order of the pole z; = 0 is bounded above by a constant that depends
only on u; and w, i = 1,...,n; and the order of the pole z; = z; is bounded
above by a constant that depends only on u; and uj, 1 <i < j < n.
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3. W-valued rational functions

Throughout this section, V'is a MOSVA; W =[], ¢ Wiy is a V-bimodule
that is not necessarily grading-restricted; W’ =[], ¢ W[Z} is the graded dual
of W. We shall assume that all the pole-order conditions hold for V' and W.

We use W to denote the algebraic completion [L.cc Wi, of W. Note
that the dual (W’)* of W' does not coincide with W. Also note that any
homogeneous linear map L : W — W extends to a map W — W by the
formal linearity

L(w) =1L (Z WU) = L(mw)

keC keC

where 7, is the projection of W onto Wy More generally, any linear map
L : W — W that is a finite linear combination of homogeneous linear maps
can be extended to L : W — W. For convenience, we will not introduce
new notations to distinguish the extended map from the original map.

3.1. W-valued rational functions.

Definition 3.1. For n € Z,, we consider the configuration space
Fo,C={(21,...,2n) € C" : z; # 25,1 # j}
A W-valued rational function in zi,...,z, with the only possible poles at
zi = zj,1 # j is a map
f:F,C—W
(215 ey 2n) = f(21, ey 20)
such that
(1) For any w' € W',
<wl7 f(zh sy Zn)>
is a rational function in z1,...,2, with the only possible poles at
2 = Zj,i 75 j
(2) There exist integers p;;,1 <i < j < n, and a formal series
g(x1, ey ) € W[z, ..., 2]
such that for every w’ € W’ and (21, ..., z,) € F,C,
H (Zi - zj)pij <wl7 f(zh ceey ZTL)> = <U)/,g(21, L3) ZTL)>
1<i<j<n

as a polynomial function.

For simplicity, we will simply call such maps W -valued rational function
when there is no confusion. The space of all such functions will be denoted

by WZ1,~.,zn'
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Remark 3.2. From the second condition, we know that the order of poles
of the rational function (w’, f(21, ..., 2,)) is independent of the choice of w'.
So for every w’ € W/,

(215 0y 20) = H (Zi*Zj)pij<w,>f(zl""’zn)>
1<i<j<n

is a holomorphic (in fact, polynomial) function on C", which can be ex-
panded as a multiple power series

o0

S an s (w)s ozl

i1,0ryin=0

For each i1,...,i, € N, w' + a;, 4, (w') is an element in (W')*. The sec-
ond condition further specifies that there exists b;, ;, € W, such that
aiy..i, (W) = (W' b;, 4.). Thus, [Ticicjen(zi = )79 f (21, ..., 20) can be
expanded as

SO by it € Wl s 2]

14eeyin=0

and therefore, f(z1,...,2,) can be expanded as

oo . ‘
Yo b2y
01 yeeyin=0 . )
1" (2 — 2zj)Pis € Wlz1, o 2lll(21 — 22) 71, ooy (21 — 20) 7]
1<i<j<n

For 1 <i < j < n, one can further expand the negative powers of z; — z; as
a power series in z; and multiply them out. It is clear that in the resulting
series
k n
Y fremAt oz (1)
k1,....kn€Z

each coefficient fy, , is a finite sum of various b;, ;,’s. Thus f, 1. €
W. So (1) is a series in W/([z1, 27}, ..., zn, 2, }]] that converges absolutely to
f(z1,..., zn) in the region

{(z1y 0oy 2n) €C" 21| > -+ > |20}

We will also consider the expansion of f(z1, ..., z,) in other regions. In all the
regions that arise in our applications, all the coefficients of the corresponding
series sit in W.

In an earlier draft of the paper, f takes value in the larger space (Wh*.
The following observation by Huang says that we can use W instead of
(Wh*:

Proposition 3.3. Let f : F,,C — (W')* satisfying the two conditions in
Definition 3.1. In addition, assume that there exists a complex number



COHOMOLOGY OF MEROMORPHIC OPEN-STRING VERTEX ALGEBRAS 479

C, such that for every ii,...,4, € N, the coefficient b;, . ;, of the power

x{ -+ xlr in the series g(z1, ..., ) are homogeneous, with

n

wt by iy =81 = — iy =C
Then f takes value in W.
Proof. We write

[oe)
_ 1 i
9(21y ey 2n) = E E iy, in?y 20

k=0i1++in=Fk

. . il P ,L"
E bzl,...,lnzl Zn

Note that for every k € N,

is a finite sum of homogeneous elements in W of weight k4+C'. As k varies, the
weight of these elements varies. Thus for fixed (21, ..., 2,) € F,C, g(21, ..., 2n)
is an infinite sum of homogeneous elements in W, thus an element in W.
As f(z1, ..., zn) is simply a quotient of g(z1, ..., z,) and products of (z; — z;),
the same holds for f(z1, ..., z,). O

Remark 3.4. As all the (W’)*-valued rational function that will be used
in this paper are finite linear combinations of those in Proposition 3.3, We
need only those W-valued rational functions given in Definition 3.1.

Remark 3.5. It is possible to develop a cohomology theory with (W’)*-
valued rational functions that do not satisfy the second condition. We choose
not to do that because we do not need to consider such general MOSVAs
and modules.

Proposition 3.6. Let n € Z; and take [ = 0,...,n. Let wy,...,u, € V
and w € W satisfying the condition that Vu € VY (u,z)w € W{z]],

YI;/(R) (u,z)w € W|[[z]]. Then for every w’ € W', the series

(W', Vil (ur, 1) - Vil (wn, 2) Vit (g, 2140) - Vgl z0)w) - (2)

converges absolutely when |z1| > --- > |z,| to a rational function with the
only possible poles at z; = 2z;,1 <i < j < n.

Proof. From rationality we know that the series (2) converges absolutely
when |z1| > -+ > |z,]| > 0 to a rational function with the only possible poles
at z; = 0,i=1,...,n,2 = 25,1 <14 < j < n. From the assumption, we see
that the lowest power of z, is nonnegative. Therefore, z, is allowed to take
zero. So z, = 0 s not a pole.

Assume that z,_1 = 0 is a pole. By associativity, the series

(W', Vil (ur, 21) - - Vi (ug, 20) Vi (wggr, 2041) - -

Yl (Y (1, 201 = 20)tn, 2)0),
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is obtained by the expanding some rational function in some certain region,
during which one of the steps expands the negative powers of z,_1 = z, +
(zn—1 — 2zn) as a series with positive powers z,_1 — z,. So there should be

infinitely many negative powers of z,. However, since Y;}R)(u, zp)w has no
negative powers of z,, in particular, for u = (Yy)r(up—1)u, with any k € Z.
Thus this series has no negative powers of z,. So it is impossible for z,_1 = 0
to be a pole.

Similarly, assume z,_2 = 0 is a pole, we use the associativity again to see
that

(W', Vi (ur, 20) - Vi (s 20) - Y™ (g, z140)
s Y;/(R)<Yx§(un—27 Zn—2 — Zn)Yxﬁ(un—lv Zn—1 — Zn)una Zn)w>u

is obtained by the expanding some rational function in some certain region,
during which one of the steps expands the negative powers of z,_o = z, +
(zn—2 — 2zpn) as a series with positive powers z,_2 — z,. So there should be
infinitely many negative powers of z,, which is not possible.

Similarly one can argue that z,_3 = 0 is not a pole, ..., 241 = 0 is not
a pole. To see that z; is not a pole, we use the commutativity of YML, and

YI;,(R) to move all the YML, to the right. The resulting series

W, Vi (g, zia1) - Vi (w20 Vi (un, 21) - - Vi (ug, 20)w)

converges absolutely when |zj41]| > -+ > |zn]| > |21] > -+ > |z] > 0 to the
same rational function as (2) does. As Yj¥(u, z/)w has no negative powers
of z; for every u, we then see that z; is allowed to take zero and thus z; = 0
is not a pole. Then we apply associativity of YV%, and argue similarly that
z;—1 = 0 is not a pole, ..., z1 is not a pole. O

Notation 3.7. We denote the rational function that the series
R R
(W', Vi (un, 21) -+ Vil (w20 Vi (i, 20) - Vil ™ (i, 20)e0)
converges to by

R ((w/, Yk (u1, 21) - Vil (uy, zl)Yv‘;,(R) (wis1, z141) - - Y‘;,(R)(un, zn)w>) .

By the previous proposition, it is of the form

h(zl, ,Zn)
I (=)
1<i<j<n

for some polynomial h(z1,...,2,) and some integers p;;,1 < i < j < n.
The polynomial depends on the choice of w' € W/ ,w € W,uq,...,u, €
V. But since V' and W satisfies the pole-order condition, for each 1 <
i < j < n, the integer p;; depends only on w; and wu;. It is important

that R ((w', YV%,(ul, z1) - YV%/(UZ, zl)Y‘fV(R) (Ups1, 2141) - Y;/(R)(un, zn)w)) is
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defined whenever z; # z;,1 <1i < j < n. The inequality |z1| > --- > |2,] is
not necessary.

Notation 3.8. For every (z1,...,2,) € F,C, the linear functional

w' = B (il (s 2) - Vil o, 2) Vil g, ) -+ Yl™ (s zn)u))

determines an element in (W’)* that will be denoted by

B (i (ur, 21) - Vil o, 20 V™ (s, 20) -+ Yl 20

As will be seen soon, this element is indeed in W. It is important that this
element of W is defined whenever z; # z;,1 < ¢ < j < n. The inequality
|z1| > -+ > |zn| is not necessary.

Remark 3.9. The E-notation was introduced by Huang in [H2]. Instead
of dealing with the series, we are dealing with the holomorphic function
obtained by the analytic extension of the sum of the series. With the E-

notation, the commutativity of YV’%, and Y;,(R) can now be expressedas

BE(Yyf (ug, Zl)Y‘;/(R) (u2, z2)w) = E(YVSV(R) (ug, 22) Vil (u1, 21)w)

Notice that the series in the left-hand-side only makes sense in |z1] > |22] >
0, and the series in the right-hand-side only makes sense in |z2| > |2z1] > 0.

So we will not be able to find z1, 29 € C such that YV%,(ul, zl)YVSV(R) (ug, z2)w

and Y;,(R) (ug, z2)Yik (u1, z1)w are equal as elements in W. However, as they
both converge to a common rational function that determines an element in
W defined for every (z1, z2) € F5C.

Example 3.10. Let V be a MOSVA and W be a V-bimodule. Assume
that both V and W satisfies the pole-order condition. Fix n € Z, and
I € N such that 0 <1 < n. For every w € W such that for every u € V,
Vi (u, 2)w € W([z]], YVSV(R) (u, z)w € W{[z]], and for every uy, ...,u, € V, the

map from F,C to W defined by (z1, ..., z,) —

R R
B (Y, 21) - Y, 2) Vi (i, 20 Vi (i, za)w) (3)
is a W-valued rational function in 21, ..., z, with the only possible poles at
zi=2z5,1<i1<j<n.

Proof. The first condition is seen from the discussions above. The second
condition follows from Remark 2.12. For homogeneous uy,...,u, € V,w €
W, one can computes that the power series

H (zi — 2PVl (ug,21) - - - YVIL/(UI,ZI)Y;/(R)(UZ+1721+1) B Y{fv(R) (Uny2n)w
1<i<j<n
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n
satisfies the the conditions in Proposition 3.3 (C' can be chosen as > wt u; +

i=1
wtw— > p;j.) Thus from Remark 3.4, we see that the rational function
1<i<j<n o
in question takes value in W. ([

Notation 3.11. We will use the notation
B @ - @ gy w)

to denote the rational function (3), with n € Z4,l € N, uy,...,u, € V and
w € W chosen the same way as in the previous example. In particular,
E‘(,f}nfl)(ul ® - Qupw) € Wy, . When W =V and w = 1, we will use
the notation E‘(/n) (U1 ®- -+ Quy) for E‘(/n’o) (u1 ®- - - @up; 1) without explicitly
mentioning 1.
3.2. Series of W-valued rational functions. In this paper we will be
frequently dealing with series of W-valued rational function. Here we illus-
trate some examples. Let (z1,...,2,) € F,,C. Let uy,...,up, € Vand w € W
such that Yi (u, z)w € W{[z]] and Vif(w, z)u € W{[z]] for every u € V. Let
v € V and x be a formal variable. Note that the components (Yi}),(v) of
the vertex operator YV[[}(U, x) are sums of homogeneous linear operators on
W that extends naturally to W. In particular, they acts on

_ I;n—l

w = (Ei(/vn )(ul ® @ Up;w)) (21, ey 2n)

R R
= B(Yi (ur, 21) - il (g, 2) Vi (wier, 2101) -+~ Yo (i, 20)0)

Thus the vertex operator YWL/(u, x) acting on w is the following single series
of elements in W:

Vit (v, 2)w = Y (Vi) (uw)wz "

nez
= > (V) (u) BV (ur, 21) - - Y (g, 2) Vil ™ (g, 21) -+
nez
YVSV(R) (U, zn)w)x_”_l.

If we pair the above with w’ € W', the coefficient of 7" in (v, Vi (v, z)w)

is just

R R
(W', (V) (0) BOGE (u1,20) -+ Vil (a2 V™ (g 200 -+ Yl (20 )0)
which is a rational function in z1, ..., z, with the only possible poles at z; =
25,1 <1 < j < n. Moreover, if n is sufficiently negative, the coefficient
is zero. Thus the series (w’, Yi¥ (v, z)w) has at most finitely many positive
powers.

Proposition 3.12. Let uj,...,u, € V,w € W be chosen as above. Then
the single series

Vit (v, 2) E(Yyir (w1, 21) - - - Vg (g, Zl)Yé/(R)(UlH, Z141) - Y;/(R) (Un, 2n)w)
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converges absolutely when
|z| > |zi|,i=1,....,n
to the W-valued rational function
BV (v, 2) Vi (ur, 21) - Vi (us, 2) Vil (ugga, 2041) - - Vil

Proof. For every w’ € W', we know that the series

(tn, 2n)w)

(W', Vi (v, 2) Vi (ur, 21) - - Vil (u, 2) Vil ™ (wsr, zi) -+ Vil (i, 20)w))

converges absolutely when |z| > |z1] > -+ > |2, to the rational function
with the only possible poles at z = z;,i = 1,...,n,2; = z;,1 < i < j < n. For
each fixed n € Z, the coefficient of 27! is precisely the sum of the series

(W', (Vi) n (0) Vil (ur, 21) - Vil (g, 20) Vil (g1, 200) -+ Yol ™ (i, 2)w))

in z1,...,2,, which is the same as the coefficient of YML,(U,Z)@. From the
upper truncation of z, we know that the series is obtained by expanding the
negative powers of z — z; as a power series in z;. Thus it converges absolutely
whenever |z| > |z],i =1,...,n. O

Proposition 3.13. Let uq,...,u, € V,w € W be chosen as above. Let
m € Zy,v1,...,0m € V. Then for each p =0, ..., m, the series
Yk (01.21) - Vi (0 ) i (0t 1) -+ Yok (U m ) BV (1,241
Y (2 )V (s Zmen) -+ Vil (s 2 ) 0)
converges absolutely when
|z1] > - > |zm| > |zil,i=m+1,...,m+n.
to the W-valued rational function
E(Yif(v1,21) - Vil (0, 2p) Vi (01, 2p1) -+ Yok (U, 2m)
Yol (a1, zmg1) - Vil (i, 2t Vi (s Zmigt) -+ Yo (tn, Zimn ) 0)
Proof. It suffices to notice that for each w’ € W', the series

s(R s(R
<wl7 YI/IL/(Ulv 21) T YI/IL/(UIN ZP)YI/V( )(UP-H? Zp+1) T YI/V( )(UWH Zm)-
E(Y (w1, zms1) - Vil (w, zm+l)YVS[/(R)(ul+la Zmi1) - 'Y;fy(R) (Uns Zman)w))

coincides with the expansion of the rational function
R((w, Y (01, 21) -+ Vi (v, 2p) Vi (W, 2p41) - Y™ (0, 200):

R R
Vi (un, zmg1) - Vil (it 2 Yor ™ (it Zmgign) - Yl (s 2o n)w))

in the region {(21,...., Zman) @ |21] > -+ > |zm| > |z, i = m+1,..,m+
n}. O
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Remark 3.14. In terms of the E-notation, we have
E(Yif (v, 2) BV (ur, 21) -+ Vil (u, 2) Vit (uien, 2041) -+ Vil (tm, 20)w))
R R
= BV (v, 2)Vi (u, 21) - - Vi (uy 2) Vi (uggr, 2041 - - Y2 (g, 2 )w))
and
E(Yi (01, 21) - Vi (0, 2p) Yok D (01, 2p41) -+ Yok (U, 2m)-
(YL ...yL ys(B) L yS)
(Y (u1, 2m+1) w (U, Zmyt) w (Wit1, Zmti41) w (Uns Zmgn)W))

= B (01, 21) -+ Vil (0, 2) Vi (pst, 2p1) -+ Yk (U, 2
Vil (ut, zmeg1) - - Vil (ws Zm+l)Y1fV(R) (U115 Zmgig1) - 'YVSV(R) (Uns Zmin)W)

Here is another type of series of W-valued rational functions that will be
considered. Let uy,...,up+1 € V,w € W such that Yif(u, z)w € W[z]] and
Y (w, z)u € W([z]]. Let ((, 23, ..., 2n) € F,C.

EI(/IZ}H_Z)(YV(M, 21— QO Yv(ug, 22— ()1 Quz @ -+ @ Ups1;W)(C, 23, -vy Znt1)
which expands as
> By (0 )y (1) (Y iy (u2)1 @ ug @ -+
k1,k2€Z

@ Unt1;W)(C, 235 vy Zng1) (21 — O) T (2 — ) TR

For each ki, ks € Z, the coefficients of (21 — ¢) ™"~ (29 — ¢)7*271 is a W-
valued rational function in (, 23, ..., Zp41.

Proposition 3.15. Let uq,...,un+1 € V and w € W be chosen as above.
Then the series

B (Y (w1, 21— )Y (w2, 22— O)1@u3 @+ - - @t 1; 0)(C, 23, wony Znt1) (4)
converges absolutely when
|23 — (| > |21 — €] > |22 = (]
to the W-valued rational function
B(Yif (w1, 21) - Vi (e, 2 Y (i, 2140) - Y (s 2 Jw)
Proof. For every w’ € W', we know that the series

(W', Yk (u1, 21) -+ Vi (w1, Zl-&-l)Y;/(R) (Uig2, 2142) - - sz/(R) (Unt1, Zn+1)w)

converges absolutely when |z;| > -+ > |z,41| to a rational function with
the only possible poles at z; = z;,1 < i < j < n + 1. By associativity and
Lemma 4.5 in [Q2], we know that the series

(W', Vi (Yo (ur, 21 — QYo (ug, 22 — )1, Q) Vil (us, 23) - - - Vil (wrg1, 2141)

Vi (g2, 2000) - Y™ (1, 241 )w)



COHOMOLOGY OF MEROMORPHIC OPEN-STRING VERTEX ALGEBRAS 485

with variables z1 — (, 20 — (, (, 23, ..., 2, that expands as

Do W )k (Y )k () (Y9 Dy (02) 1) (Y3 i (1) -+ (Y3 iy (i)
ki,...,kn+2€Z

V) s (rga) - (V) (g )W) (21— Q) F Y (29 — Q) P!

—k3—1_—ks—1 —kpio—1
¢ %3 T At

is obtained from the following expansion of the rational function:
(1) Expand the negative powers of 21 — 29 = 21 —( — (22 — () as a power
series of z5 — (.
(2) For s =1,2and j = 3,...,n, expand the negative powers of z;, — z; =
¢+ (2zs — ( +zj) as a power series of z; — ( + z;, then further expand
the positive powers of z, — ¢ + 2; as polynomials of z; — ¢ and z;.
Note that this expansion is the same as first expand the negative

powers of z; — z; = —(2; — () + (2s — () as power series of (z; — (),
then further expand all the negative powers of z; — ( as power series
of Zj.

(3) For 3 <i < j < n, expand the negative powers of z; — z; as power
series of zj.
Thus the series converges absolutely when
|21 = ¢ > |22 = | ICI > 23] > -+ > [znl,
25 = ¢l > a1 = ¢lj =3, .m.
The result then follow by noticing that the coefficients of the series (4),
paired with w’, are precisely the partial sums of the above series with respect

to ks, ..., knt2. In particular, the series (4) is obtained from the following
expansions of the rational function

R((w' Vil (ur.21) - Vil (g, 2040) Yo (uieazi2) -+ Yo (1,21 )
(1) Expand the negative powers of z; — 23 = 21 —( — (22 — () as a power
series of z9 — (.
(2) For s =1,2 and j = 3, ...,n, expand the negative powers of z, — z; =
—(2j = ¢) + (25 — () as power series of (z5 — ().
Thus the series (4) converges absolutely when |z3—(| > |21—(| > |22—(]. O

Proposition 3.16. Let m,n € Z,. Let ay,...,a, be chosen such that
a1 + -+ o, = m +n. Then the series

Bl 24 - ) vl ) - ot

a1 ) T

R ® Yv<u§n)7 Z%n) — <n) <o Yv(ugl), Z((;;LL) - Cn)]-)(CM sty Cn)

converges absolutely when
’CZ — <J| > ‘Zy) — Cz‘ + ‘Z,g]) — Cj‘a 1 S 1< ] S n,s = 1, ...,Oéi,t = 1, ...,aj

|z§i) — Gl > |zt(z) —Gli=1,..,n1<s<t<aq,.
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to the W-valued rational function
l
B, oY) i ), 20) - vl 20) - v ll), 20)
s(R l ! s(R
YR D) Ly ) ey

s(R n n s(R n n
VP ™ ) v ), 20 yw)

Qn ? “oa,

Proof. It suffices argue similarly that the series, paired with any w’ € W,
is obtained from the expansion of the corresponding rational function in the

region.

We end this section by a proposition dealing with the mixture of the above

two types of series of W-valued rational functions

Proposition 3.17. Fix m,n € Z,. Let ag, a1, -+ , a, be chosen such that

ag+ a1+ -+ a, =m +n. Then for every [y =0, ..., ag, the the series

0 0 0 0 s(R 0 0 s(R
Y, A7) Vi) 2 v ><u§olpz§oin---YW< (w20

B ) 2 - ) Yo, 20 - ot
@@ Y(ud, A = G) - Y (), 2 = GG e Ga)
converges absolutely when
120 > s 2O S G+ 12 = Gl =1, et =1,
\z&i) =G> > |Z,()i> —Gli=1,.,n
G =Gl > 120 =G+ ¢l 1<i<j<ns=1,.a,t=1, .., 0;

to the W-valued rational function

R R
B, 2 v @, A0 w20 ) v ), 20)

[
Y 2Dy v ), 2D v 2D v ) 2 0)
l R
Y @D )y ><u&ﬁ?,zé€i>>-~
YVSV(R)( (), ()) , Y(R)( ) 2 0Ya)

an

Proof. It suffices to notice that the series in question, paired with any
w’' € W', is obtained from the following expansions of the corresponding

rational function:

(1) Fors=1,...,a0,i = 0,...,n,t = 1, ..., vj, expand the negative powers

(0) (@) (i)

Zs  — % as power series of z When 1 > 1, one further expands
the positive powers of zt =(+ ( — (;) as polynomials of ¢; and
20

(2) For i = 1,.

n,1 < s <t < q expand the negative powers of
i)

zgi) — zﬁi) = § -G — (zt( — (;) as power series of (zt —G).
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(3) For 1 <i < j S n,s =1,..,0;,t = 1,...,j, expand the negative

powers of zgi) ' =(G—¢)+ (zgi) -G — z,fj) +(;) as power series
Q —|— (;), then further expand the positive powers of
( j
( —Gi— + Cj) as polynomials of (zg — ;) and (zt - ¢)-

Thus the series in questlon converges absolutely when
0 j .
\z§ )\ > > |zé%)| > |Gl + |zt(l) —Gli=1,.,nt=1,...,
120 — Gl > > 129D —¢li=1,.n
|G — ¢l > |z§’) — G|+ |z§J) —Glhl<i<j<mn,s=1,.,0,t=1,..,a;
O

3.3. Associativity and commutativity extended to W-valued ratio-
nal functions. In this subsection we consider the vertex operator action
on more general W-valued rational functions. Let (214, 2n) € F,,C. Let
v € V and z be a formal variable. Let f be a W-valued rational function.
Then (Yi),(v) acts on the W-element

w = f(zl, ey Zn)

Thus the vertex operator YML/(U, x) acting on w is the following single series
of elements in W:

Vit (v, 2)@ = Y (Yifp)m (w)w """

If we pair the above with w’ € W', the coefficient of 27"~ in (w’, Vi (v, x)w)

is just
<w/7 (YV%)n(u)f(zly ey Zn)>>,

which is rational function in zi, ..., z, with the only possible poles at z; =
2j,1 <@ < j < n. Moreover, if n is sufficiently negative, the coefficient
is zero. Thus the series (w/', YL w (v, 2)w) has at most finitely many positive
powers.

Similarly, for v1,ve € V and formal variables z1, zo, the series

YML/ (Ul, :L'l)YV%/(UQ, IL‘Q)@
and

Vi (Y (v1, m0)v2, 22)W
are understood as double series of elements in W

Vit (vr, 20) Yif (v2, 22)0 = Y (Vi )y (010) (Vi Dy (v2) Wy 1 g P2
k1,k2€Z

= Y (ks (00) (Vi kg (v2) (21, ooy 20 )y ™ ™!
k1,ko€Z
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and

Vil (Y (v1, @0)v2, 22)W = (Y50 )y (Y3 iy (01 w2 ) ™~ g ™2
k1,ko€Z

- Z (YI/%/>7€1((YV)I€1(vl)UQ)f(zh"'7zn)$0_k1_1x2_k2_1'
k1,ko€Z

In general, we don’t know if these two series converge. But if w is chosen
appropriately and one of them converges absolutely under certain conditions,
then the other also converges absolutely. More precisely,

Proposition 3.18. Let vi,v2 € V. Let f € WZ37,,.7zn+2 such that for every
(215 .oy Znt2) € FpypoC with |z1| > |22] > |2i],7 = 3, ...,n + 2, the series
Vi (v1, 21) Vi (02, 22) f (23, ., 2n)

converges absolutely to a W-valued rational function. Then for every

(Z17 ) ZnJrQ) S Fn+2(c

such that |z3] > |21 — 22| + |zi],7 = 3, ..., n + 2, the series

Vipr (Y (01, 21 — 22)v2, 22) f (23, --.: 2n)
also converges absolutely to the same WW-valued rational function.

Proof. By Definition 3.1 and Remark 3.2, we know that f(zs, ..., z,) can be
expanded in the region

{(#3, ey 2Zn+2) € C" i |2zg] > -+ > |z}

as an absolutely convergent series

k k
f(23, ceey ZTL+2) = Z fk)3...,k,‘n+2'z33 e an:léQ
k3:-~~7kn+2€Z

in W1[zs, 25 L Zngo, z,;b]]. This expansion is obtained by expanding each
negative power of z; — z; as a power series in z;, for 3 <7 < j < n+ 2.
Thus the series is lower-truncated in z,49. The coefficient of each fixed
power of z,49, as a series in z3, ..., 2p41, is lower-truncated in z,41. In
general, for each ¢ = 3,...,mn 4+ 1 and each ki1, ..., knto € Z, the coefficient

kit1 knt2

of ;11 -+ 2,1, as a series in z3, ..., 2;, is lower-truncated in z;. If we pick

M; € Z such that the lowest power of z; is —M;, then we can recover the
coefficient of the series from the following formula

ks +Ms Fntat-Mni2
f li li ’ :

=lm--- IIm | —— o

ka.o-bntz = I Znt2=0 \ Oz3 O2n42

M. My,
[z?) Sz o f2s, ,zn)] .

Now by assumption, the series

YV%/(ul, zl)YML/(UQ, 29) f(23, ..., Zn+2)



COHOMOLOGY OF MEROMORPHIC OPEN-STRING VERTEX ALGEBRAS 489
—k1—1_—ko—1
= Z (YI/%/)kl(u]_)(Y[/%/)k2(U2)f(23,...,Zn+2)21 ! 22 ?
k1,ko€Z

converges absolutely when |z1]| > |22] > |2, = 3,...,n + 2 to a W-valued
rational function. This means the following iterated series

) En
YV%/(ulel)YV%(U%Z?) Z fka---,kn+2'z§3"'zn+§2 =
k37"'7kn+2€Z
L L k kn —k1—1_—ka—1
Z Z Y Dk (ua) (V9 s (U2) flsoo oy 23”20l | 210 2 0

k1,k2€Z | k3,....kn42€Z
viewed as a double series in z7, z9 whose coefficients are

k kn
Z (YI/%/)kl (ul)(yl/%/)lm (UQ)fk3---J€n+2Z33 T Zn+52?
k3,...,kn42€Z

converges absolutely when |z1| > - -+ > |2,42| to the same W-valued rational
function. Moreover, the power of zo is lower-truncated. And for each fixed
power of z9, the power of z; in coefficient series is also lower-truncated. Thus
by Lemma 4.5 in [Q2], the series

—k1—1 —ko— . k
S W)k () (V5 kg (2) frg o2 T g P2
ki,...knto€Z

is precisely the expansion of the W-valued rational function

E(YML/(ul,zl)YmL,(UQ,zQ)f(z;g,...,zn+2)) (5)
in the region
{(21, 0y Zn12) €C™2 1 21| > -+ > |2p00]}
In particular, the series converges absolutely in this region.
By associativity, for fixed ks, ..., knto, when |21]| > |22| > |21 — 22| > 0, we
have

Vi (w1, 20) Yifr (ua, 22) frg.. oo = Yo (Yo (U1, 21 — 22)u2, 22) fig. o

= (Vi ey (Y )iy () (21 — 29) 12z et
k1,ko€Z
Thus the series

k kn
Vit (Yo (i, 21— 20)u2,22) Y frgkaga?80 2t =
k3,....kn+2€Z

> D )k (Y0 )k () u) fr e o (21 — 20) F1 712727

k3,....;kn4+2€7Z | k1,k2€Z

k3 kn+2
[23 T Zp42
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viewed as a series in zs, ..., 2,4+2 Whose coefficients are
(Yi/%/)kl ((YV)k2 (ul)UQ)fka---,kn 2(21 - ZQ)_kl_IZQ_kZ_lv
+
k1,ko€Z
converges absolutely when
’21| > ‘ZQ’ > e > ’Zn+2|, ’22‘ > ’21 — 2’2‘ > 0.

Moreover, for every i = n + 2,...,3 and every kji1, ..., knto, the coefficient

. k; fngo .
series of 2z} 4" - - zn’:f is lower-truncated in z;. One then sees from Lemma

4.5 in [Q2] that the series

L § : k kn,
Yw(YV(U1, Z1 — ZQ)UQ, Z?) fkg...,kn+2233 et Zn+52 —
k3,...sknt2€Z

—k1—1_ —ko— k
> )k (VW )ky (1)) frs o en (21 — 22) P2y 27208 it
kl,kz,k3,...,kn+2€Z

is the expansion of the W-valued rational function (5) in the region
{(21, -, zny2) € C"*2 1 |29] > |21 — 20|+ 23], |21 —22] > 0, |23 > -+ > [znp2l}
In particular, the series converges absolutely in the region. We then sum up
all ks, ..., knt1, to see that the double series

Vi (Yo (u1, 21 — 22)u, 22) f (23, .oy Znya) =

)
D Wk (Y)ky (wn)ua) f (23505 2n42)

k1,k2€Z

of elements in W is precisely the expansion of the W-rational function (5)
in the region

{(215 s 2n42) * |22| > 21 — 22| + |2],7 = 3, ...,n + 2}
In particular, the double series converges absolutely in the region. O

Corollary 3.19. For uj,us € V and f € Wzg,“_,znﬁ chosen as above, we
have
Yiir (ur, 21) Yy (w2, 22) f (23, - 2nt2) = Yiir (Y (un, 21—22)u2, 22) f (23, -+, Znt2)
for every (z1,..., 2n+2) € Fn42C such that |z1]| > |2z2] > |z1 — 22| + |2i],i =
3,...,n + 2. Moreover, we have

E(Yy(u1, 21) Yy (ug, 22) f (23, .-, 2np2))

= E(YV%/(YV(ul’ 21— ZQ)UZ? ZQ)f(Z37 ey Zn+2))7

where both sides are regarded as W-valued rational functions in szn Py

One can generalize the above conclusions to the product of any numbers

of YV%, and YI;,(R) vertex operators. For convenience, we list the conclusions
we will need in this paper in the following theorem.
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Theorem 3.20. (1) Let uy,up €V, f € W, . ..., such that

R
YV%/(ul) Zl)Y{;IS/( )(UQ, Z?)f(z37 ceey Zn+2)
converges absolutely to a W-valued rational function for every
(Zl) ceey ZTL+2) € Fn+2(c
with |z1| > |z2| > |zi|,i = 3, ...,n + 2. Then the series
R
Vi (uz, 20) Vi (un, 21) f (23, -, 2nt2)
also converges absolutely to the same W-valued rational function
for every (z1,...,2n+2) in Fj,42C such that |zo] > |z1| > |zi],i =
3,...,n + 2. Moreover, we have
E(Vh v )
(Y (u1, 21) Yy (u2, 22) f (23, s Zn42))
R
- E(Yvﬁ )(u27 ZZ)YI/%/(UL Zl)f(ZS) ceey ZTH-Q))
as elements in th...,zn.,_z'
(2) Let w1, ..,um €V, fE€W,, .1 . 2., such that
YV%(ulv 21) T YVIL/(UW% Zm)f(zm-‘rlv ey Zm-‘rn)
converges absolutely to a W-valued rational function for every
<217 ey Zm+n) € FinnC
with |z1] > -+ > |zm| > |2i|,i = m +1,...,m + n. Then the series
Y{/%/(YV(uh 21— C) T YV(Um, Am — C)l’ C)f(zm-‘rlv ey Zm-i—n)
also converges absolutely to the same W-valued rational function
whenever (z1,..., 2m4n) € FrnanC,|[C| > |21 — | + |zi],7 = m +
1,..,m4+n,|z1 — (| > -+ > |zm — (|. Moreover, we have
E(YV%/(UM Zm) YVIL/(Wm Zm) f(Zm+1, -+, Zmn))
= E(YV%/(YV(UM Z1 — C) Tt YV(uma Zm — C)]-? C)f(zm-l—h e Zm—i—n))
as elements in Wz1,...,zm+n'
(3) Let wy,.co,upm €V, f €W, ... such that

Y‘;[S/(R) (U,m, Zm) oo YI;;/(R) (u17 Zl)f(zm-I-ly ceey Zm'f'”)

converges absolutely to a W-valued rational function for every
(217 ) Zm-i—n) € FiynC

with |zp| > -+ > |z1] > |z, =m +1,...,m + n. Then the series

YI;/(R)(Yv(ul, 21 — C) s YV('Umw Zm — ()1, C)f(zm-&-l’ s Z’m+n)
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also converges absolutely to the same W-valued rational function
whenever (z1,..., 2m+4n) € FnanC, || > |21 — (| + |zi],i = m +
1,...,m4+n,|z1 — (| >+ > |zm — (|. Moreover, we have

E(Y‘;[S/(R) ('U/mv Zm) s Y;/(R) (Ul, Zl)f(zm+1, ey Zm+n)>
= B (Y (ur, 21 = O+ Yy (s 2m — OO F (2t s Zmen)

as elements in W, . . .

4. The cochain complex and the cohomology group

Let n be a fixed positive integer. We will define cochain complexes from

linear maps V& — W, ..., satisfying some natural properties.

n

4.1. Linear maps V®" — WN/zl...zn satisfying D-derivative and d-
conjugation properties.

Definition 4.1. A linear map ® : V&" — szn is said to have the
D-derivative property if
(1) Fori=1,...,n, vy, ...,v, € V,w' € W/,
(W', (®(v1 @+ @Vim1 @ Dyv; @ Vi1 @ -+ @ vp)) (21, ..y Zn))
0
R
(2) For vy, ...,v, € V,w' € W,

(W', Dy (®(v1 @ -+ vp)) (21, -y 20))

— <(£1 et é) (w', (P(v1 @+ @vp)) (21, vy 20))

(W, (D01 @ -+ @ ) (21, s 20)

Definition 4.2. A linear map ® : V&" — th...,zn is said to have the d-
conjugation property if for vy,...,v, € V,w' € W' (z,...,2,) € F,C and
z € C* so that (zz1,...,22,) € F,,C,
<w/, ZdW (@(Ul K- Q Un))(zlv veey Zn)>
= (W, (@ @ 2WVu,)) (221, ..., 220))
Proposition 4.3. Let ® : V& — Wzl,...,zn be a linear map satisfying the
D-derivative property.

(1) For vq,...,v, € V,w' € W (21,..,25) € F,C,z € Cand 1 <i < n
such that (z1,...,2i—1,2 + 2, 2Zi+1,..., 2n) € F,C, the power series
expansion of

(W, (®(v1 @+ @) (21 ooy Zi15 Zi + 2y Zid 1y ooy Zn))
in positive powers of z is equal to the power series

(W, (P11 ® -+ @ vim1 ® PV ®vip1 @ -+ @ vy)) (21, -0, 2n))



COHOMOLOGY OF MEROMORPHIC OPEN-STRING VERTEX ALGEBRAS 493

in z, which converges absolutely when |z| < min |z; — z;].
1<i<j<n

(2) For vy,...,v, € V' € W' (21,...,2n) € F,C,z € C so that (21 +
2, .0y 2n + 2) € F,,C, the power series expansion
(W, (P(v; @+ @vp))(21 + 2,00y 2 + 2))
in positive powers of z is equal to the power series
(W', ePW (D(v; @ - @) (215 -, 20)).

which converges absolutely when |z| < 11<nj2 |2
Stsn

Proof. The argument of D-conjugation property carries over. O

Definition 4.4. For every n € N, we define C(V, W) to be the set of all
linear maps from V" — W, ... ., that satisfies D-derivative property and
d-conjugation property.

Example 4.5. Let [ = 0,1,...,n. For every w € W such that for every

ueV,Yiurw e W[[:c]],YVS{,(R)(u, z)w € W][z]], one checks easily that

the map

U1®-~~®unHE%}”*Z)(m@mun;w)
is a linear map V®" — WZL..zn that has the D-derivative property and
d-conjugation property.

Notation 4.6. We will use the notation EI(/V w  to denote the map in the
previous example.

Let & € CA'6L(V, W), u®, .. u™ e V. Consider the following series of
W-valued rational functions:
@(Yv(u(l), L) ()1 ® Yv(u(2), ,(2) _ G)1®---

® Yo (u™, 20 — )1)(Gry ey Go) (6)

which is a series in variables z() — (;,4 =1, ...,n with

Y () )1e -
kiy....,kn€Z
2 (Y ) () 1) (G o Ga) (20 = ) TR0 (200 — ) ~Hon

For each ki, ..., ky, € Z, the coefficient of (20 —¢) Rt (2 ¢ )R g
a W-valued rational function with variables (1, ..., (,. If paired with w’ € W,
then for the complex series

Z (W, &((Yy)p, (u)1® -
k1,...kn€Z
® (Y o (W) (Cy oo o)) (2 = )R L (200) — ) ~hn L

the coefficient of (2() — ¢;)~*1=1... (2" — ¢,)7%~1 is a rational function
with possible poles at (; = (j for 1 <i < j < n.

l,n—l1)
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Proposition 4.7. The series (6) converges absolutely when
G = ¢l > 129 = Gl + 129 = ¢
to ®(uy @ - @ uy)(2W, ..., 2(M).
Proof. From the creation property, we know that the series is the same as
(!, & =DV @ - @ IV (G Ga))

We repeatedly use Proposition 4.3 to see that the series converges absolutely
to the rational function

R((w', ®(uy @ - @ un) (G 4 2 = C1y ey o + 27 = G0)))
when [205) — (| < |G — ¢lys = 1,umys <i < j < nyl2l®) — ¢ < |20 —
Glys =2,..,n,1 <t <s < j<n. Note that the rational function is the
same as
R((w', ®(uy @ -+ @ un) (21, ..., 2(M)))

that has the only possible poles at 20 =20 1 <4< 7 < n and does not
depend on (i, ..., (;,. We then apply Lemma 4.5 in [Q2] to see that the series
(6) coincides with the expansion of the rational function by expanding the
negative powers of z(9) — z(1) = ¢, — G+ (z(i) —¢— 29+ G),l1<i<j<n.
Thus the series (6) converges absolutely when

G — ¢l > 129 =Gl + |29 —¢l,1<i<ji<n
O

4.2. Linear maps V®" — Wzl...zn composable with vertex opera-
tors.

Definition 4.8. Let & : V&" — Wzl ,,,,, ., be a linear map. Let m € Z;. ®
is said to be composable with m vertex operators if for every aqg, aq, ..., a, €

Z4 such that ag + -+ + a, = m + n, every lg = 0,...,ap, and every
(0) (0) (n) (n)

V] ooy Vag s ooy U] 5oy Ve, € V, the series of W-valued rational functions
Vi (i 5%) - ) 20V (g zli?il) Y ). =)
- O(Yy (Ug)’ AV =) Y (D), 2D — ¢t
® -
@ Yy (o o = G- Yo ), 20 = GGy s o),

which is equal to

0 0) jxrs(R 0
> (Yv%/)kgm (i) (YI/IL/)kl(O) (Ul(o))(YW( ))kfoll(ul(oll)
0 0

B kG
k™ kM ez

1 e

() o ()

«Q
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(V) () - (V) (i)

® (V) () - () (w1
® (V) (™) - () o0 (a1 (G, s o)

H (0 BON lﬁH (0 k(z) )

i=1 i=1j=1
converges absolutely when
0 ' .
2O > s 2O > G+ 12 — Gli=1,.0m
20—l > > 2D = Gli=1,.0m
G- Gl <lG-gli<i<j<nml<s<a,l<t<a;
and the sum can be analytically extended to a rational function in

O TV R CO N )

20y s Bl s 2]y ey

that is independent of (1, ..., (,, and has the only possible poles at zgi) = zij ),
forl<i<j<n,s=1,..,q;t=1,. . We require in addition that for
(i ) ( )

each 1, j, s, t, the order of the pole z5’ = 2,”/ is bounded above by a constant

that depends only on ug) and u(j ),

Definition 4.9. We denote by C”(V,W) the set of linear maps VE" —

WZ1zn in Cj(V,W) and are composable with m vertex operators. Tt is
easy to see that

CR(V,W) 2 CT (V. W) 2 CR(V, W) 2
We denote by C™ (V, W) the intersection of all C” (V, W) for m = 0,1,2, ....

Example 4.10. Fix n € Z; and [ = 0,...,n. For w € W satisfying Vu €
V. YiE(u,2)w € W(z]] and Yif(w,z)u € W[z]], the map EI(/é,nU;Z) is an
element in C™ (V, W).

Proof. This was proved in Proposition 3.17. U

Remark 4.11. If V is a grading-restricted vertex algebra and W is a
grading-restricted V-module, then W can be viewed as a V-bimodule when
we regard V as a MOSVA. One can check easily that Definition 4.8 is equiv-
alent to Definition 3.5 in [H2]. The sets C™ (V, W) we are defining here is
precisely the same as the C7 (V, W) in [H2].

Remark 4.12. Let ® € (:“'{“‘(V, W). Then Definition 4.8 implies the following
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(1) For every 8 =1,...,n, v, ...,viﬁ),véﬁ), ..., v € V| the series

(v (2 —Gre e V(e A" - )Yy, 27 - o)
Q- YV(v(n)7 2 — Cn)1)(C1s -, Cn)
which expands as
> (M hoie- e (Yv) o (Uiﬁ))(yv)kéml

IR A
kP kMen

@ @ (V1) (0D Gy s Ga) () = )
(7 = ()Y - o) (o) - )
converges absolutely when
1217 = Gl > 157 = Gal, 16p = Gil > 12 = ol + 12 = i
for s=1,2,1<i<n,i+#f and
G = ¢l > 129 = Gl + 129 = ¢

for 1 <i<j<mn,ij# B toa rational function that depends only

on z(l),...,zy),zéi), e, 2" with the only possible poles at zim =

zéﬁ);zgﬂ) =20 s=1,2i=1,..86-1,8+1,..,n;20 =200 1<
i < j<mn,i,j# B. From arguments similar to those in Proposition
4.7, this is equivalent to say that the following series

oV - oYy, 5”7 - )Yy, 5" - ¢
® - @v™) (=W, cr Gy e 2()
= > oW )m0) (W) ml
kP kP ez 1 i
® - @v™) (=W, s Gy s 2()
_ B _ (B _
(17 = )™M Y = oy
of W-valued rational functions converges absolutely when
217 = sl > 128” — Gl 120 = 2] > 1] ~ ¢
fore=1,...,.6-1,8+1,...,n,s=1,2.
(2) For uy,...,up+1 € V, the series
Yk (ug, 21)@(up @ - @ tng1) (22, o0y Zng1)

= (Vi)e(w) @2 @ -+ @ ng1) (22, -y 2ng1) 2
ke
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of W-elements converges absolutely when |z1| > |z;| > 0,4 = 2,...,n+
1 to an W-valued rational function (here the operator (Y;5)g(u1) is
extended to W — W.)

(3) For uy,...,up+1 € V, the series

Yo (1, 2 ) (1 @ - @ i) (21, o 20)

= Z(Y‘fv(R))k(unH)@(ul ® - @ up) (21, ., zn)z;fl_l
keZ

of W-elements converges absolutely when
‘Zn+1| > |ZZ| >0, 2=1,...,n

to an W-valued rational function (here the operator (Y‘f[,(R)) k(Unt1)
is extended to W — W.)

Definition 4.13. Let & € C™ (V, W).
(1) For every i = 1,...,n, we define the map
®o; B vert) Ly,
by setting
(®o; E‘(f))(m ® @ Upy1)
to be the W-valued rational function
E(®(v1 @ -+ @ Yy (v, 20 — QY (vig1, zig1 — ()1 @ vigo
® Q@ Unt1) (215 ooy Zim15Cy Zit2y ooy Znt1))
(2) We define the map
EGY 0@ vt S, L
by setting
(B 03 ®)(v1 @+ @ vy41)
to be the W-valued rational function
E(Yyi(v1,21)®(v2 ® -+ ® Ug1) (22, s Znt1))
(3) We define the map
EgY oy @ vEOHD) Ly,
by setting
(B 03 @) (01 @+ @ vp41)
to be the W-valued rational function
BV (w1, 20i)B(01 © -+ @ ) (21, -0y 20))
Proposition 4.14. The maps <I>oZ-E‘(/2), EI(/Il/’O)OQQ and E‘(/g’l)oﬂ) are elements
of Rt (V, W)
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Proof. Let ag,...,an+1 € N such that a9 + --- + apy1 = m + n. Let
lp=0,..., 0. Takevg)EVJ—O,l,,..,n+1,s:1,...,a]
(1) For the first conclusion, we first note that the associativity implies
that
vy 2 = 0 Yol 28 - OV A - Q)
Y (D 0D )

Qi1 ) TG4

=Yy (Yoo, 27 = ¢) - Yo (0,20 — )1, ¢ - ©)

V(Y (o, A = ) - Y D 20D — )1, G - 01

Q41 7 TOG41

when

j ; i+1
217 = ¢l > > 2D > 1 > > B
|zs — G| > |zt(i)—§i|, 1<s<t<ay,
20D — G| > 120 — Gl 1< s <t < g,

. -

G = ¢l > [Givn = ¢+ 128 — Gl + 128 = Gl
Let A denote the region in C™ such that the coordinates satisfies the
inequalities above. We also note that since ® € C}}, (V, W), the series

s(R s(R
x%@%ﬁ»~wm$w9kaﬁh7&nmméMQw$>

"I’(Yv(vgl),zg) )Yyl 20 — ¢
@Yy (o), 20— )+ YV (o), ) — OV ({2 — )
--Yv(v(”l) S+ 01

Qi1 ) T4

® e
@Yy (o A" — Gy Yo 00 20D = Ga)1)
(C17"'7C7;*17C’<:i+27"')Cn+1) (7)

converges absolutely to the W-valued rational function
0 R), (0 0 s(R
(0) (0))Y( )(u() (0) )- "YW( )(u() (0))

0
E(YW(Ug): ()) YW(“z ) w lo+12 ?lg+1 a0 » Fag
(Vi (o, 2V — 1) Y (), 28D — 1

Yy (i, 29 —¢)... Yo (o), 2{) — Oy (0D, 20+D _ ¢y
Yy (vl 264D ey

Qi1 ) T4
Q-

@Yy (o™ M = ) - Y (0D 20D — )

QAn+1 7 TQn41
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(Cla ceey Ci—l? C? C’H-Qa EREX) Cn-‘rl))

(8)

that does not depend on (y,...,{i—1,C, it2...,(n+1 in a region B in

C™. The region B is defined by the following inequalities:

2O > s 2O S G+ 12D = Gl = 1 i — L4 2, n = 1,

1201 > [¢)+ 129 = ¢, 5 = dyi+ 1;
) — Gl > > 12D — Gl =1, i - i+ 2,
) = ¢l > > 2 = > Y = > > 2D — ¢,

|Z§J)—CJ_Zt +</€’<|<j <k|71§]<k§naj7é7’a.]?éll+17k7él)
k#£i+1, 1<S<Oéj,1<t<04k;

y Qs

|z§j)—C—zt +G|l<|C—Cli<ji<i+1l,1<k<nk#ik#i+]1,

1<s<a;,l<t< o

Let f denote the W-valued rational function defined by (8).
that neither the series (7) nor the sum (8) involves (;, Git1-

Note

It is easy to check that A N B is nonempty. So in A N B, the

following series

s(R
Vit (ul”, A4”) - Vil (s %z{?)Ymﬁ ><u§3>+1,z§§il>---yw< (wlf), 2{0)
BV (o, 2 = ) Y (o), 20 — 1
Yy (Yo (0, 2 = ¢) - Yo (0, 280 — ¢)1,¢ - ©)

Yo (Y (oY 2D )
: 'YV(U((;;P: Z&Zi —Git1)1, G — Q)1
-
RV (v} (n) (n)_Cn)
Yy (v gfl)a 200 — GGty oens Gim1, G, ik 2es Gn)

)

9)

converges absolutely to the WW-valued rational function f. We ana-
lyze the series and find that it is the expansion of f in the following

way:

(a) Forj =0,1,....,n,1 < s <t < ap, expand the negative powers of

RN

as power series in z(]) When] >1landj 7é z ,J #i+1,

further expand p081tlve powers of zt = ¢ + ( - () a

polynomials in ¢; and zt —(;j. When j =i or j =i+1, further

expand positive powers of z§ Q- =(+ (G —-¢)+ (Zg —(j) as

polynomials in ¢, {; — ¢ and z(J) ¢
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(b) For j = 1,..,n,1 < s <t < aj, expand negative powers of
2 zgj) = (zgj) - ¢)— (z( — () as power series in zt — (.
()For1<]<k<nj,k:¢{zz+1}1<s<a],1<t<ozk,

expand the negative powers of 2 zgk) = (¢ — )+ (zgj) -

G — z§ )y (k) as a power series of ( - ¢ — zt(k) + (k), then

further expand the positive powers of (zs v _ G — z,gk) + () as

polynomials of (zg —(j) and (zt —Ck)-

(d) Forj=1,..,i-1,i+2,...,nk=14,i+1,1 <s < a;,1 <t < ay,
expand the negative powers of 29 zt(k) =(¢G—0)+ (zgj) —(j—

zt(k) +(r+¢— () as a power series of (zgj) —j —zék) +C+C—Ck),

then further expand the positive powers of (zgj ) _ G — sz) +

Gk + ¢ —Ck) as polynomials of (2% —¢;), (2 — &) and (¢ — ).
(e) For j =i,k =i+1,1 < s < aj,1 <t < oy, expand the

negative powers of zéi) — zt(Hl) =(G—0¢)+ (¢ —Cit1+ zgi) —

G — (ZH + CZ+1) then further expand the positive powers of

(¢— Q+1 + 20 -G — z,giﬂ) + (i+1) as polynomials of (¢ — (j+1),

(28 = ¢) and (5" = Gipa).
So the series (9) converges absolutely to (8) in the region C' defined
by

0 1 . . .
20 > s 2O S G 4 12 — Gl =1, i = L4 2,0

200> (¢ +16G = ¢+ 129 = ¢l =40+ 1

A -

Cj| > > |Z(j) —Cj‘ j=1..n

20— G =2 Gl < |G~ Gl 1<j<k<nj#ij#i+1k+i

120) —

E#i+1,1<s<a;l1<t<a

gj—zt +(<IC—¢Glh1<j<nj#ij#i+1i<k<i+]1,
1<s<a;l<t<ay;

¢4 20 — ¢ — Zt(i+1)| < |G —¢J.

Now we note that by definition of ® o, E(Q),

(@0 BF) (Y (oY, 2V — 1) - Yo (o), 20 — )1

@Yy (v}, 2 — c»~m48,$ )1
®Yv(v§z+1) (i+1) i) - (ngtp’ Zc(jiﬂ) — Gl

®Yv(vin+1), Z§n+1) — Cnt1)
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o YV(U&Zti)v Z&T::}) - C?"H-l)l)(gla ceey Cn-i—l)
is the sum of the series
o(Yy (v}, 2V — (1) Yo (), 2 — )1

®YV<YV(UY)7 Zﬁi) —G)- - YV(U&?, Zg) - Gi)1,¢G—0)
: YV(YV(U§i+1)7 ZYH) = Git1) - YV(U((;fiﬂ)a ZS;P — Gir1)1, G — Q)1
@Yy (0, 2" = o) - Yo (0, 200 = G (G oo G ooy )

with respect to the variables involving (. Therefore, the series

Vi (u (),Z(o)) Vi () (0) Z(O))Y;/(R)(U(O) ,(0) )“.Y;/(R)(u() 20

lp > lO lo+1’ l0+1 g ? 040
(@0 ED) (Yo (i, 2V — ) Vi (0D, 20 — )1
© Yo (" 2 ) Y 00, 20D = G )G s Gt
s(R
= Y W) )0 )k ()
KO, kO 0
LD kg"ffez
s(R
(Y @)

(P o; Ex(f))((yv)kgn (vf) - (V) (w81

®---®<Yv>k<n+n<v§"+”> )y (00T Gat)

(0) (4) . ) _
JIE™ 1H B € O (10)

J=1

is the expansion of the W-rational function f which do not involve
any expansion of (. More precisely, it is the expansion of f in the
following way:

(a) For j =0,1,...,n,1 < s <t < ap, expand the negative powers
(0) (J) (4)

of zg7/ — as power series in z; When j > 1, further expand
p051tlve powers of z(] ) = G+ ( — () as polynomials in (;
and zt Cj

(b) For j = 1,. n 1 <s< t < a;, expand negative powers of
20— zlfj) ( - ¢)— ( — () as power series in zt — (-

(c) For1<j<k<mn1<s< aj,l <t < oy, expand the negative
powers of zg D k = (¢ —Ck)—l—(zgj) - —zt(k) + (k) as a power
series of (zs CJ z,gk) + k), then further expand the positive
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powers of (zgj) —¢i— zt( )4 (k) as polynomials of ( — () and
(=" — ).

In other words, the series (10) converges absolutely to the W-valued
rational function (8) in the region

0 ] .

47> > 2] > Gl + 12 = Gli= 1+ 1

]zli) -Gl > > |z(i) —Gli=1,...,n+1;

120 2D p g <G —¢Gl1<i<j<n+1,1<s<a;1<t<a

This proves that ® o; E‘(/Q) is in L (V, W),
(2) First, from the assumption that ® is composable with m vertex
operators, we know that the series

Y, 2 vE e, 20) - v, )

s(R s(R
Y (), zé}b : YW( ><v§g’ip szig L YEB (0050
(Y (0?2 — @) Y (0@, 2 — o)1

@ V" 2 = Guan) - Yl 20D = G 1) (s s Gat)
converges absolutely to a W-valued rational function
0) _(0 0) (0 1
BV, 27) vk 2)) - vE ] A1) - Yl ), 20)

s(R),, (0) _(0) ys(R)
Yy (Ulo+1vzzo+1)' w (v&o), &%))

(Y 57 - @) Y (0 2) - )t
K& YV(U§n+1)a Z§n+1 — Cny1)

Yy (D 2D — )1 (G s Grg)) (11)
that does not depend on (o, ..., (41 in the region where

201> > 20 > 1V > > 2D

>|Zlo+1|> >|z |>|Q‘+|Z1 —Gli=2,...,n+1;
’Z1i)*<i‘>”'>|z —Gil,i=2,...,n+1;
20— G-+ Gl <IG-Gl2<i<j<n+1L1<s<a;1<t<a;

By commutativity of i and Y;V(R), Theorem 3.20 Part (1), and the
expansion of W-valued rational functions, the series

R
B, 21%) - Fip ol ) - 1P o)
R
W) 2D Yw<v” 4) YL( Q.28

0’040 17

(Y (0,2 — ¢) -V (0@, 20 — o)1
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® Yy (o 2 ) Y (00D 20D 601Gy s )

QAn+1 ? T0n41
converges absolutely to (11) in the region

0 0 0
201> > 120 > 10 > > )

> |Z§1)| > 20> |G+ |Z§i) —Gli=2,..,n+1;
20—l > > 12D = Gli=2,n + 1
20— G -2+ Gl < |G- ¢lh2<i<j<n+l1<s<a;,l<t<ay

For convenience, we denote this region by A.
By associativity of YV%/, Theorem 3.20 Part (2), and the expansion

of W-valued rational functions, we have the following equality

YVLV(UF)’Zg)) ' YL( <()¢11)7 ((xl))
= YE @, 2 — ) v (o), 20 — ()1, G,

where w is the expansion of a W-valued rational function as the

following series
@ = oYy (02,2 — @) - Vi (02,22 - &)1
SF 2D — o) B ) = G} Gas s )

1 Qn+1 2 T0nt1

This equation holds in the region where
1
20> D> (ol > 1G]+ 120~ G-+ ali= 2t 1

20—l > > 2D = Gli=1, . n+ L
For convenience, we denote this region by B. It is easy to check that
AN B is nonempty, in which the series

R s(R
va'a(v@,z@)---Yv%w}f),z;fb-YW< ><v§011,z§§il> Y (0020

Y, 2D - ) -vy < O 20— e1,q)
(Y (0, 2P — 6) - Y (0@, 20 — o)1
® YV(U§H+1)7 At Cnt1) - 'YV(U(nH) 2t Cn+1)1)(C2y veey CGut1)

1 On+4+1 ? 70n41
converges absolutely to (11).
Now we use the definition of Ey,
(B 03 ®) (Vy (v, 2 — 1) - Yo (o), ) — 1 e -
@ V(" 2" — ) Y (0D 20D — ) 1) (G Gst)

Qn+1 7 7Qp41

1,0 .
(1, )02 P, ie.,
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— VE @M, 2D — ) V), 20 - ¢)1,¢)
(Y (o, 2P — () <Q,w G)1®--

®HMWQ#“—@mmmwﬁﬂﬁﬂ—@mM@w@m

where the right hand side is the expansion of the W-valued rational
function in the following region:

Gl > 16l + 147 — G -2V + ali=2,n+ 1
lei)—Ci‘ > 0> ‘z(i —Gli=1,..,n+1;
20— ¢; — 29 +¢l <G —-¢hl<i<j<n+1,1<s<a;l<t<a;

For convenience, we denote this region by C'. It is easy to check that
the region AN BN C is nonempty. So in this region, the series

YW(Ugo), ()) YW( (0) Z(O))Y;,(R)(U(O) Z(O) )---Y;,(R)(U(O) Z(O)) (12)

lo ’ “lo lo+1° “lo+1 ap 7 Yoo
(B 0a @)Yy (v, 2 — ) - Vi (o), 20 — )1
© Yy (o A" ) - Y (o), 20D G D1 (G s Cu)

converges absolutely to the same (11). Now we analyze series care-
fully, and conclude that the series is obtained from expanding the
W -rational function in the following way:
(a) for 1 <i < j < ap, the negative powers of z](-o) —z,(CO) is expanded
in positive powers of z( )
(b) for1 <j<agi=1,..n+1,1 <t < aq, the negative powers
(0) (@)

of z;0 =z 18 first expanded in positive powers of zt =( +

(i

-G, then further expand the positive powers as polynomials

in ; and zt — (i

(c) for i = 1,. n —|— 1,1 < j < k < «;, the negative powers of
(1) _ (i)

z; — ( —G)— ( —(;) is expanded as positive powers
of (zk —Gi)-

(d) for1 <i<y <n+1 1<s< ai,l <t < aj, the negative
powers of zé” = (G—¢)+ (2 ® —(i— (j +(;) is expanded

(%)

as positive powers of (zs — (- zt]) +¢), then further expand

as polynomials of zs — (i and z; 2 — G-
Thus the series (12) converges absolutely to (11) in the region

7> > 20> (Gl + 1Y - Gl
) =Gl > > ) = Gl =1t 1

GGl > )~ G-z +gli<i<j<ntll<s<al<t<ay
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This proves that E‘(,[l,’o) 0p @ is in C™HL(V, W),
(3) The third conclusion is proved similarly to the second. We should
not repeat the whole argument, but just summarize the key steps.

(a) We use the associativity of Y;,(R) and Theorem 3.20 Part (2) to

see that
e ) R (G <”+1>>f
= Ve (v (" Y ) Y (00D 20D )L G ),
where
w=E@Yy (v, 2" — ) Yoo, 2) — )1

@Yy (0™, 2 = ¢) - Y (0, 20 — )Gy s ) €TV

and z%l),. o &Zﬂ) € C such that

EGRIETES ‘ZYL“)

ot | > 120 i=1,...,n,s=1,...,0;
+1 Ny
|Cnt1| > |z§n ) Cnt1| + |z§’)\,z =1,...,n,s=1,..., a4

1
2D — G| > > 204D — G

’)752 A<i<j<n+1ls=1.,05t=1,...,05,5#t wheni=j

for every w € W and z§n+1), " &Zﬂ) € C such that the left-
hand-side converges absolutely.

(b) With the commutativity of Y;l: and Y;V(R) operators, Theorem
3.20 Part (1) and analytic continuation similar as those in pre-
vious proofs, we can prove that the series

Yv%/(ugo), Z(O)) o YML/(u(O) Z(O))Y;/(R) (u(o) Z(O) ). Y;/(R) (U(O) (0))

1 lop ? lo lo+1° “lp+1 ap? 040
0,1
(B 0n @)Yy (wf Y = 1) Y (o), 20 - Gt
1 1
© Yo", 2 ) - Y o)L 20D G )Gy e Grt)
R
= > o) ()0 ) (Y Dk ()
KO kO 0
1 et
LR kg”ffez

(V™ i () (B 02 @) (V)0 (011)) -+ (V)0 (0881
® (V) (01" - (00) e (00ETD) 1) (G s G

an+
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k(]) 1 --(z&j_) _ Cj)—kg@)—l
J

:Q
||’:|:

s the expansion of the W-rational function
0 1 s(R), (0 0
E (Y (uf >, 5 Wiy ) - Yo ) v 2
Y. (R)( ("Jrl) (”+1)) . YI/I/g )( (n+1) Z(nJrl))

w O5n+1 ) Y041

(I)(YV(Ug 7’2%1) Cl) (a17 a1 Cl)
®...

@Yy (0", 2" — o) Y (o), 20 — GO (G G)
in the region
A7 > > 2O > G+ )~ Gli=1n+ Lt =10
’zli) Gl > > ‘Z(i) —¢Gli=1,...,n+1;
20— G2+ Gl <IG-Gl1<i<j<n+L1<s<a;l<t<aj
O

4.3. The coboundary operators and the cochain complex. Form,n €
Zy, we define the coboundary operator as follows

o = C(V,W) = CREy (VW)
by
oo =BG o, <1>+Z )@ o; B + (—1)" M EDY o0y &
=1
More explicitly, 6™ ® is a map from V"1 to th...,znﬂ satisfying
((521(1))(1}1 Q& UnJrl))(Zl? (X3} ZnJrl)
=E(Yii(v1,20)(®(v2 @ -+ @ v341)) (22, +++s Zn41))
—E(@(Yv(vi,21 — €)Yy (v2, 22 — (1)1 @03 @ -+ @ Up11))(C1, 23, ooy 20t1))
+E((P(v1 @ Yy (v2, 22 — @)Yy (v3,23 — ()1 @04 @ -+ - @ Upy1)

(21, €25 245 s Znt1))

1)E (®(v1 ® - ®vim1 ® Yy (vi, 20 — G) YV (Vig1, Zit1 — Gi)1 ® vigo
® -+ @ V1)) (21, -0 Zie15 Gy Zit 2y oo 2t 1)

F(=D)"E(@(v1 @ - @ vp—1 @ Yy (Un, 20 — o) Yv (201 — o)1)
(215 ooy Zn—1,Cn))
(=1 B (1, 20 00) (@01 @ <+ 0)) (21, ., 20)
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One can also write
(67 (D) (11 @ -+ - @ Vpy1)) (21, ooy Znt1)
=E(Yif (v1,21)(@(v2 ® -+ - @ Uy1) ) (22, s Znt1))
n zn:(—l)iE <(‘I’(Ul ® - @ uie1 ® Yy (vi, 20 — G) Yy (Vi1 Zig1 — Cz')1>
i=1 @ Vit2 @+ @ V1)) (215 s i1, Cis Zi4 25 0 Znt1)

(=) BV (g1, 20)(@(01 @ - 00)) (21, - 20)

provided that ¢ = 1 and ¢ = n term in the sum is well-understood.
When n = 0, ® is represented by a vector w. In this case,

((89,@) (1)) (21) = BV (01, 21)w) — BV (v1, 21)w)
When n = 1, we have
(00,(®) (V1 ® v2)) (21, 22) = E(Yik (01, 21)(®(v2))(22))
— E((I)(Yv(ul, 21 — C)YV(U%ZQ - g)l))(C)
+ BV (03, 22)(®(01)) (21))

Remark 4.15. It is crucial that in all the explicit summations above, we
are not adding series, but adding the analytic extensions of the sums of
these series, which are W-valued rational functions, aka., W-elements that
depends on zi, ..., zn+1. Those series refuse to be added up directly because
the region of convergence of the first series and that of the last series do not
intersect.

Theorem 4.16. For every m € Zy,n € N, 6™ (C™ (V,W)) C Afn_ll(V, w).
Proof. This follows from Proposition 4.14. ([

Theorem 4.17. For m,n € Z, 57?:111 ) Sﬁl =0

Proof. Let ¢ € CA%(V, W). We compute as follows:

n+1
S (G @) = B 02 53,0+ 3 (<1)'(50) 0 BP + B oo b0
=1

n
= EI(/Il/O) 09 (E‘(/‘lfo) 09 (I) + Z <I> Oj E‘(/Q) + EI(/IO/J) oo (I))
7j=1

n+1 n
30 [ (B 02 @) 0 B + S (-1) (0, BY)) o; B
i=1 j=1

1) ERY 01 @) 0 BY)

)| B o (B 02 @) + 3 (-1 BRY 01 (05 BYY)
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We rearrange the terms and indexes to write 6% (07,®) as

By oz (B o +Z 1By oz (@ 01 E{Y)
n+1
+ Z Y (EWLY 0g @) o; BP) (1)

n (—1)”“13550) oy (BQY 0y @) + (—1)"2EOY o) (ELY 0y @) (11)

n+l n
+ 33 (1)~ (@ o BY)) oy BY (1)
i=1 j=1

n+1
F S B o )

+ 3 (1) HEDY o) (B oy BY)) — By oy (B 01 @) (IV)
i=1

We argue that (I), (II), (III) and (IV) are all zero.
For (I), we need the following lemma

Lemma 4.18. Ei% oy (E(Y 0y ®) = (E(? 0, @) 0y B2
Proof. For any vy, ...,vp42 € V, (21, ..., 2n42) € F,C, we have
By o (B
B4 (013 (Bl 02 @)(02. ® -+ @ vng2)) (22, - 2my2)))(21)
E(Yif (01, 20) (Bl (v [0(v3 @ -+ @ 012)) (28, -, 2n12))](22)
E(Yiir (01, 21) Vi (v2, 20) [®(v3 @ -+ @ 0n42))(23, 05 Zny2),

09 (I))('Ul XX Un—}—?)](zla "'7Z’Vl+2)

and
(BS? 0y ) 0y EP)(01 @ -+ ® vnia) (21, 000s Zns2)
=B 03 ®) (Y (01,21 — OYir(v2,22 — ()1 ® 03 ® -+~ @ v0)]
(C, 23y .oy Znt2)
=[ELY (Vi (01, 21 — )Yy (vg, 22 — O)1; [B(v3 @ - - @ 0y 12)](235 eory Zny2))] ()
=E(Yii(Yv (vi,21 — )Yy (v2, 22 — O)1,0)[@(v3 @ - - - @ 0312)](23, +vvy Znt2))-

It follows from Theorem 3.20 Part (2) and the identity property of vacuum
that these rational functions are equal. O

9
9

We also need the following lemma
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Lemma 4.19. ES% oy (@ 0; EY) = (ELY 03 @) 0,4y B
Proof. For any v1,...,0p42 € V, (21, ..., 2nt+2) € F,C, we have
(B 03 (@ 0 BY) (01 @ -+ @ Ung)) (21, s Zny2)
B (w1 [(® 0 B ) (02 ® -+ ® vns2)] (22, -ory 2n42))](21)
(B (013 [@(02 @ -+ @ [EF (vig1, vig2)] (2141 — G, iz — ) @ -+

® vpt2)](22, - G, oy 2nt2))] (21)
=E(YiE(v1,21)[@(02 @ - --

® Yy (vig1, zig1 — QYv (vig2, zit2 — 1 ® -+ @ Ung2)](22, .., € ooy 2Zn42)

and

(ES D) 011 B (01 @ -+ @ 0ni2)] (21, oons Zny2)
=By 02 @) (01 @ -+ @ [BY (vig1,vi02)) (2141 — C 2142 = ) @ -+
® Un+2)](zla e Gy oy Znt2)
=BG (vr; [@(v2 ® [E&” (vis1,vi2)] (241 = 2ig2 = ) @ -
® vn+2)](227 vy Gy ey 2n42))](21)

=E(Yif (v1,21)[@(v2 ® -+ @ Yy (Vig1, 2it1 — )Yy (Viga, 2iv2 — )L @ -+ -
& 'Un+2)](22, e Gy ey Zn+2)

So they are equal. O

So the second sum and the third sum without ¢ = 1 differs by an index
shift and a (—1) factor. That way they cancel out.
For (II), we need the following lemma:

Lemma 4.20.
EGY 0 (EYY 01 @) = EOM o1 (B 05 @)
Proof. For any vy, ..., vp42 € V, (21, ..., 2n42) € F,C, we have
IEG 0y (EQY 01 @) (01 @ -+ @ vn12)](21, oy Znp2)
BGO (01: (B 01 @) (02 ® -+ @ vng2)) (22, -ory 2n42)](21)
EGO (01 BV ([0 ® -+ @ 0 1)) (22, o0y Z1); Vns2) (2ns2)] (21)
=E(Y (01, 20) Y3 (vng2: 2042) [@(02 @ -+ @ V1)) (22, oy 201

and

[EDY o (B 0y ®) (01 ® -+ @ vn12)](21, -0r 2nt2)
=[EOV((ELY 03 ®) (01 ® -+ @ v 1)) (215 s 2041)i Uns2)] (2ns2)

=By (B (013 [ @02 @ -+ @ vn41)] (22, s 201)) (21); Vns2) (2n42)
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=BV (0ns2, zns2) Vil (01, 20) [@(02 © - - © 05 1)] (22, wors 2041

It follows from Theorem 3.20 Part (1) that these rational functions are
equal. O

So the two terms in (II) add up to zero.
For (IIT), We need the following lemmas

Lemma 4.21. If j <+¢— 1, then
Proof. Consider the case when j < ¢ — 1. Then for any vy, ...,vp42 €
V, (21, ..y 2ny2) € F,C, we have
(®o; EP) oy EP (01 ® -+ @ vn12)](21, s Znt2)
=[@0; EP (11 @ -+ @ [BP (v, vi11)] (51 = 511 = Q) @ -+ @ 0]
(21,...,C,...,Zn+2)
2
=[@(v1 @+ @ [B (v, 0740}z = 1, 2141 — )
® - @ [EY (0, 0341)] (25 — G zie1 — Q) @+ @ Upga)]
(215 ey My ooy Gy ey Znt2)
=E([®(v1 @ -+ @ Yy (vj, 25 — )YV (vjt1, 241 — 1)1
® - @ Yy (vi, 2z — QO)Yv (vig1, 2it1 — ()1 ® - - @ vp2)]
(zla"'vna"wga"'7zn+2))
and
[(@ 0;1 E‘(/Q)) Oj E‘(/Q)('Ul (SRR vn+2)](zl7 ceey Zn+2)
=[®oi1 B (11 ® - ® (B (v, vj00))(2) = G, i1 = O @ -+ © vn2)]
(21, s Gy s Znt2)
=[®(01 @ -+ @ [E (v, 0740}z = € Zi41 =€)
Q- ® [E\(/Q)(Uiaviﬂ)](zi =1, 2i41 — 1) @ -+ @ Vpp2)]
(215 oy Cyeeey My vty Znt2)
=E([®(v1 ® - @ Yy (v5, 25 — )Yy (vjt1, 2j41 — ()1
® - @ Yy (vi, 2 — )Yy (Vig1, 2ig1 — N1 Q-+ @ Upg)]
(215 ey Gy ooy My vey Znt2))

Since the resulting W-valued rational functions are independent of the choice
of ¢ and 7, they are equal.

Now consider the case when j = ¢ — 1. Then for any vy,...,vn42 €
V, (21, ..., 2ny2) € F,C, we compute the left-hand-side as follows:

[(Po;—q Eg)) o E‘(,Z)(vl ® -+ @ Unt2)](215 -y Znt2)
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=[®o;; E‘(/?)(m Q- ® [E‘(,?)(Ui,viﬂ)](zi — (241 — () ® - - @ Upg2)]

(215, Cy ooy Znt2)
=[@(01 ®- - ® [B (01, (B (03, vig)] (21 = € 21 = O))(zim1 = 0. C =)

® - @ Up2)| (21, ooy Zim2y 1)y Zig2eey Znt2)
=E([®(v1 ® - @ Yy(vi—1,2i-1 — )Yy (Yv (vi, 2 — ()

Yy (vit1, ziv1 — ()1, — )1

R Vito @+ @ Unt2)|(Z1, ey Zim2y 1y Zit2eees Znt2)),s

=E([®(v1 ® - @ Yy (vie1, zi-1 — MYy (vi, 20 — )Yy (Vig1, 2iv1 — 1)

YW (1, =1 R vita ® -+ @Upt2)](21, ey 2im2, 1, Zik 2oy Znt2)),
=E([®(v1 ® -+ @ Yy (vi-1, zi1 — )Yy (vi, 2 — 1)

Yy (0ig1, 2ie1 — N1 Q@ - @ Upg2) (21, ovy Zim 2y My Zit2eees Znt2) )
where the fourth equality follows from the associativity in V, the fifth equal-
ity follows from the identity property of the vacuum. Also by Definition 4.8,

the resulting rational function is independent of 7.
Now we compute the right-hand-side as follows:

[(®oj_1 Ex(?)) 01 E‘(/2)(U1 ® - @ Upt2)](21, s Zn+2)

=[P o;1 E‘(/?)(m ® - ® [Eg)(viflyvi)](zifl (2= () ® - @ Upg2)]

(215 eey Zim2y Cy Zidk 1y -vy Znt2)
=[@(v1 @+ @ [BP(EP (vi1,v)] (21 — € 2 = O, visn))(C = 0, 241 — 1)

® - @ Ung2)| (21, ooy Zim2y My Zid 2y eevy Znt2)
=E([®(vn1 ® - @ Yy (Yv(vic1,2i-1 — )Yy (vi, 2z — ()1,{ — 1)

Yy (Vig1,2iv1 — )1 @ - @ Upt2) (214 ooy Zim2y My Zit 2y <oy Znt2))
=E([®(v1 @ @ Yy (vi—1, zi-1 — 0)Yv (viy 20 — ) Yv (1, — 1)

Yy (Vig1,2iv1 — )1 @ - @ Upg2) (215 ooy Zim2y My Zit 2y ooy Znt2))
=E([®(v1 ® - @Yy (vi1, zi-1 —0)Yv (vi, 2 — M) Yv (Vig1, 2zig1 — 1)1

R @ Ung2)] (21, ooy Zime2y 1)y Zig 2y wvs Znt2))
where the fourth equality follows from the associativity extended to V-valued
rational functions (see Theorem 3.20 Part (2)), the fifth equality follows from
the identity property of the vacuum. Also by Definition 4.8, the resulting

rational function is independent of 1. So the left-hand-side and the right-
hand-side are equal.

O
Lemma 4.22. If j > ¢, then
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Proof. Consider the case when j > i. Then for any vy, ..., 042 € V, (21, ..., 2n42) €
F,C, we have

(@0 BY) 0i B (01 @+ @ vnaa)l (21, -..r Zns2)
=[®0; EP (11 @ -+ ® [BV) (vi, vie1)](2i — €, 21 — () ® -+ @ Upga)]
(zl,...,C,...,zn+2)
=[P ® - ® [E\(/Q)(UianJrl)](Zi -Gz — () ®
[ES (07, 0540)](27 = 1, 241 = 1) @ -+ @ Vg 2)] (21, ooy Gy wony 1, ooy Zns2)
=E([®(v1 @ @ Yy (vi, 2z — OYv(vig1, 2i41 — )1 ® - -+ ®
Yy (vj, 25 = MYV (V41 2j41 =M1 @ -+ @ Upg2)] (215 05 ooy My oo 20t2))
and
(@ 0im1 BY) 0 B\ (01 ® - @ vns2)) (21, oory 2n42)
=[@ 01 B (11 @ -+ ® [BY (v, 0j51)] (2 — G, 2741 — Q) @ -+~ @ 2]
(217“'7C5"'52n+2)
=[@(v1 @ @ [BY (vi, vie)](zi — Czipr — Q) @ ®
[E‘(/Q)(vj, Vi 1)(Z5 =M, 241 — 1) @ @ Vng2) (21, 0, Gy e My oy Zng2)
=E([®(vn1 @ @Yy (v, 2z — QO)Yy (Vig1, 2i41 — )1 ® -+ ®
Yy (vj, 25 — MYy (V41 2j41 =M1 @ - @ Upg2)] (21505 G, ooy My vy Znt2))

They are equal because the resulting W-valued rational functions are inde-
pendent of ¢ and .
Now consider the case when j = 7. Then for any

Ul, ey Unt2 € V, (Zl, ...,Zn+2) S Fn(C,
we compute the left-hand-side as follows:
[(® 0; YY) 05 B (01 © -+ ® 0 2)] (21, s 2 12)

=[® 0; B (11 ® -+~ @ [BF (03, vi41)] (21 — €, 2141 — €) @ -+ @ Uny2)]

(215 -0s 2i=1, G5 Zig 2y oo Zn42)

2 2
=[@(v1 @+ ® B (B (03, vi41)) (21 — G 201 — O, vi2))(C = 1, 2142 — 1)
Q- ® vn+2)](217 vy =151y Zi435 -y Zn+2)

=E([®(v1 ® - @ Yy (Yv(vi, zi — Q) YV (Vig1,2i41 — ()1, — 1)

Yv (Vig2, Zigo = 1)1 @ - @ Upg2) (21, oy Zim1, 15 Zid 3y --vs Znt2))
=E([®(v1 @ @ Yy (vi, 20 — 0)Yv (Vig1, ziv1 —0)Yv(1,{ — 1)

Yv (Vig2, Zigo = 1)1 @ -+ @ Upg2) (21, oy Zim1, 15 Zid 3, --vs Znt2))
=E([®(v1 ® - - @ Yy (v, 2z — )YV (Vig1, Zit1 — 1) YV (Vig2, Zig2 — 1)1

R X Un+2)](21, ey Bim 1, My Zid 3y oeey Zn+2))
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where the fourth equality follows from the associativity extended to V-valued
rational functions (see Theorem 3.20 Part (2)), the fifth equality follows from
the identity property of the vacuum. Also by Definition 4.8, the resulting
rational function is independent of 7.

Now we compute the right-hand-side as follows

[(®o; B o1 EP (01 ® -+ @ vn19)] (21, -oos Zny2)
=[® 01 BY) (11 ® -+ ® [B (vig1, viga)) (2is1 — €, 22 — €) @ - @ Vny2)]
(2150 Cy eey Zng2)
=[®(v1 @ @ [BY) (vi, [ (vig1, vig2)] (2601 = G 2ig2 — Q)] (26 — 0, ¢ — )
® - @ Ut 2)|(Z1y ooy Zim 151y Zig 3eeey Znt2)
=E([®(v1 ® - @ Yy (v, 20 — )Yy (Y (vig1, 2i41 — QY (242 — ()1, ¢ — 1)1
@ Vig3 @ - @ Ung2)| (215 ey Zim 151, Zig3eees Znt2) )
=E([®(v1 ® -+ @ Yv(vi,zi — )Yy (vit1, zip1 — 0) YV (zip2 — )YV (1,( — 1)1
@ Vig3 ® -+ @ Ung2)| (215 ey Zim15 1, Zit 300 Znt2) )
=E([®(v1 @ @Yy (vi, 20 = )Yy (Vit1, zit1 — MYV (2iv2 — 1)1 @ viys
® - @ U4 2)](Z1y ooy Zie 1, 1, Zit3eey Znt2)),

where the fourth equality follows from the associativity in V', the fifth equal-
ity follows from the identity property of the vacuum. The resulting W-valued
rational function is independent of 1. So the left-hand-side and the right-
hand-side are equal. O

Once we proved these two lemmas, we write (III) as

n+1i—1
ZZ 1) (@ o, E ) o; E +ZZ 1) (@ o, E(Q))o E(2)
=2 j=1 =1 j=1

Here the first sum starts from ¢ = 2 because when ¢ = 1, the inner sum does
not exist. Similarly the second sum ends at ¢ = n because when ¢ =n + 1,
the inner sum does not exist. The first sum is computed as follows

n+1li—1
ZZ H—J <I>O E( )) E‘(/z)
=2 j=1
n+1li—1
_ Z Z z+] . E(Q)) o E(Q) he identi b
0j—1 By,7) o5 Ly, use the 1dentity above
=2 j=1
n n+l
= Z Z 1) (P o;_4 E‘(/?)) 0; E‘(,z) change the order of summation
Jj=1li=75+1
n  n+l
= Z Z 1) (P 0j_1 E‘(/?)) 0; E‘(/?) interchange i and j

=1 j=1+1
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_ZZ )it o; B o; B shift the index j
=1 j=i

So the first sum is precisely the negative of the second sum. Thus the two
sums add up to be zero.
For (IV), we need the following lemma

Lemma 4.23.
(EI(/g’l) 01 @) opq1 E‘(/Z) = E‘(,g’l) o1 (E‘(/g’l) o1 @)

Proof. For any vi,...,vp42 € V, (21, ..., 2nt2) € F,C, we compute the left-
hand-side as follows:

[(EQY o) @) opiy EP (01 @ @ vpy2)](21, o0y 2nt2)
=B 01 001 @+ @ vy @ [BY (041, vn42)) (341 — €, ng2 — )]
(215 ey 20, C)
=By (@01 ® - @ vn)) (21, oes 20); BV (Vn g1, Ung2)]
(Zn+1 — ¢ znr2 — €))](Q)
—BS (Vo (0ns1, 201 — OYv (Unya, 2nra — OL OB, ooy )] (21, --0r 20)
=BV (0012, 200 2) Vi (0ng1, 20 ) Vi (1, O [@ (01, oo v0)] (21, -o0s 20))
=B (012, 204 2) Vil (0n 11, 200 ) [@(01, oo 00)] (21, - 20)),
)

s(R

where the fourth equality follows from the associativity of Yy, extended to
W-valued rational functions (see Theorem 3.20 Part (3)). The fifth equality
follows from the identity property of vacuum.

Now we compute the right-hand-side as follows:

EOY o1 (BQY o) ®) (01 @ -+ @ 0n32)](21, ) 20 y2)
=B (EDY 01 001 @+ @ va1)](21, -, 20113 Vnt2)] (2 12)
ECY(EQD (@01 @ -+ @ 001 )](21 oons 20)s 00t 1)] (Zng1)s Unt2)] (Zns2)

=B (042, 20102) Vit (0n 11, 2041)[@(01 @ -+ @ 00)] (21, .20))
So it is equal to the left-hand-side. O

So the (n 4 1)-th term in the first sum cancels out with the third term.
We also need the following lemma

Lemma 4.24. (E\Y oy @) 0, B? = EQY o) (@0, EP)
Proof. For vy,...,vp42 € V, (21, ..., Znt2) € F,,C,
(B! o1 @) 0 B (01 @ - @ vy2)] (21, s Znr2)
—[EQY o) (01 ® -+ @ [EP (0: @ vig1)] (2 — € 2141 — O) ® -+ ® Uy
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(Z17' 7C7" Zn+2)

—[ESV)([®(v1 @ - @ [ES (15 @ vir1)] (21 = (2041 — ) @ -+ @ V)]
(Zla ey Cv .. zn—&—l), ’Un+2)(zn+2)

—BEV " (019, 2012)[®(01 @ -+ @ Yir (v, 2 — OV (031, 2001 — )1
K- ® 'UnJrl)](Zly ceey Cv ceey ZTL+1))

and

[EI(/g,l) o1 (® o E‘(f))(m R+ @ Upy2)] (21, ey Znt2)

By (@ 01 By (01 @ -+ © vns1)] (21, oy 2n1); Ung2))(2012)

=[EYV([@( - @ [EP (0 @ vie)| (2 — G 21 — () @ @ 0]
(215, C, ... an) vn+2)(zn+2)

=BV (0n42, 2012)[@(01 ® -+ @ Yy (vi, 2 — )Yy (vig1, i1 — O)1

® - @ Unt1)] (215 s Cy ooy Znt1))

So they are equal. O

Therefore, the rest of the first sum cancels out with the second sum. [

Remark 4.25. We remind the readers again that all the equalities in the
lemmas above are in the space of W-valued rational functions. The only
requirements on the parameters 21, ..., 2,41 is that they are mutually distinct
to each other.

We have given the definitions of C™ (V, W) and 67 for all integers m >
1,n > 1. Here we discuss the case n = 0.

Definition 4.26. We define CO(V, W) to be the set of vaccum-like vectors
we W, ie, we Wy and Dyw =0

Proposition 4.27. Let w € W be a vaccum-like vector. Then for every

v eV, YiE(v,x)w e W[[:E]],YVS{/(R)(U,:C)M e Wz]].

Proof. Fix v € V. From the D-commutator formula, we have

d
%Y%’/(v,x)w = Dy Y (v, z).

Thus for the series e *PW YL (v, 2)w, we have

d
o (

which shows e *PWYL (v, z)w has only constant term. Thus Y (v, 2)w €

e PWYE (v, 2)w) = —e PV Dy Yig (v, 2)w + e P Dy Vi (v, 2) = 0,

W{[x]]. One similarly proves the conclusion for Y;,(R). O
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Definition 4.28. We define §° : CO(V, W) — hom(V, Wz) by the following:
for w € CO(V, W)

[(3°(w))(0)](2) = E(Yif (v, 2)w — Yyt (v, 2)w)

Proposition 4.29. For every w € CO(V,W), 8%w) e CL(V,W), and
01 (0%(w)) =0

Proof. It is easy to check that So(w) satisfies the d-conjugation property
and D-derivative property. From the arguments in Example 3.10, So(w)
is composable with any numbers of vertex operators. The last conclusion
follows from a computation that is essentially the same as those in Theorem
4.17. O

Remark 4.30. It can be proved that the map v — [(6°(w)](v))(0) is an
“inner-derivation”. The set of inner-derivations from V to W is isomorphic
as vector space to 6°(C°(V,W)). Please see details in [HQ] and [Q1].

Thus we proved the following theorem:

Theorem 4.31. For any m € Z, the following sequence
A0 3 A1 S A2
) R ~
Oy B3 (VW) = e — GV, W)
forms a cochain complex. For every n € N, define
CLV.W) = () CLv.w)
m=0
and 6™ to be the restriction of 67 on C”(V,W). Obviously, the image of
0% is in 7Y (V, W), and the following sequence
20 50 A1 S;o ~2
22 R ~
P2 3 (VW) = o OV, W) =5 -
forms a cochain complex.
4.4. Cohomology groups.
Definition 4.32. For every n € N, the n-th cohomology group is defined as
I:IQO(V, W) = kersgo/imggo_l

Remark 4.33. We can similarly define the cohomology groups fI}ﬁL(V, W)
with C7 (V, W).
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Example 4.34. When n = 1, we know that ker 57171 consists of maps f :
V — W, that are composable with m vertex operators, and

E[Yy(u, 21)(f (v))(22)] = E[(f (Y (u, 21 = Yy (v, 22 = ()1))(Q)]

+EIY ™ (0, 22) (f (1)) (21)] = 0

It can be proved that for every m € Z,, ker S}n = ker Séo and is linearly
isomorphic to the space of derivations from V to W. Thus

HY(V,W) ~ {Derivation V — W}/{Inner derivation V — W}
Please see details in [HQ] and in [Q1].
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