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Searching for cycles in non-linear
autonomous discrete dynamical systems

D. Dmitrishin, A. Stokolos and M. Tohaneanu

Abstract. In the current paper we suggest a new robust algorithm to
search for cycles of arbitrary length in non-linear autonomous discrete
dynamical systems. With the help of the computer we were able to find
(unstable) cycles for several basic maps of nonlinear science: Hénon,
Holmes cubic, Ikeda, Lozi, Elhaj-Sprott. The theoretical part of the
paper is based on properties of a new family of extremal polynomials
that contains the Fejér and Suffridge polynomials. The associated com-
bination of geometric complex analysis and discrete dynamics seems to
be a new phenomenon, both theoretical and practical. A novelty of
this paper is in the discovery of a close connection between two seem-
ingly disconnected fields: extremal polynomials and cycles in dynamical
systems.
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1. Introduction

1.1. Settings. Consider the discrete dynamical system

xn+1 = f(xn), f : A→ A, A ⊂ Rm (1)

where A is a convex set that is invariant under f . Let us assume that the
system has an unstable T-cycle (x∗1, ..., x

∗
T ). We define the cycle multipliers

µ1, ..., µm as the zeros of the characteristic polynomial

det

µI − T∏
j=1

Df(x∗T−j+1)

 = 0. (2)

We will assume that the multipliers are located in a region M ⊂ C. If
all the multipliers are inside the unit disc D = {|z| < 1} in the complex
plane, then the cycle is locally asymptotically stable. If not, an infinitesimal
perturbation of the cycle values can lead to behavior called “deterministic
chaos” or just “chaos.” The term was coined by J.A. Yorke and T.Y. Li in the
paper “Period Three Implies Chaos” (1975) [13] in which it was proved that
any one-dimensional system which exhibits a regular cycle of period three
will also display regular cycles of every other length, as well as completely
chaotic cycles. The famous Sharkovsky’s theorem [19] includes this result
as a special case (cf.[2], p. 79).

Various methods of chaos control have been developed since, starting
with the groundbreaking work of Edward Ott, Celso Grebogi and James A.
Yorke [16] (1990). In [16] the authors suggest a method to stabilize chaos
by making only small time-dependent perturbations of an available system
parameter. They also show that small time dependent changes in the control
parameters of a nonlinear system can turn a previously chaotic trajectory
into a stable, periodic motion. The method was developed further to find
periodic orbits; a comparison of various versions can be found in [3].

The next step forward was done by Kestutis Pyragas [17] in 1992. He
suggested a very simple linear scheme f(xn+1) = f(xn) + K(xn − xn−1).
The Pyragas method has turned out to be very popular because it is easy
to implement experimentally. It has been used in a large variety of systems
in physics, chemistry, biology, medicine, and engineering [20, 18, 10].

In 1996 Toshimitsu Ushio [25] showed that the Pyragas method has several
serious limitations. In particular it was shown that the admissible region of
the multiplier is (-3,1), so it does not work for the whole range of negative
values as one would like. Moreover, it was shown in [6] that going deeper
in the prehistory by adding more delays does not improve the situation. If
two multipliers of the system belong to the same connected component of
the region of stability, then the distance between them will be at most 4,
regardless of the number of delays.
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In 1996 M. de Sousa Vieira and A.J. Lichtenberg [23] suggested a non-
linear counterpart of the Pyragas method. In their “Conclusion and dis-
cussion” section they wrote “The generalization consists of feeding back the
nonlinear mapping signal rather than a signal linearized around the fixed
point. This increases the basin of attraction of the controlled signal and
thus decreases the sensitivity to noise. However, the range of parameters
for which control can be achieved is limited.”

Further work on the stabilization of cycles was done by J. E. S. Socolar,
D. W. Sukow, and D. J. Gauthier [21] and Ö.Morgül [14, 15]. In particular,
the latter papers considered the problem of finding 2,4,5 and 6-cycles of the
logistic map f(x) = µx(1− x) for various values of µ.

The goal of this paper is to provide a robust method to stabilize cycles of
any length whose multipliers lie in the region (−∞, 1). We will be looking
at the non-linear control (3) and find coefficients (that we conjecture to be
optimal) that allow us to stabilize the cycle in polynomial time. Sections
2-4 provide a preliminary discussion and setup of the problem. In Section 5
we discuss the cases T = 1 and T = 2, which have been rigorously studied
by the authors and collaborators in [7], [8]. Sections 6-8 are devoted to
discussing our choice of coefficients, and providing conjectures and experi-
mental evidence of why we believe these conjectures to hold. In Section 9
we rigorously prove asymptotic bounds for the size of the multipliers that
can be stabilized for a cycle of length T if we allow the length of prehistory
N to go to infinity. More precisely, we obtain a polynomial-type bound of
approximately N2 for the size of the multipliers, which is important in ap-
plications (as opposed to, say, an exponential bound). Finally, Section 10
is dedicated to numerical examples of how our method can be applied to
well-known dynamical systems.

2. Average system

The standard approach developed in analysis to suppress oscillations is
averaging. Let us apply this idea to stabilize unstable T -cycles, i.e. given
a range for the multipliers µ we want to stabilize the cycle by the following
averaging procedure

xn+1 =

N∑
k=1

akf(xn−kT+T ),

N∑
k=1

ak = 1. (3)

Note that the system (3) preserves the convex invariant set provided ak > 0,
and the T-cycles of the system (1), while offering great flexibility since we
can choose the coefficients ak.

Let us stress that condition |µj | < 1 implies stability, which allows us
to find the cycle by a simple iterative procedure based on (1). However if
|µj | ≥ 1 then the iterative procedure does not work and should be modified,
for example changed to Newton’s method. Our approach in this paper is
to change the system rather than the method, which is different from the
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standard approach.

Two natural questions arise: Can stabilization be obtained with a bounded
depth of prehistory N? If so, what is the minimal depth necessary ?

3. Stability analysis

Note that the system (3) is not a dynamical system anymore; instead,
it is a system with multiple delays. For a system with delays the notion
of the characteristic equation is not so straightforward, as it requires an
increase in dimensionality which involves a long and complicated expression
for the characteristic equation (c.f. [8]). This complication prevented the
development of the subject even in a scalar case for a long time (c.f. [15]).
However, it turns out that this expression can be written in a magically
compact form. Namely, the characteristic equation for the system (3) is

m∏
j=1

λT (N−1)+1 − µj

(
N∑
k=1

akλ
N−k

)T = 0, µj ∈M, j = 1, ...,m.

The proof for the scalar case m = 1 is in [5], and for the vector case is in
[12].

This particular form of the characteristic polynomial allows one to estab-
lish the following geometric criterion (c.f. [8, 5.1]) that was suggested by
Alexei Solyanik [22].

Lemma 3.1. The characteristic polynomial of the system (3) has all the
roots inside the unit disc as long as the reciprocal values of the multipliers
are outside the image of the closed unit disc D̄ under the polynomial map
FT (z) = z(a1 + ...+ aNz

N−1)T , i.e.

1

µj
6∈ FT (D̄), j = 1, ..., N,

or
µj ∈ (C̄\FT (D̄))∗,

where z∗ = 1/z̄.

Note that in the case N = 1 one gets FT (z) = z and FT (D̄) = D̄ and
thus (C̄\FT (D̄))∗ = D which is the standard criterion for stability in the
open-loop system (1).

4. Optimization problem

In this paper we will assume that the multipliers lie on the half-axis
(−∞, 1). In this case the problem of stabilization can be reduced to the
following optimization problem: find

I
(T )
N = sup∑N

j=1 aj=1

min
t∈[0,π]

{
<
(
FT (eit)

)
: =
(
FT (eit)

)
= 0
}
.
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We refer the interested reader to [4] for more details on this topic.
Lemma 3.1 now implies that for the system (3) a robust stabilization (i.e.

by the same control for all µj ∈ (−µ∗, 1)) of any T -cycle is possible if

(µ∗) · |I(T )N | ≤ 1. (4)

We are left with the task of finding the polynomials that solve the opti-

mization problem, and estimate |I(T )N |.

5. Case T = 1, 2 - Suffridge polynomials

For T = 1, 2 the optimization problems were solved in [7] and [4] by means
of Harmonic Analysis. Namely, for T = 1

|I(1)N | = inf∑N
j=1 aj=1

max
t∈[0,π]

−
N∑
j=1

aj cos jt :
N∑
j=1

aj sin jt = 0


= tan2 π

2(N + 1)
∼ π2

4N2
. (5)

It is interesting to note that the optimal coefficients turn out to be the
coefficients of Suffridge polynomials (see [24]).

a
(1)
j = AN

(
1− j

N + 1

)
sin

πj

N + 1
, AN = 2 tan

π

2(N + 1)
, j = 1, ..., N.

(6)
The Suffridge polynomials are extremely important in the theory of univa-
lent polynomials [9]; however, their appearance in the context of cycles of
dynamical systems was a surprise for the authors.

Similarly for T = 2 one has

|I(2)N | = inf∑N
j=1 aj=1

max
t∈[0,π]

− N∑
j=1

aj sin(2j − 1)t :
N∑
j=1

aj cos(2j − 1)t = 0

2

=
1

N2
. (7)

The optimal coefficients are odd coefficients of Fejér polynomials

a
(2)
j = AN

(
1− 2j − 1

2N

)
, AN =

2

N
, j = 1, ..., N. (8)

Note that Fejér polynomials are central in classical Fourier series theory [26]
and their appearance in the current context is also quite remarkable.

The images FT (eit) of the unit circle under the optimal polynomial maps
FT (z) look very similar for T = 1 and for T = 2 (see Fig.1 and Fig.3). The
only major difference between the two pictures is the behavior when t = π:
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for even N the graph is tangent to the x-axis there, which does not happen
for odd N .

Figure 1. FT (eit) for
T=1 and N=5 Figure 2. Fragment

Figure 3. FT (eit) for
T=2 and N=6 Figure 4. Fragment

6. Case T ≥ 3 - generalized Suffridge polynomials

We will now introduce the remarkable family of extremal polynomials
mentioned in the abstract. These polynomials generalize Suffridge polyno-
mials for the case T ≥ 3 and are the same as the polynomials from the
above section if T = 1, 2. In this section we provide explicit formulas for
these polynomials.

Let q(z) := a1 + ...+ aNz
N−1. Define the set of points

ψj =
π(2 + T (2j − 1))

2 + (N − 1)T
, j = 1, ..,

N

2
(N-even),

(
N − 1

2
(N-odd)

)
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and the generating polynomials

η(z) = z(z + 1)

N−2
2∏
j=1

(z − eiψj )(z − e−iψj ), N-even

η(z) = z

N−1
2∏
j=1

(z − eiψj )(z − e−iψj ), N-odd.

We now let

q(z) =
KT

2 + (N − 1)T

((
1

T
+N

)
η(z)

z
− η′(z)

)
, (9)

where K is a normalizing factor so that q(1) = 1. A direct computation
shows that

1

K
= 2

N−2
2

N−2
2∏
j=1

(1− cosψj), N is even,

1

K
= 2

N−3
2

N−1
2∏
j=1

(1− cosψj), N is odd,

as well as

q(−1) = PN , (10)

where

PN =
T

2 + (N − 1)T

N−2
2∏
j=1

cot2
ψj
2
, N is even; PN =

N−1
2∏
j=1

cot2
ψj
2
, N is odd.

In order to compute the coefficients aj we write η(z) in the standard form

η(z) = z
N∑
j=1

cjz
j−1.

We then have

aj = K

(
1− 1 + (j − 1)T

2 + (N − 1)T

)
cj . (11)

7. Experimental evidence

Using MAPLE we plotted the image of the unit disc D under the poly-
nomial map FT (z) = z(q(z))T for various combinations of T and N, and all
the plots look remarkably similar. Below we provide the images for a small
value N = 5 and two different values of T , a small one (T = 5) and a large
one (T = 1005), see Fig 5 and Fig 7. We chose N = 5 to be able to better
observe the behavior of the curve FT (eit) near the point t = π, as for large
N this is harder.
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A typical case of the plot is in Fig. 5 below. One can observe several
cusps, which suggests that the roots of the derivatives of the polynomials
FT (z) are on the boundary of the unit disc D, which was a crucial step
in proving univalency of Suffridge polynomials. For completeness we also
provide the inverse image FT (D̄)∗, which is the unbounded region in Fig. 6.
We note in particular that the interval of multipliers (µ∗, 1) does not intersect
the interior of FT (D̄)∗, although it does intersect the boundary. This can

be easily remedied by considering F εT = FT (z)+εz
1+ε and sending ε to 0, so

considering the original FT is justified for computer simulations.

Figure 5. F5(D̄), N=5

Figure 6. (C̄\F5(D̄))∗, N=5
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Figure 7. F1005(D̄), N=5

Figure 8. (C̄\F1005(D̄))∗, N=5

Based on the observations above we can conjecture that the polynomials
FT (z) = z(q(z))T map the curve z = eit, 0 < t < π into a curve in the closed
upper half plane {=(z) ≥ 0}. Moreover, the image of the curve should not
have any self-intersections. Thus, we conjecture

Conjecture A: The polynomials FT (z) = z(q(z))T are univalent.

With(10) in mind we also conjecture
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Conjecture B: Let T ≥ 3 and N ≥ 1 be integers. Then |I(T )N | ≤ (PN )T .

The presence of cusps in Fig.5 and Fig.7 indicates that the zeros of the
derivative of polynomials are on the unit circle. Thus we can strengthen Con-
jecture A to the claim that the polynomials FT (z) might be quasi-extremal
in the Genthner-Ruscheweyh-Salinas sense (see Definition 11 and Theorem
12 in [11]).

8. Some particular cases

8.1. Case T = 1. In this case

ψj =
π(2j + 1)

N + 1
, η(z) =

N∑
j=1

sin
πj

N + 1
zj ,

and we get the Suffridge polynomials

FT (z) = zq(z) = Kz
N∑
j=1

(
1− j

N + 1

)
sin

πj

N + 1
zj−1,

where
K = 2 tan

π

2(N + 1)
.

Furthermore, PN = tan2 π
2(N+1) which agrees with (6).

8.2. Case T = 2. In this case

ψj = π
2j

N
, η(z) =

N∑
j=1

zj ,

and we get the Fejér polynomial

F2(z) = zq(z)2 = K2z

 N∑
j=1

(
1− 2j − 1

2N

)
zj−1

2

, K =
1

N
.

Furthermore, (PN )2 = 1
N2 , which agrees with (8).

9. The estimate for the product of cotangents

The previous section provides the asymptotic behavior for |I(T )N | in the
cases T = 1, 2. A natural question is whether we can find the asymptotic
behavior for PN when T ≥ 3. The goal of this section is to give an affirmative
answer. We rigorously prove the following result:

Theorem 9.1. Let T ≥ 3. Then PN ≈ N−
2
T as N → ∞. More precisely,

we get that

lim
N→∞

PNN
2
T = π

2−T
T

(
Γ

(
T + 2

2T

))2

. (12)
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Let us begin with the following very simple lemma which will turn out to
be extremely useful:

Lemma 9.1. For any 0 < γ < π
2 the function

f : [0,
π

2
− γ)→ R, f(x) =

tanx

tan(γ + x)

is increasing on [0, 12(π2 − γ)] and decreasing on [12(π2 − γ), π2 − γ)

Proof. A simple computation gives that

d

dx
f(x) =

sin γ cos(2x+ γ)

sin2(x+ γ) cos2(x+ γ) cos2 x

and the conclusion of the lemma follows immediately. �

Proof. We will start the proof of our main theorem with the case when N
is odd. We first note that, since cot(π2 − x) = tanx, we can rewrite

PN =

N−1
2∏
j=1

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

.

Let us now fix m� N , and define

P
(m,1)
N =

N−1
2
−m∏

j=m+1

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

.

The strategy will be to first estimate P
(m,1)
N from above and below, let

N →∞, and then let m→∞.

To accomplish the first task, let us first note that we can rewrite P
(m,1)
N

in the form

P
(m,1)
N =

bN+1
4
c−1∏

j=m+1

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

·
bN+1

4
c+1∏

j=bN+1
4
c

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

·

·

N−1
2
−m∏

j=bN+1
4
c+2

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

.

Now let

P
(m,k)
N =

bN+1
4
c−1∏

j=m+1

tanπ 2(k−1)+(2j−1)T
2(2+(N−1)T )

tanπ 2k+(2j−1)T
2(2+(N−1)T )

·
bN+1

4
c+1∏

j=bN+1
4
c

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

·

·

N−1
2
−m∏

j=bN+1
4
c+2

tanπ 2(1−k)+(2j−1)T
2(2+(N−1)T )

tanπ 2(2−k)+(2j−1)T
2(2+(N−1)T )
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where 1 ≤ k ≤ T . Note that when k = 1 we indeed recover the correct

formula for P
(m,1)
N .

The first key observation is that

T∏
k=1

P
(m,k)
N =

tanπ (2m+1)T
2(2+(N−1)T )

tanπ
(2bN+1

4
c−1)T

2(2+(N−1)T )

bN+1
4
c+1∏

j=bN+1
4
c

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )


T

·

·
tanπ

2+(2bN+1
4
c+1)T

2(2+(N−1)T )

tanπ 2+(N−2m−2)T
2(2+(N−1)T )

. (13)

The second key observation is that

P
(m,k)
N ≤ P (m,k+1)

N , 1 ≤ k ≤ T − 1. (14)

Indeed, this is a simple consequence of Lemma 9.1 applied for each term
in the product with γ = π 2

2(2+(N−1)T ) .

As a consequence of (13), (14) and the fact that

tanπ
(2m+ 1)T

2(2 + (N − 1)T )
=

1

tanπ 2+(N−2m−2)T
2(2+(N−1)T )

,

we obtain

(P
(m,1)
N )T ≤ tan2 π

(2m+ 1)T

2(2 + (N − 1)T )
·

tanπ
2+(2bN+1

4
c+1)T

2(2+(N−1)T )

tanπ
(2bN+1

4
c−1)T

2(2+(N−1)T )

·

·

bN+1
4
c+1∏

j=bN+1
4
c

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )


T

.

Since

lim
N→∞

N2 tan2 π
(2m+ 1)T

2(2 + (N − 1)T )
= (

π

2
)2 · (2m+ 1)2

and

lim
N→∞

tanπ
2+(2bN+1

4
c+1)T

2(2+(N−1)T )

tanπ
(2bN+1

4
c−1)T

2(2+(N−1)T )

(bN+1
4
c+1∏

j=bN+1
4
c

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

)T
= 1,

we obtain that

lim sup
N→∞

N
2
T P

(m,1)
N ≤

(
(
π

2
)2 · (2m+ 1)2

) 1
T
.

Moreover, since

PN =
m∏
j=1

(tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

)2
P

(m,1)
N
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and

lim
N→∞

m∏
j=1

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

=
m∏
j=1

(2j − 1)T

2 + (2j − 1)T
,

we obtain that for any fixed m

lim sup
N→∞

PNN
2
T ≤ (

π

2
)

2
T (2m+ 1)

2
T

m∏
j=1

( (2j − 1)T

2 + (2j − 1)T

)2
:= αm. (15)

We use a similar argument to bound lim supN→∞ PNN
2
T . Let

Q
(m,1)
N =

N−1
2
−m∏

j=m+1

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

.

Now, define Q
(m,k)
N by the equation

Q
(m,k)
N =

bN+1
4
c∏

j=m+1

tanπ 2(1−k)+(2j−1)T
2(2+(N−1)T )

tanπ 2(2−k)+(2j−1)T
2(2+(N−1)T )

N−1
2
−m∏

j=bN+1
4
c+1

tanπ 2(k−1)+(2j−1)T
2(2+(N−1)T )

tanπ 2k+(2j−1)T
2(2+(N−1)T )

,

where 1 ≤ k ≤ T . Note that when k = 1 we indeed recover the correct

formula for Q
(m,1)
N .

As above, one can show that

Q
(m,1)
N ≥ Q(k)

N , 1 ≤ k ≤ T

and
T∏
k=1

Q
(m,k)
N =

tanπ 2+(2m−1)T
2(2+(N−1)T )

tanπ
2+(2bN+1

4
c−1)T

2(2+(N−1)T )

tanπ
(2bN+1

4
c+1)T

2(2+(N−1)T )

tanπ (N−2m)T
2(2+(N−1)T )

.

Since

lim
N→∞

N2 tan2 π
2 + (2m− 1)T

2(2 + (N − 1)T )
= (

π

2
)2 · (2m− 1)2

and

lim
N→∞

tanπ
(2bN+1

4
c+1)T

2(2+(N−1)T )

tanπ
2+(2bN+1

4
c−1)T

2(2+(N−1)T )

= 1,

we obtain that

lim inf
N→∞

N
2
T Q

(m,1)
N ≥

(
(
π

2
)2 · (2m− 1)2

) 1
T
.

Moreover, since

PN =
m∏
j=1

(tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

)2
Q

(m,1)
N
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and

lim
N→∞

m∏
j=1

tanπ (2j−1)T
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

=
m∏
j=1

(2j − 1)T

2 + (2j − 1)T
,

we obtain that for any fixed m

lim inf
N→∞

PNN
2
T ≥ (

π

2
)

2
T (2m− 1)

2
T

m∏
j=1

( (2j − 1)T

2 + (2j − 1)T

)2
:= βm. (16)

From (15) and (16) we obtain that

βm ≤ lim inf
N→∞

PNN
2
T ≤ lim sup

N→∞
PNN

2
T ≤ αm.

It is now easy to check that βm is an increasing sequence, αm is a decreas-

ing sequence, and limm→∞
αm
βm

= 1. Thus we obtain that limN→∞ PNN
2
T

exists and equals limm→∞ αm. To finish the case of N odd, we are left to
prove that

lim
m→∞

αm = π
2−T
T

(
Γ(
T + 2

2T
)
)2
. (17)

We can write

αm = π
2
T (m+

1

2
)

2
T

( ∏m
j=1(2jT − T )∏m

j=1(2jT − (T − 2))

)2
.

Since Γ(x) = xΓ(x− 1), one easily obtains:

m∏
j=1

(jr − s) = rmΓ(m+
r − s
r

)/Γ(
r − s
r

), 0 ≤ s ≤ r − 1.

By applying the above formula with r = 2T , s = T for the numerator,
and r = 2T , s = T − 2 for the denominator we obtain

αm = π
2
T (m+

1

2
)

2
T

( Γ(m+ 1
2)

Γ(m+ T+2
2T )

Γ(T+2
2T )

Γ(12)

)2
.

We now use the asymptotic for the Γ function

Γ(z) = e−zzz−1/2
√

2π(1 +O(1/z))

to obtain

Γ(m+ 1
2)

Γ(m+ T+2
2T )

=
e−(m+ 1

2
)(m+ 1

2)(m+ 1
2
)−1/2√2π(1 +O(1/m))

e−(m+T+2
2T

)(m+ T+2
2T )(m+T+2

2T
)−1/2√2π(1 +O(1/m))

= e
1
T (m+

1

2
)−

1
T

( m+ 1
2

m+ T+2
2T

)m+ 1
T

+O(1/m)

= (m+
1

2
)−

1
T +O(1/m)
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since

lim
m→∞

( m+ 1
2

m+ T+2
2T

)m+ 1
T

= lim
m→∞

(
1−

1
T

m+ T+2
2T

)m+ 1
T

= e−
1
T .

We thus obtain

lim
m→∞

αm = π
2
T

(Γ(T+2
2T )

Γ(12)

)2
and (17) follows since Γ(12) =

√
π.

The proof for N even follows in a similar manner. As above, we can
rewrite

PN =
T

2 + (N − 1)T
P̃N ,

where

P̃N =

N−2
2∏
j=1

tanπ 2jT
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

.

For any m� N , let

P̃
(m,1)
N =

N−2
2
−m∏

j=m+1

tanπ 2jT
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

.

Define

P̃
(m,k)
N =

bN
4
c∏

j=m+1

tanπ −(k−1)+2jT
2(2+(N−1)T )

tanπ−(k−1)+2+(2j−1)T
2(2+(N−1)T )

N−2
2
−m∏

j=bN
4
c+1

tanπ (k−1)+2jT
2(2+(N−1)T )

tanπ (k−1)+2+(2j−1)T
2(2+(N−1)T )

and

Q̃
(m,k)
N =

bN
4
c−1∏

j=m+1

tanπ (k−1)+2jT
2(2+(N−1)T )

tanπ (k−1)+2+(2j−1)T
2(2+(N−1)T )

·
bN

4
c+1∏

j=bN
4
c

tanπ 2jT
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

·

·

N−2
2
−m∏

j=bN
4
c+1

tanπ (k−1)+2jT
2(2+(N−1)T )

tanπ (k−1)+2+(2j−1)T
2(2+(N−1)T )

,

where 1 ≤ k ≤ 2T . We observe that P̃
(m,1)
N = Q̃

(m,1)
N and by applying

Lemma 9.1 as in the odd case,

Q̃
(m,k)
N ≤ P̃ (m,1)

N ≤ P̃ (m,k)
N , 1 ≤ k ≤ 2T.

Moreover, we have

2T∏
k=1

P̃
(m,k)
N =

T−3∏
i=0

1

tan2 π−i−T+(2m+1)T
2(2+(N−1)T )

F (N),
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and
2T∏
k=1

Q̃
(m,k)
N =

T−3∏
i=0

1

tan2 π i+2+(2m+1)T
2(2+(N−1)T )

G(N)

with limN→∞ F (N) = limN→∞G(N) = 1.
Since

lim
N→∞

N2(2−T )
T−3∏
i=0

1

tan2 π−i−T+(2m+1)T
2(2+(N−1)T )

F (N) = (
2

π
)2(T−2)

T−3∏
i=0

T 2

(2mT − i)2
,

lim
N→∞

N2(2−T )
T−3∏
i=0

1

tan2 π i+2+(2m+1)T
2(2+(N−1)T )

G(N) = (
2

π
)2(T−2)

T−3∏
i=0

T 2

(2mT + T + i+ 2)2

we obtain that

lim sup
N→∞

N
2−T
T P̃

(m,1)
N ≤

[
(
2

π
)2(T−2)

T−3∏
i=0

T 2

(2mT − i)2
] 1

2T
,

and

lim inf
N→∞

N
2−T
T P̃

(m,1)
N ≥

[
(
2

π
)2(T−2)

T−3∏
i=0

T 2

(2mT + T + i+ 2)2

] 1
2T
.

Moreover, since

PN =
T

2 + (N − 1)T

m∏
j=1

(tanπ 2jT
2(2+(N−1)T )

tanπ 2+(2j−1)T
2(2+(N−1)T )

)2
P̃

(m,1)
N

we obtain for every m that

β̃m ≤ lim inf
N→∞

PNN
2
T ≤ lim sup

N→∞
PNN

2
T ≤ α̃m

with

β̃m =
m∏
j=1

( 2jT

2 + (2j − 1)T

)2
π

2−T
T

T−3∏
i=0

[ T

mT + (T + i+ 2)/2

] 1
T
,

α̃m =

m∏
j=1

( 2jT

2 + (2j − 1)T

)2
π

2−T
T

T−3∏
i=0

[ T

mT − i/2

] 1
T
.

Since

lim
m→∞

m
T−2
T

T−3∏
i=0

[ T

mT + (T + i+ 2)/2

] 1
T

= lim
m→∞

m
T−2
T

T−3∏
i=0

[ T

mT − i/2

] 1
T

= 1

it follows that limm→∞
α̃m

β̃m
= 1, and it is enough to prove that

lim
m→∞

m
2−T
T

m∏
j=1

( 2jT

2 + (2j − 1)T

)2
π

2−T
T = π

2−T
T

(
Γ

(
T + 2

T

))2

.
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But this follows just like in the case of N odd by using
m∏
j=1

2jT = (2T )mΓ(m+ 1),

m∏
j=1

(2 + (2j − 1)T ) = (2T )m
Γ(m+ T+2

2T )

Γ(T+2
2T )

,

lim
m→∞

Γ(m+ 1)

Γ(m+ T+2
2T )

m
2−T
2T = 1.

�

Note that if T = 1 then Γ(3/2) =
√
π/2 and if T = 2 then Γ(2) = 1. Sub-

stituting in (12) yields π2/(4N2) for T = 1, which is the asymptotic behavior
in (5), and exactly 1/N2 which is the value in (7). This justifies the following

Conjecture C: Let T ≥ 3 and N ≥ 1 be integers. Then |I(T )N | = (PN )T .

The proven theorem gives a reasonable approximation to the interval
(−(PN )T , 1) that is conjectured to be the optimal range of multipliers (−µ∗, 1).
It is remarkable that asymptotically the range for the admissible multipliers
grows as N2, regardless of the value of T. The dependence on T is in the
constant. Note that the proof of the relation (12) is quite nontrivial; we
did not find any similar estimates in the literature, and we could not apply
any standard proof due to very delicate cancellations of the factors in the
product.

It is also interesting to compare the left and right sides of the relation (12).
Numeric simulations indicates that they are pretty close even for small values
of T and N. Say, for T = 5 and N = 5 we have FT (−1) = 0.02211102001 ≈
0.01752033601. For T=105 and N=55, FT (−1) = 0.00006979604353 ≈
0.00006734173127. For T=1005 and N=25, FT (−1) = 0.0003388694786 ≈
0.0003126559570. For T=1005 and N=35, FT (−1) = 0.0001689295955 ≈
0.0001595183454. For T=1005 and N=55, FT (−1) = 0.00006699551479 ≈
0.00006459833822.

10. Applications to non-linear dynamics

Scalar discrete systems always have real multipliers, so our method can
be applied. We provided an example of finding an 8-cycle for the logistic
map in [8]. In this paper we choose to provide several examples of cycle
detection in the vector case. Since we do not know whether the multipliers
are real negative there is no guarantee that applying averaging we will find a
cycle. Thus, we simply apply the averaging procedure and check if we found
the cycle of the given length. We first run several hundreds iterations of
the open loop system, and then we switch to averaging using the produced
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chaotic orbits as initial values.

10.1. Hénon Map. The Hénon Map is defined by{
xn+1 = 1− ax2n + byn,

yn+1 = xn.
|b| < 1, a > 0.

Figure 9. Hénon map

Fig.9 displays the strange attractor of the map, with different colors cor-
responding to orbits with the different initial values.

The Hénon map was well studied by mathematicians (c.f. for exam-
ple [1]). It is standard to pick a = 1.4, b = 0.3., in which case there
are two equilibria: (x1, y1) = (0.631354477, 0.631354477) and (x2, y2) =
(−1.3199135566,−1.3199135566) with the corresponding multipliers

µ1,2(x1, y1) ∈ {0.1559463223,−1.923738858}
and

µ1,2(x2, y2) ∈ {−0.09202956204, 3.259822098}
We remark that the second equilibrium has a positive multiplier greater
than 1, in which case our averaging method does not work.



SEARCH FOR CYCLES 621

We have applied 400 iterations to the initial system (1) and then the
system (1) was replaced with the averaging system (3) for T = 1, N = 8.
Fig. 10 displays the orbits of system (3) for n = 590, ..., 690 iterations.

Figure 10. Hénon Map equilibrium and 6-cycle

One can observe only two spots, which is actually only one since the dif-
ference is very small. The spots are red because in MAPLE code the red
color was assigned to the last initial value, but all the other colors converge
to this equilibrium. Fig.10 also displays a 6-cycle of the map.

10.2. Lozi Map. The Lozi Map is a two-dimensional map similar to the
Hénon map but with a different nonlinear term. It is given by the equations{

xn+1 = 1− α|xn|+ yn

yn+1 = βxn.

The standard choice of parameters is α = 1.4, β = 0.3.
Fig.11 displays the strange attractor of the map. Fig.12 displays the 6

and 8 cycles in the Lozi map found by the averaging method with N = 6.
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Figure 11. Lozi map

Figure 12. 6 and 8 cycles in the Lozi map

10.3. Ikeda map. The Ikeda map is given byxn+1 = 1 + 0.9
(
xn cos

(
0.4− 6

1+x2n+y
2
n

)
− yn sin

(
0.4− 6

1+x2n+y
2
n

))
,

yn+1 = 0.9
(
xn sin

(
0.4− 6

1+x2n+y
2
n

)
+ yn cos

(
0.4− 6

1+x2n+y
2
n

))
.

Figure 13 displays the initial Ikeda map and the 5-cycle found by averaging
the initial system starting from n=400 to n=7800 and N = 6.
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Figure 13. 5-cycle in the Ikeda Map

10.4. Elhaj-Sprott map. The Elhaj-Sprott map is given by the system{
xn+1 = 1− 4 sin(xn) + 0.9yn

yn+1 = βxn.

After averaging with parameters N = 2, T = 4 we find a 4-cycle after 3900
iterations

Figure 14. 4-cycle in the Elhaj-Sprott map
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10.5. Holmes cubic map. The Holmes cubic map is given by the equa-
tions {

xn+1 = yn

yn+1 = 0.2xn + 2.77yn − y3n.

Below we average with parameters N = 2, T = 2. The 2-cycle is detected
after 5700 iterations.

Figure 15. 2-cycle in Holmes cubic map
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