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Higher regularity for the fractional

thin obstacle problem

Herbert Koch, Angkana Riilland and Wenhui Shi

ABSTRACT. In this article we investigate the higher regularity proper-
ties of the regular free boundary in the fractional thin obstacle problem.
Relying on a Hodograph-Legendre transform, we show that for smooth
or analytic obstacles the regular free boundary is smooth or analytic,
respectively. This leads to the analysis of a fully nonlinear, degenerate
(sub)elliptic operator which we identify as a (fully nonlinear) perturba-
tion of the fractional Baouendi-Grushin Laplacian. Using its intrinsic
geometry and adapted function spaces, we invoke the analytic implicit
function theorem to deduce analyticity of the regular free boundary.
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In this article we study higher regularity properties of the regular free

boundary associated with the “fractional thin obstacle problem”.
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precisely, given an obstacle ¢ : B] — R and assuming that s € (0,1), we
consider local minimizers of the functional

1 -
J(w) = / (2va\2 + wf> ) 3 dz,
Bf
in the convex, constrained set

K :={we H'(Bf,z);7dx) : @ > ¢ in B}

Here By := {x € R""! : |z| < 1,2,,41 > 0} denotes the upper half-ball and
B} := B N{xp41 = 0} is the co-dimension one ball on the boundary of
R’}fl. If the obstacle ¢ and the inhomogeneity f are assumed to be in a
suitable class, classical arguments involving variational inequalities ensure
the existence of local minimizers.
The relation of a minimizer with the co-dimension one (hence “thin”) set, on
which it is constrained to lie above the obstacle, gives rise to three sets which
are of importance in the sequel: The contact set Ay := {x € B} : v = ¢},
in which the obstacle is attained by the minimizer, the non-coincidence set
Qp = {z € B} : © > ¢}, on which the minimizer is strictly larger than
the obstacle, and the free boundary I'g := 0z N B}, which separates the
previous two sets.
Carrying out variations of the functional J around minimizers, yields that a
minimizer of J in the class K solves a Signorini problem for the degenerate
elliptic operator V - x,llflsV:

V-2h 3V =2} 3 f in B,

W > ¢ on B,

lim a;};?fanﬂw <0 on B, (1)
Tp+1—04

xnlilgw 2} 3041w = 0 on B N {u > ¢}.

Relying on previous work on the fractional thin obstacle problem (in partic-
ular on [4, 21]) and on regularity assumptions for the inhomogeneity f, these
equations will be understood in a pointwise sense in the sequel. In particular
this holds for the complementary (or Signorini) boundary conditions on Bj.

In investigating the higher regularity properties of solutions to the frac-
tional thin obstacle problem, we build on the seminal work on the obstacle
problem for the fractional Laplacian by Caffarelli, Salsa and Silvestre [4].
As explained in Section 1.3.1 there is a close connection between the above
Signorini problem (1) and the obstacle problem for the fractional Laplacian
(c.f. [5, 4] and Section 1.3.1). Due to this reason we refer to the problem
(1) as the “fractional thin obstacle problem”. This close relationship also
allows us to exploit the results from [4] in our context.

Let us briefly recall the, to us, most relevant results from [4] (for a more
detailed summary we refer to Section 1.3.1). Firstly, optimal regularity of
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the solutions is established: Assuming that f € C%Y(Bf") and that ¢ €
C*1(BY), and assuming that the free boundary 'z is compactly contained
in B] /2 (which permits us to extend the local problem for the fractional

Laplacian (1) into a global problem, c.f. Section 1.3.1), the solution w to
(1) has the optimal regularity (up to the boundary Bf)
i € C°*(B 1/2) fori e {1,...,n},

1-2 0,1—
22720, 0 € OV S(Bj/Q)

(2)

The optimality of this can be seen by noting that the function

1 S
wys(x) = e < a2 +ak ,+ xn> (8@ — xn) . (3)

which will play the role of a model solution for us, satisfies (1) for f=¢=0.
Furthermore, the free boundary I',, decomposes as

Py = D) U | Tl (4)
K>2

where Fﬁ(ﬁj) = {xO el <I)1D,zo(0+)2_n_(1—28)
truncated frequency function associated with the function w(x) — ¢(z) —

% »4+1 at the point zg € I'g (c.f. Section 1.3.1 for more details).

= n} and P 4, (r) denotes a

The set T'145(w), which is denoted as the regular free boundary, is an open
subset of I'y. Locally, it is a C1® graph for some a > 0.

1.1. Main result. In this article we seek to derive an improved under-
standing of the higher regularity properties of the regular free boundary
Is41(w). Similar as in [4] we first reduce the setting to the zero obstacle
problem by considering the equation for w = w — ¢. This function then
solves the Signorini problem

1-2s _ 1-2sf . +
Ve.z, [ TVw=xz,7fin By,
w >0 on By,

lim x;flsan_Hw <0 on B, (5)

Tp4+1—04
. 1-2
mn+hlril>0+ Ty i1 Onprw =0 on By N{w > 0}.
Considering obstacles and inhomogeneities of suitably high regularity, we
may assume that the resulting inhomogeneity f is at least C* 1(B]") regular.
In this set-up our main result asserts the smoothness and even analyticity
of the regular free boundary.

Theorem 1.1. Let w : B — R be a solution to (5) with inhomogeneity
f. Assume that O;w € COS(B+) for i € {1,...,n} and :c,llflsﬁnﬂw €

loc

o *(Bf"). Then, if f is smooth, the regular free boundary Tsiq(w) is

loc
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locally smooth. If f is real analytic, the regular free boundary T'si1(w) is
locally real analytic.

Here the assumption on the smoothness of the inhomogeneity is due to the
desire of avoiding technicalities as far as possible. We however emphasize
that the situation of smooth inhomogeneities is not the only case in which
our arguments hold (c.f. Remark 7.5 in Section 7). Also, the assumption on
the regularity of the solution w is not a major restriction. For example, it
covers the problem studied in [4].

1.2. Strategy of the proof. In order to infer the result of Theorem 1.1,
we rely on a partial Hodograph-Legendre transform, a precise analysis of
the resulting fully nonlinear, degenerate (sub)elliptic equation, and the im-
plicit function theorem. We discuss these ingredients in greater detail in the
sequel.

Definition of the Hodograph-Legendre transform. Seeking to fix and
straighten the free boundary, we carry out a (partial) Hodograph-Legendre
transform [13] of the problem at hand. In this context, the choice of the
dependent and independent variables requires certain care: In contrast to
the case s = %, which corresponds to the classical thin obstacle problem,
the choice
y// = 55”, Yn = OnW, Ynt1 = -T},;leanJrlwa
of which one would hope that it suffices to fix the free boundary, is not ideal.
Indeed, considering the model solution wy ¢ from (3) yields

S

Opwi () = (\/CU% +any + xn) :
5 1-s
Sl<\/x%+x%+1—xn> :

v 2s 2(1—s) _ 1-2s
y =x, Y, = 3nw, Y1 = —CsTpyq anJrlw’ (6)

for some ¢; > 0 provides a better choice of dependent and independent vari-
ables. Simplifying, we see that this change of coordinates then corresponds
to the square root mapping

Tyt Ongrwn s(2) =

This indicates that

no__n
y =,

yn = Re(z,, + ixn+1)1/2,
Ynr1 = Im(zy, + izp )2,

which was already used in the analysis of [15]. The Hodograph-Legendre
transformation hence maps the upper half-plane into the upper quarter space
Q. = {y € R"! :y, > 0,941 > 0} and maps the free boundary into the
co-dimension two hyperplane P := {y € R"*! : y, =y, 11 = 0}.

Indeed, this heuristic argument for using (6) is made rigorous by a careful



THE FRACTIONAL THIN OBSTACLE PROBLEM 749

analysis of solutions to (5), for which we prove a leading order asymptotic
expansion around the free boundary in terms of the model solution wy s
(c.f. Proposition 3.6). As in [15] this analysis plays a central role, since
general solutions to (5) are not regular enough to prove the invertibility of
the Hodograph-Legendre transform (6) by means of the classical implicit
function theorem. Instead, we use the asymptotics at the free boundary
combined with elliptic estimates in annuli around it to deduce the invert-
ibility of the transformation (c.f. Proposition 4.2).

Fractional fully nonlinear subelliptic equation. As in [15] a second main
step consists of analyzing the transformed equation. Defining the Legendre
function as

v(y) == w(z) — Ty’ + mfﬂiilyn(H Y,

where w is a solution to (5), we note that the free boundary is parametrized
as

1

Tn = — %yiikanv(y) ly=(y".0,0)-

Hence, seeking to deduce regularity of the regular free boundary, we study
the regularity of the Legendre function v. However, while the Hodograph-
Legendre transform allows us to fix the free boundary, it comes at the ex-
pense of transforming our linear equation (5) into a fully nonlinear, degen-
erate (sub)elliptic Monge-Ampere type equation. Yet, as in the case of the
thin obstacle problem, it is possible to deduce a certain structure for this
equation and to view it as a perturbation of a fractional Baouendi-Grushin

n+1
Laplacian Ags = ) Yiw(y)Y;, where Y;, i € {1,...,n + 1}, denote the
i=1

classical Baouendi-Grushin vector fields (c.f. Definition 5.1) and where the
weight w(y) = (Ynyns1) 2% for s € (0,1) belongs to Muckenhoupt class As.
To avoid a bootstrap argument in proving the higher (partial) regularity
result, we apply the implicit function theorem as in [17] (relying on the
observation that the subelliptic structure is translation invariant in the tan-
gential variables y”). Here the definition of suitable function spaces (such
that conditions of the Banach implicit function theorem are satisfied) plays
a pivotal role. These function spaces can be viewed as weighted generaliza-
tions of the generalized Holder spaces from [17]. Compared with [17] the
fractional character of the equation poses additional difficulties in construct-
ing the spaces. The correct choice of the weights is of central importance
(c.f. next point below).

Analyticity of the functional, function spaces. Compared to the situa-
tion s = %, we encounter a further complication related to the additional
“fractional weight” in our fully nonlinear operator: Due to our choice of
dependent and independent coordinates in (6), the fully nonlinear equation
for the Legendre function v involves non-integer powers of (derivatives) of
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v. Seeking to prove analyticity of the Legendre function by means of the an-
alytic implicit function theorem as in [17], therefore requires a careful choice
of the function spaces to ensure that the resulting operator still yields an
analytic mapping from the domain into the image space.

To this end, we introduce weighted versions of the generalized Holder spaces
from [17]. We recall that the generalized Hélder spaces in [17] were con-
structed in order to mimic the asymptotic expansion of our Legendre func-
tions at the straightened boundary P = {y € R"*! : y, = y,11 = 0} and
were motivated by Campanato type norms [6]. In the setting of the frac-
tional Baouendi-Grushin operator, spaces which only reflect the asymptotic
behavior at P do not suffice: Due to the presence of the weight (1,yn+1) 2%,
which is singular for s > 1/2 and degenerate for s < 1/2, our spaces
also have to capture the asymptotic behavior at the planes {y, = 0} and
{Yn+1 = 0} where the weights degenerate. By interpolating between the
asymptotics at P and the asymptotics at {y, = 0}U{y,+1 = 0}, we construct
weighted Holder spaces with respect to the intrinsic Baouendi-Grushin ge-
ometry which are adapted to our problem. We show that with these choices
the nonlinear operator is an analytic map from its domain into the image
space. Moreover, by deducing “Schauder type” apriori estimates for the
fractional Baouendi-Grushin operator in our generalized Holder spaces, we
prove that the linearization of the nonlinear operator at v is invertible. Thus,
the analytic implicit function theorem can be applied in our spaces, which
then yields our main result.

1.3. Context and literature. In this section we relate the fractional thin
obstacle problem to the obstacle problem for the fractional Laplacian and
provide some background on the literature on these problems.

1.3.1. Relation to the fractional obstacle problem. Let us consider
the obstacle problem for the fractional Laplacian (—A)®, s € (0,1): Given
a function ¢ : R” — R with rapid decay at infinity, one seeks a function u
with limg o u(2z) = 0 which satisfies

min{(—A)%u(z),u(z) — p(x)} =0, xe€R™ (7)

Here (—A)?® is the fractional Laplacian, which for s € (0,1) can be defined
as an integral operator

u(x) —u
(—A)’u(z) == cp s pov. /Rn M‘Z%
and ¢, s denotes a universal constant depending on n,s. In [21] Silvestre
considered the existence and regularity of the solution to the obstacle prob-
lem (7). For ¢ € C%(R™) he proved that there exists a solution u which is
CYP(R™) regular for all 3 € (0,5) and (—A)*u € C%7 for all v € (0,1 — s).
The relationship between the obstacle problem for the fractional Lapla-
cian (7) and the Signorini problem (5) is established by the Dirichlet-to-

Neumann map for the degenerate elliptic operator Lg := V - x};ﬁsv. More
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precisely, given u : R” — R with lim,_, u(z) = 0, we extend it to the upper
half space R’}fl = R" x R} by solving the Dirichlet problem

Leb(z) =0 in R, 15(27,0) = u(a2’) on R™ x {0}.
Then w satisfies

lim Cn7sx;:_2lsan+1’ll~1($/,xn+1) = —(=A)u(2),
Tp4+1—04
where ¢, s > 0 is an only dimension and s dependent constant (c.f. [5]).
Using this characterization, the obstacle problem for the fractional Laplacian
(—A)? can be reformulated as a Signorini problem for the degenerate elliptic
operator L:

~ +1
L =0 in R},
w > @,
- 1-2s
acnillrg0+ Fnt1 8n+1 =0,
(@ @), lim 23 001) =0 on R” x {0},

Localizing the above problem by considering w := wn, where 7 is a radial
cut-off function which is equal to one in B;, we obtain the problem (1) with
obstacle ¢ = n.

Conversely, assume that @ € L°°(Bj) is a solution to (1) with suffi-
ciently regular obstacle ¢ : B] — R and sufficiently regular inhomogeneity
f. Following the argument of Lemma 4.1. in [4], we can transform the local
problem (1) into a global problem of the form (7). Let us explain this re-
duction: As in Lemma 4.1 of [4], we consider the function @ — ¢ and extend
it globally by defining w := (1 — ¢)n, where n denotes a radial cut-off func-

tion which is supported in B+/ and which is equal to one in 31 /o Then,
1-2s~

w satisfies Lyw = x,, 119 for a compactly supported function g (which is
computed in terms of f,7, ¢) with unchanged Neumann data (which is a
consequence of the radial dependence of n). In particular, the inhomogene-
ity is non-trivial in general. To remedy this and to reduce the situation to
that of the Caffarelli-Silvestre extension, we consider an auxiliary function
w which solves the equation Lyw = }l+215§ in R with w = 0 on R" x {0}.
Then the function w — w satisfies

Ly(w—w) =0 in R,
w—w =n(w— ¢) on R" x {0},

lim 2 2%0, (@ —w) < — lim 2720, 1w on R" x {0}
xn+1~>0+ n+l $n+1‘>0+ ntl ’
lim 1720, (@ —w)=— lim z7%0, w
xn+1%0+ ntl xn+1—>0+ ntl

n (R" x {0}) N {@ — ¢ > 0).
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Thus, the function @(z’) := (w — w)(2/,0) solves the following problem in
R™:
@20, (APE>¢nR", .
(—A)*a = in R" N {a(z") > 0}, (®)
Here ¥(2) = cpelimg, o, x};jsﬁnﬂw. Setting ¢ = (—A)"*i and
u(z’) := u(z') — ¢(2') then turns this into an obstacle problem (7) for the
fractional Laplacian:

min {(—A)%u(z’),u(z') + (2’)} >0, 2’ € R™

In this (slightly restricted) sense the fractional thin obstacle problem (1) and
the thin obstacle problem for the fractional Laplacian (7) can be regarded
as equivalent.

Motivated by the available regularity results for the obstacle problem for
the fractional Laplacian (c.f. [21], [5]) and the described (slightly restricted)
equivalence of the local and nonlocal problems (1) and (7), it can be expected
that solutions to (1) enjoy analogous optimal regularity results as the ones
described in (2). Indeed, using the (generalized) frequency function, the
characterizations of global homogeneous solutions in two-dimensions (and a
reduction to this following the argument of Remark 16 in [16]) and regularity
estimates as in [22] allows us to prove this optimal regularity result by purely
local means. As in the sequel we are however mainly interested in higher
regularity properties, we do not further elaborate on the details of this point,
but will instead always assume some initial regularity (c.f. assumption (A2)
in Section 2.1).

1.3.2. Almgren frequency function and blow-ups. In analyzing solu-
tions to the fractional thin obstacle problem, a key tool in [4] consists of
a truncated frequency function: Assuming that w is a solution to (5) with

w(0) = 0, we reflect w evenly about x,41, set w(x) := w(z) — %xiﬂ

and consider
Foo(r) = / 15(2) 2|1 |25 dor
OB,

This function is related to the classical frequency function from [5],
r [ VO |znie 72 dx
B,

J 0P |zn[125do
OB,

r— Nw,Q(T) =

which for a solution to the thin obstacle problem with zero obstacle and
zero inhomogeneity measures its growth and homogeneity at free boundary
points, by the identity

d
e log Foyo(1) = 2Ny o(r) +n+ (1 — 2s).
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Based on this, but dealing with situations in which inhomogeneities are
present, the authors of [4] then define the modified frequency function at 0

ri= Dyo(r) = (r+ 007“2)% log max(Fy,0(r), T4+”+(1_2S)).

Its relevance stems from the fact that it is a monotone quantity (also in the
presence of inhomogeneities, c.f. Theorem 3.1 in [4]) and that it relates the
value of @, (04 ) to the growth of @ at free boundary points (which in turn
can be translated into regularity properties; c.f. Lemmas 6.5 and 6.6 in [4]):
More precisely, assuming that x = 0 is a free boundary point, we have that
for all || < 1/2

Dqy,0(04)—n—(1-2s)
()| < Cla| ™=

Hence, a central ingredient in [4] is the derivation of the following dichotomy
(Lemma 6.1 in [4]):

Either @, 0(04+) =2(1+s) +n+ (1 —2s) or @y 0(04) >4+ n+ (1 —2s).

In particular, this yields the decomposition into the regular free bound-
ary I'i4s(w) and the remaining free boundary (c.f. (4)). Furthermore,
for each zp € I'14s(w), and each blow-up sequence wy; z,(7) = w(zo +
rjx)/(r~ (T2 Fy ()2, the following convergences hold (c.f. Propo-
sition 6.3 in [4])

+

1/2)

+
1/2°

Wr; zo —> Wz, uniformly in B
, , . .
V'wy,; zg = V'wy, uniformly in B

1—2s 1—2s . : +
T, 8n+1wrj7x0 — T, On+1Wg, uniformly in Bl/2'

Here wy,(z) = ¢y sw1s(Qx) and @ is a rotation which might depend on
the choice of the converging subsequence, ¢, s is a normalization constant
and w; s is the (1 + s)-homogeneous function from (3). This in particular
exemplifies the role of w; s as a model solution: It is the unique blow-up
profile at the regular free boundary and it has a flat free boundary. With
this at hand, regularity of the regular free boundary is shown in [4] by
means of the comparison principle and a boundary Harnack inequality (c.f.
Theorem 7.7 in [4]).

Building on the these results in [4], our main statement, Theorem 1.1,
translates into the analyticity (smoothness) of the regular free boundary of
the obstacle problem for the fractional Laplacian:

Theorem 1.2. Let u : R™ — R be a solution of the obstacle problem for the
fractional Laplacian (7) with obstacle ¢ : R™ — R. Then if ¢ is smooth,
the regular free boundary T'14s(u) is locally smooth. If moreover ¢ is real
analytic, the regular free boundary T'14s(u) is locally real analytic.
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1.3.3. Literature. After the seminal articles of Silvestre [21] and of Caf-
farelli, Salsa and Silvestre [4], the thin obstacle problem has been studied
by various authors with different focuses: For instance, Barrios, Figalli and
Ros-Oton [2] study the regularity of the free boundary in the obstacle prob-
lem for the fractional Laplacian under the assumption that the obstacle ¢
satisfies Ap < 0 near the contact region. Petrosyan and Pop [20] investigate
the effects of the presence of drift terms on the the optimal regularity of
solutions to the fractional obstacle problem. A further analysis of the free
boundary regularity in this situation including drifts has been carried out
in [9]. Recently, fully nonlinear versions of the fractional obstacle have been
addressed by Caffarelli, Ros-Oton and Serra [3].

In spite of these activities to the best of our knowledge the higher regu-
larity of the regular free boundary has not yet been addressed in the case of
the fractional thin obstacle problem with general s € (0, 1), but has up to
now been restricted to the case s = 1/2: In the case that s = 1/2 the analyt-
icity of the regular free boundary was proved by Koch, Petrosyan and Shi in
[15] by relying on the Legendre-Hodograph transform. Simultaneously, but
building on higher order boundary Harnack estimates, De Silva and Savin [7]
showed the C'*° smoothness of the free boundary. Finally, in [17] the higher
regularity properties of the regular free boundary are studied depending on
the (potentially low regularity) of the present variable coefficient metrics
and inhomogeneities.

1.4. Organization of the article. The remainder of the article is orga-
nized as follows: After briefly summarizing and explaining our main as-
sumptions and notations in Section 2, we deduce the asymptotic behavior
of solutions (around the regular free boundary) in Section 3. Here we argue
in two steps and first construct barrier functions, prove a comparison result
and a boundary Harnack inequality. Then we apply these tools to infer a
leading order asymptotic expansion of solutions around the free boundary
(Proposition 3.6) and a priori regularity estimates around the free boundary
(Proposition 3.10). Building on these, in Section 4 we then introduce the
Hodograph-Legendre transform, show its invertibility (c.f. Proposition 4.2)
and deduce the fully nonlinear equation which is satisfied by the Legendre
function (c.f. Proposition 4.3). In Section 4.3, we translate the asymptotic
behavior which was deduced in Section 3 in the original variables into the
Legendre variables (c.f. Propositions 4.10, 4.11). Motivated by the struc-
ture of the model solution in Legendre variables (c.f. Example 4.12), we
then define a suitable intrinsic geometry adapted to the nonlinear operator
in Section 5. Based on this, we introduce the function spaces which we are
using to describe the mapping properties of the nonlinear equation and its
linearization (c.f. Definition 5.8). With the aid of the new geometry we in

1Shortly after placing this paper at arXiv, the preprint [11] by Yash Jhaveri and Robin
Neumayer became available, in which the authors prove smoothness of the free boundary
by the approach initiated by De Silva and Savin [7].
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particular conclude that the Legendre function lies in these function spaces
(c.f. Corollary 5.16). Relying on this observation, in Section 6 we discuss the
mapping properties of the nonlinear and linearized operators (c.f. Propo-
sitions 6.2, 6.3), which in Section 7 is used to invoke the implicit function
theorem and to prove Theorem 1.1.

Finally in two appendices, we discuss various auxiliary results. Here the
appendices are structured such that in Appendix A, c.f. Section 8, various
regularity results are collected and proved which might be of independent
interest (c.f. Propositions 8.1, 8.2, 8.10 and the eigenfunction characteriza-
tion in Section 8.1). This in particular includes the explicit computation of
the higher order eigenfunctions to the fractional Laplacian in the (flat) slit
domain with mixed Dirichlet-Neumann data (c.f. Lemma 8.4 and Propo-
sition 8.8 in Section 8.1). In Appendix B (c.f. Section 9), we provide the
proofs of various results which are used in the main body of the text (e.g.
Propositions 5.12, 5.14 and 5.15), but which we decided to prove later, in
order to clarify the structure of our main argument in Sections 3-6.

2. Preliminaries

2.1. Set-up. In this paper, we will study the higher regularity of the free
boundary around regular free boundary points. We start with the following
observation:

Proposition 2.1. Let @ be a solution of (5) with f € C3'(B]"). Then,

g 1 -
mf(x,a O)xi—i—l - an+1f(l‘,, O)xi+1

is a solution to the Signorini problem

1-28v7,— _ .3—2s . +
Vez, Vo=, 7fin By,

— : 1-2s — ~ . 1-2s — /
w >0 lim =« Opr1w <0, w lim =z 1w=0o0onB
= apo0g L = o104 T n+ L

where f(x) € COY(B]") and
f(@) = (F(2) = F@',0) = O f(', 0)ns ) 272,

1 -
- A'f(2,0) - ————A'0 ’,0 .
2@ =2y 00— 3T A0 /(@ 0)znn
In particular, the free boundary of w remains unchanged, i.e. 'y = Ly.

Proof. The statement follows from a direct computation and a Taylor ex-
pansion of f at {x,+1 = 0}. O

Compared to the problem (5), the change from @ to w provides additional
decay of the order z2 41 for the inhomogeneity. This has the advantage
that we can treat the cases s € (0,1/2] and s € (1/2,1) simultaneously
in our analysis (c.f. Remark 7.5). In particular, we can work with the
same function spaces (c.f. Section 5) in both cases. As in this article we
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are primarily interested in smooth or analytic inhomogeneities, the loss in
the derivatives which is involved in this reformulation does not pose any
restrictions onto our framework. Since we are primarily interested in the
regularity of the free boundary, and since 'y = ', in the sequel we mainly
consider (9) instead of (5).

We recall that our equation enjoys the following scaling and multiplication
symmetries:

Lemma 2.2 (Scaling and multiplication symmetries). Let w : B — R be
a solution to (5) and consider constants ¢ >0, A > 0 and a point x¢ € Bj.
Then in B;Y with r € (0, \"Y(1 — |zo|)) the function

T = We 3 (2) 1= cw(zo + Az),
is a solution of
V20 VWm0 = Ta 1 fe o
with Signorini boundary conditions. Here f. zo(x) := cA? f(xo + Ax).

Proof. This follows from a simple computation. ([

Relying on these properties, throughout the paper we will assume that:

(A1) w € C2(Bf N{zn+1 > 0}) is a solution of the Signorini problem

V-2l 2Vw=237%fin B,

n+1 n+1
w >0 on By,
lim x}lff&nﬂw <0 on B, (9)

Tp4+1—04
. 1-2 ~
xn+h1g0+ Ty 1 Onpiw =0 on By N{w > 0},
with f : Bf — R satisfying assumption (A4). The boundary condi-
tions are attained in a pointwise sense (c.f. (A2)).
(A2) w is sufficiently close to the blow-up limit w; s in the sense that

IViw — V,wl,sHCO(Bj) + H?Crlzflsanﬂw - 5371112188”+1w1,8”00(3j) < ¢o,
for some small ¢y > 0. Here V' denotes the gradient with respect to
the tangential directions only and wy s is defined in (3).
(A3) The free boundary I'y, in B] only consists of regular free boundary
points and is a C1® graph for some a € (0, 1), i.e.

LywNBy={(x",g(x"),0): g€ C’l’a(Bf)}.

Moreover, we assume that g(0) = |[V"”¢(0)| = 0.
(A4) The inhomogeneity f is C%1(B;") regular and it satisfies
||f||c0,1(Bl+) < g for a small, positive constant pyg.
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Let us comment on these assumptions. By Proposition 2.1, assumption
(A1) does not pose any restrictions, as we are interested in the regular-
ity of the free boundary in the presence of smooth inhomogeneities f. If
the conditions of the equivalence of the local problem (9) and the nonlocal
problem (7) are satisfied (c.f. Section 1.3.1), the assumptions (A2)-(A3) are
consequences of the regularity results for w and the regular free boundary
from [4]: Since our result is local, we can always assume these by using the
scaling and multiplication symmetries from Lemma 2.2 combined with the
identification of the blow-up limits of solutions w of (5) at the regular free
boundary (c.f. Section 1.3.2). Finally, a further application of Lemma 2.2
with a suitable rescaling allows us to always assume the smallness condition
for f from (A4).

Remark 2.3 (Optimal regularity). We stress that we do not assume that w
has the optimal reqularity d;w € C%*(By), i € {1,...,n} and 33};2158”4_110 €
CO1=5(Bf"). We will see later (c.f. Proposition 3.6) that this optimal regu-

larity is a consequence of our assumptions (A2)-(A4).

Remark 2.4. We remark that by the boundary Harnack inequality (Theorem

. 0; .
7.7 in [4]) we have that 0;g(z") = _8%:; (@920 J € {1,...,n -1}
(where the right hand side is understood as a Holder continuous extension
up to the boundary). Therefore, in this situation we can always assume that

[V”g]co,a(Bj/z) is sufficiently small by choosing the constant ey from (A3)

sufficiently small (by noting that the size of the Hélder norm is controlled
by ||V'w — Vw4 co(BHY c.f. for instance the proof of Theorem 2 in [16]).

Remark 2.5. Sometimes we extend the solution w and the inhomogeneity
f evenly about x,y1. Here we use that by the complementary boundary

conditions it holds that limO xijjsanﬂw =0 on B} \ Ay. Thus, after
Tn4+1—U4

the extension, w solves
1-2 —2s 7 -
Vo |z |V EVw = |21 2725 f in By \ Aw,
w=0 on A,.

With a slight abuse of notation, we still use the symbol Ls to refer to the
evenly reflected fractional Laplacian, i.e. Ly =V - |z,41|' 72V,

2.2. Notation. In the sequel we use the following notations:
. Rffl = {(2", xp, 1) € R 12,1 >0},
R™ x {0} := {(2", 2p, Tps1) € Rz = 0}
e Fuclidean balls:
B(zg) := {z e R"™ : |2 — x| < 1),
Bl (z0) := By(z0) N R},
Bl(z0) := Br(z0) N (R™ x {0}).
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If o is the origin, we also write B,, B;” and B, for simplicity.

e We use Cj(en) to denote the cone in R™ x {0} with axis e, and

opening angle 7.

e For s € (0,1), Ly :== V- 2172V is the degenerate elliptic operator

n+1
associated with the fractional Laplacian (—A)®. To abbreviate the

associated weight function we introduce w(z) := x}zfls

e Weighted L? space: For a measurable set Q C R""l [2(Q) =

L?(9, x}lflsdx) is the Banach space of measurable functions u : Q —

R such that

lollzie = ( [ |u<:c>|2az<ac>dsc)é < .

Weighted Sobolev space: HL(Q) = Hl(Q,x}Lflsd:c) is the Banach
space of functions u € L2(Q) whose distributional derivatives exist
and |Vu| € L2(Q2). We define the norm

lull gy = llullzz @) + 1IVullrz @)-

e Given u € L2(€), we denote the L2 average by

Itz = 55 ). |u<w>|2w<m>dx)%, a(2) = [ afe)da.

e Let w be a solution to the thin obstacle problem (associated to L)

in By". Then
Ay :={z € B} :w(xz) =0} (contact set),
Q= {x € By : w(z) >0} (positivity set),
L'y 1= 0p/ Ay  (free boundary).

e Model solution:

1 S
wi s(z) = o <\/x% + 22, +xn> <xn+s\/x% +x%+1)

is a model solution to the free boundary problem with flat free
boundary Iy, , = {n = Tnq1 = 0}. We let

S
wo,s(2) = wo,s(Tns Tnt1) 1= (\/m—F :L"n> :

Note that for some, only s dependent constant cg

anwl,s ({L’) = CsWo,s (x)7

_ S
33711+2158n+1w1,5(x) = Css — wO,l—s(_l‘n» xn+l)-

1

e We use ¢y > 0 to quantify the closeness of w and the model solution

wi ¢ in the C*(B]) norm (c.f. assumption (A3)).
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We usually use z to denote the original coordinates and y to denote the
coordinates after the partial hodograph-Legendre transformation. In the
following we collect the notation which we use after the change of coordi-
nates:

e Quarter space:

Q+ = {(Y" Yns Ynt1) € R 1y > 0,5541 > 0},
Edge of the quarter space:

P = {(y”7yn7yn+1) e R Yn = Ynt+1 = 0}.

e Baouendi-Grushin metric dg(z,y) (c.f. Definition 5.1).
e Baouendi-Grushin balls:

Br(yo) == {y € R"™ 1 dg(y,y0) < R},
B (yo) := Br(yo) N Q4.

If 9o is the origin, we write Br and BE for simplicity.
e Fractional Baouendi-Grushin operator: For s € (0, 1)

Ags = (Unynt1)' "W + Y )A” + 0n(Ynyns1)' >0,
+ On+1 (ynyn+1)17258n+1,

where A” = 2?2_11 Oii.
The associated weight function is also abbreviated as
w(Y) = (Ynyni1)' >,

e Similarly, as above, we define the weighted Banach spaces L2 (Q) =
L?*(Q, w(y)dy) and HL(Q) = HY(Q,w(y)dy). Given u € L2(£), we
use Hu||ia(9) to denote the L? average of u.

e Function spaces: We use the global function spaces Xq ¢, Yo, and
their local analogues X, ¢(Bf), Ya.e(B%) (c.f. Definitions 5.8, 5.11).

e Given u € Xa,e([)’{r) or u € X, ., we denote the r—neighborhood of
u in the corresponding Banach space by

Up(u) = {v € Xo (Bt |lv— UHXQ,E(BT) <r} 0<r<oo.
e Model solution wy ¢ in the Grushin coordinates:

2542 2s, 2

vo(y) = — Y Y Y-

2(1+s)
e F'is the nonlinear function in (28). L, denotes the linearized oper-
ator of I at v.

We also rely on the following convention:

e We denote the derivative with respect to the z” (or y”) components
of z (or y) by V”.
e We use the Landau symbol f(x) = Os(g(x)) as  — 0 to denote that
f(z)

lin%) = Cs, where the constant Cj is allowed to depend on s.
r—r
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e Without specific notice a constant C' is assumed to be universal, i.e.
it is assumed to only depend on the dimension n.

3. Asymptotics

In this section we derive a leading order asymptotic expansion for solu-
tions of the fractional thin obstacle problem around the regular free bound-
ary (c.f. Proposition 3.6). Moreover, we prove regularity results for solutions
to the fractional thin obstacle problem (c.f. Proposition 3.10). To achieve
these objectives, we construct upper and lower barrier functions (c.f. Lem-
mas 3.2, 3.3), which allow us to prove a non-degeneracy result on solutions
by means of the comparison principle (c.f. Proposition 3.4). Then a suit-
able boundary Harnack inequality (c.f. Proposition 3.5) yields the desired
asymptotic expansion around the free boundary.

This section is divided into two parts: In the first part (Section 3.1), we
provide the necessary technical tools (e.g. the construction of barrier func-
tions, comparison results, a boundary Harnack inequality), which are then
applied to the setting of the thin obstacle problem in the second part of the
section (Section 3.2). We use similar ideas as in [16], where these technical
tools are developed for the variable coefficient thin obstacle problem.

3.1. Barrier functions, comparison results and the boundary Har-
nack inequality. We recall and provide some necessary tools of dealing
with the fractional thin obstacle problem. As the results of this section are
also of interest in a more general framework, we use the following conven-
tions in this part of the section.

Assumption 3.1. In the sequel, we consider the slit domain By \ A, where
A= {(2',0) s 2 < g(a")},
for some CH* function g. Moreover, we define its boundary as
I:={(2,0): 2, = g(z")}.
For convenience and normalization purposes, we assume that
9(0) = [V"g(0)| = 0.

We also recall that Ly := V - |2, 1|'72*V.

These assumptions are clearly motivated by the application of the follow-
ing results to the fractional thin obstacle problem. In providing the tools
which will later be applied to solutions of the fractional thin obstacle prob-
lem, we begin with the construction of a lower barrier function.

Lemma 3.2 (Lower barrier function). Let s € (0,1), o € (0,1), 7 €
(0,min{2, =5} and let By \ A be as in Assumption 3.1. Then, if [V"g] 0.

s? s
is sufficiently small depending onn, s, T, there exists a function h € C%*(By),
h(z) > 0 in By \ A and h(x) =0 on A, such that:



THE FRACTIONAL THIN OBSTACLE PROBLEM 761

(i) h is a subsolution to Ls which satisfies

Lsh(x) > C’n,sm;;fls dist(x, T') 27577 in By \ A.

(ii) h satisfies the non-degeneracy condition:
dist(z, A)
dist(z,I")

(iii) A has the following leading order asymptotic expansion at xo € I'N
Bl/Z:

2s
h(z) > ¢, dist(x,I')® ( ) for x € By.

) = (il = a0) v Pt iy + (0= a0) o, )

#19glens O ((4/lle = a0) v 2
+(x — x0) - Vg )’ — 20|%) -

(=V"g(20),1,0)

1+[V"g(x0)[?
mal of A at xg. The symbol V" denotes the gradient with respect to
the 2" components of x = (2", xn, Tpi1)-

Here I' 3 zg = vy, = 1s the in-plane, outer unit nor-

Proof. We construct the desired barrier function by patching together suit-
ably rotated profile functions. These profile functions are given by the de-
rivative of the model solution to the fractional thin obstacle problem. By
a slight convexification, it is possible to control the error terms that arise
from the patching procedure.

Let
S
wo,s(x) = <\/x%+x%+1 —i—:zn) .

For T € (0, 1—;3], a direct computation shows that
Lewgt™ = 7(1 4 7)|en || Vwo s [wi ;!
1-2s6 2/..2 2 -1 1-i47
=71+ 7)|wns1| 7287 (a2, 4 35,41) 2w ¢ (10)
1
> (1 )22 + ) BOHT2),

Here we used that 1 — 1 4+ 7 < 0 by the definition of 7, and wo(z) <
2° (a5 + x5 )2,

Let {Q;}; be a Whitney decomposition of By \ I' and let {n;}; be a
partition of unity associated to {Q;} such that n, satisfies Opy1mx = 0 on
{zn+1 = 0}. Let &; be the center of the Whitney cube Q; and let z; € T
realize the distance of #; to I'. Let r; = diam(Q;), which (by definition
of a Whitney decomposition) is equivalent to dist(Q;,I'). Let v; be the
(in-plane) outer unit normal to A at x; and set

wy(z) := wos((r — ) - Vi, Tny1)-
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Furthermore, define

Z k(T N

Then
Lohy = 3 (Lam)wi ™™ +2 lenm (Vi - V)

k
+ an(sti*'T).
k

We estimate the above three sums separately. Firstly, by using >, np = 1,
we observe that >, Len; = 0. Thus, for any x € QQ; with ¢ fixed,

Y (Lsmp(@))wi (@) = > (Lom) (w7 (2) — w7 ().
k k

By the assumption that 0,117 = 0 on {x,+1 = 0} and by the regularity of
Nk, we further conclude that |Op+1m%(z)| < Clxp41|. Combining this with
the fact that

vk — vl < CIV"gleoart, Qr CN(Qo),
yields

Z(Lsnk)wiﬁ < Cps[V' 9]00a|$n+1|1 2s —2+s(1+7—)+ '
k

Similarly, the second sum can be estimated by
21+ 7) > |2 (Vi - Vug)wf

k

|1_25T—2+s(1+7—)+a

< Cn,s[vﬂg}CO,a ‘l'nJrl v

Using (10), the last sum can be bounded from below by

an(x)(st;-FT(x)) > CSZT(l + 7_)|£Cn_"_1|172374;24—5(1-{-7')7
k

for z € Qy. Combining all these observations, leads to
Lyhr(2) > Cy | |20, 20T (11)

for a fixed 7 € (0,2=%] and s € (0,1), if [V"g]po.. is sufficiently small
depending on 7, s and n. Thus, setting

h(z) = ho(x) an w () + wi()*7),

for fixed 7 € (0,min{2,1=2}), yields a function which satisfies h(z) > 0.
Moreover, by similar considerations as above (with 7 = 0) we have

Lgho(z) < C’n,s[V"g]Co,a|xn+1|1_257‘[2+5+°‘. (12)
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Combining this with (11) gives

Lgh(z) > Cnvsrx}ljjsrz_zﬁ(yﬁ).

Here we have used that 7 < a/s (as there is no gain of the form 7s in the
lower bounds for patching errors originating from hg) and we have chosen
[V"g] 0. sufficiently small depending on n,«,s. Finally, h(z) satisfies the
non-degeneracy condition
dist(z, A) ) *
h(z) > cpdist(z,T)° | ————=5]
(%) 2 en dist(x, T) (dist(:z:,F))

This concludes the proof. O
Using a similar proof, we can also construct an upper barrier function:

Lemma 3.3 (Upper barrier function). Let s € (0,1), a« € (0,1), 7 €
(0,min{2, =5} and let By \ A be as in Assumption 3.1. Then, if [V"g] 0.

is sufficiently small depending onn, s, T, there exists a function he C%$(By),

h(x) >0 in By \ A and h(z) =0 on A, such that:

(i) h is a supersolution to Lg with

Loh(z) < —Cnvsrx}ljgls dist(z,T) 725157 jn By \ A.

(ii) h satisfies
dist(z, A)

2s
> for x € By.

Proof. Let h(z) = ho(x) — hr(z), where hg and h, are the same functions
as in the proof of Lemma 3.2. The claims of the lemma follow analogously
as in the proof of Lemma 3.2. ([

With the lower barrier function at hand, we can proceed to the following
comparison principle.

Proposition 3.4 (Comparison principle). Let s € (0,1) and let By \ A be as
in Assumption 3.1. Suppose that u € C(By) N HY(By, |zn11]172%dz) solves

Lou= |xn+1|1_28f in BI\ A, u=0onA,
where for some sqg > 0 and dy > 0 the function f satisfies,
. 29—
[[dist (-, )77 f]] oo 00) < 90

Moreover, suppose that u satisfies the following non-degeneracy conditions

1-—s
u(z) > 1 0nB1ﬂ{|$n+1‘Z€_ 2(”"‘1)}7

u(z) > =278 on By x (=1, ).
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Then, if 09 = do(n, s, so,a) is sufficiently small, there exists a constant
cn, > 0 such that

dist(z, A)

2s
— / [R—
dist(x,I‘)) ;@€ By x (=40).

u(x) > ¢, dist(z, I')* (
Proof. The proof follows from the construction of a suitable comparison
function (which relies on our barrier function from Lemma 3.2) and the
comparison principle.
For zg € Bi/2 x (—=£,0), let

n+1
P(ZE) = ’ZU/ — $6|2 — 2—723’1737“—1—1

Note that LsP(z) = 0. Let h(z) be the barrier function constructed in

Lemma 3.2 with 7 = 7(s, sg, ) satisfying the condition 7 € (O, min{¢, % )
from Lemma 3.2 and chosen such that st < sy (e.g. it would be possible to
set 7 := 2 min{2, 1=% %0}). We define our comparison function to be

i(z) = u(z) + P(z) — 2 %h(x).

Using the non-degeneracy conditions from the assumptions of the proposi-
tion, it follows that

1
@2 5 on {|ent1] 2 £},
a>0on 0B, x (—(,0),
2> 0on A.

Moreover, for dy = dp(n, s, So, ) > 0 sufficiently small,

Lyt = |zpq|"7%f — 2781,k
< Oglzn 1) T2 dist(x, T) 72550 — 2780, (7 |m, g |12 dist (2, T) 25T
S 0 in Bl \A

Thus, by the comparison principle, %(xg) > 0. This implies that

dist(z, A) > 2

w(zo) > 2 8h(z0) > 2 8¢, dist(z, T)* (dist(x L)

Since z¢ is an arbitrary point in B] /2 X (—¢,0), we infer the desired lower
bound for wu. g

Combining the comparison principle from Proposition 3.4 with the result-
ing non-degeneracy property gives the following boundary Harnack inequal-

1ty.

Proposition 3.5 (Boundary Harnack). Let A,T" be as in Assumption 3.1.
Suppose that uy,us € C(B1) N HY(By, |wy41|72%dx) are positive in By \ A,
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even in the xny1-variable and that they solve

Louy = ]xn+1|1725f1 in B\ A, wu; =0 onA,

Lous = |:cn+1|172sf2 in B\ A, uy=0 on A,
where the inhomogeneities f;, i = 1,2, satisfy the following bound: For some
so >0

[dist (- T)* 77 fil| e g, \a) < O0-

Then, if [V"gl 0. and 09 are sufficiently small depending on n, s, sy and «,
there exists a constant Cy = Cy(n, s) > 0, such that
UQ(%enJrl) uz () _1U2(%€n+1)
u(zens1) — wi(w) ~ 0 uy(3ent1)

Co in By \ A (13)
Moreover, us/uy extends to a COP function in B,y for some B € (0,
More precisely, there exist constants 8 = [(n,s,sp) € (0,1) and C
C(n,s) >0, such that for all xg € AN 31/4

1).

us(ieny1)
Ul(%en+1)
Proof of Proposition 3.5. Step 1: Proof of (13). The inequality (13) is
a consequence of the comparison principle: Without loss of generality we

assume that uj(ept1) = ua(en+1) = 1. By the Harnack inequality, for any
B, (o) € B \ A, there exists a constant C' = C(n, s) > 0 such that

<c |z —zol’, x€Byjlxo).  (14)

sup wu; < C inf w4+ Cr? sup |fi], i=1,2.
BT./2(£0) B'r/2(‘io) Br(i())
Hence, if 8y = do(n, s, s0) is sufficiently small, there exist constants & C >
0 depending on n,s such that ¢ < w;i(r) < C in {z € B3y : |Tpt1| 2
(= 2(1717131)} (note that |fi(x)| < dgf*+%0=2 if |2,,1| > £). Thus, by a
comparison argument, using the upper/lower barrier function (c.f. Lemma
3.3 and Proposition 3.4), we have that for all z € B/,

dist(az, A) ) *
dist(z, I‘)> ’

dist(az, A) ) **

dist(z, I‘)) ’

if 8o = do(n, 5, 50, @) is sufficiently small. Here the constants C' and & might
be different from the equally denoted ones from above. They however also

only depend on n,s. Hence, there exists a constant Cy = Cp(n, s) € (0,1)
with

uy(x) < Cdist(z,T)* (

ug(z) > édist(z,T)* (

uz(x) — Couy(x) > 0.

As the roles of uy,us can be reversed, this results in (13).
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Step 2: Proof of the Hélder continuity. The proof of the Hélder continuity
of the quotient follows from a scaling argument. Since the proof is very
similar to the one given in Lemma 3.24 in [16], we only give a short outline
here: Without loss of generality we assume that xyp = 0. As in [16] we prove
that there exist sequences of constants {ag }ren, {bx }ren such that

(i) it holds Cp < aj, <1 < by, < Cyt and by —ay, < Cpk with py € (0,1),
(ii) by — ar, > Cpk with puo € (0,p1] and C > 1 being an absolute
constant,

(iii) arul S u9 S bkul in B27k.

The sequences are constructed inductively by a scaling argument and an
application of Step 1: We set

uz(27%2) — apui(27%2)

b, — ay,

_ bpun (27F2) — we(27a)

, Wa(x) : .

b, — ag,

U~}1($) =

As these functions are a convex combination of us(27%z), we may without
loss of generality assume that

We rescale this and define

) e a2
w () w (52)

This in particular implies that 2wi(en4+1/2) > 1. In order to prove the
existence of the sequence ag, by with the desired properties (i)-(iii), we seek
to apply Step 1 to the functions wi,u. To this end, we have to check the
size assumption on the respectively associated inhomogeneities and the non-
degeneracy condition. We only provide the proof for the scaling argument:
We have

wi(x) ==

2—2k

2=ke,
(bx — ax)u1 (T*l

1-2 1-2s ¢
stl = ) xn+1sf1’2*kar = xn—l—lsfl (l’)

Setting T'y—r := {x € By : 27%z € T'} and recalling that dist(z,['y—x) =
2F dist(27%2, T), thus yields

| dist(-, Dy—k )27 fi[| ooy

2721’6 ) N . )
= 0 : e 9(2—s—50) | dist(-,T) _S_SofluLOO(BQ_k)
k — Qk)ul ( 7 )
9(—=s—s0)k
o < CLomsok 2k,

<z
T Cpkahs
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Thus, if gy > C~147127%  Step 1 is applicable and it results in
— > (.
Spelling this out, leads to

C
(ar + —O(bk —ag))ur < uz < bpuy in Byk-1.

2
Setting axy1 := ag + %(bk — ag) and bgiq := by therefore implies that
b1 — Qpy1 = ( - %) (by — ag), which inductively yields bgi1 — ags1 =

C (1 — %)k, where C' = Cy 1 _ . This leads to a Holder exponent 8 which
is less than or equal to min{so, 1, |log, (1 — %) |} and a constant C in (14)
with C' < Cyt — Co. O

3.2. Application to the fractional thin obstacle problem. With the
results of Section 3.1 at hand, we now turn to the fractional thin obstacle
problem. In this context and in the whole of the remaining text, we as-
sume that the conditions (A1)-(A4) from Section 2.1 hold. In particular,
we note that A, and I', satisfy the requirements of Assumption 3.1. Thus,
applying the results from the previous section allows us to infer a leading
order asymptotic expansion (c.f. Proposition 3.6) and regularity results (c.f.
Proposition 3.10).

We begin with a particularly relevant consequence of the boundary Har-
nack inequality and derive the following leading order asymptotic expansion
of solutions to (9) with inhomogeneities which satisfy the condition (A4).
We remark that by Proposition 2.1, this asymptotic expansion transfers to
the solution of (5).

Proposition 3.6. Let w : B — R be a solution to (9) and assume that
the conditions (A1)-(A4) hold. Then, if ||f||00,1(B;r) and [V"gl¢o.a are suf-
ficiently small depending on n, s, a, there exist a constant € (0,1 —s), a

function c : T'y, — R with Ty, 3 29 = c(xq) being C%P regular, such that at
each xg € I'y,

(i)
w(z) = c(x0)w1,s(Quo (), Tny1) + Os (,w _ xo‘l-ﬁ-s-i—,@) ’

where © € By/4(0), Quy(z) = (x — 20) - Vay is an affine transfor-
mation at xg, and vy, s the in-plane outer unit normal of A, at
ZQ-.

(ii) Fori e {l,...,n}, x € Byy(wo) and Qu,(v) as in (i),

8zw($) = C(xO)(ei : Vmo)wO,s(Qro ($), $n+1>

+ 0, (w0, (Quy (@), 1) = w0l
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(iii) For x € By4(z0) and Qu,(z) as in (i),

S
s—1 wO,lfs(*on (m)a anrl)

+ OS (U)O,l—s(_on (x)u xn-i—l)’x - xolﬁ) .

Here the notation Os in (ii) means that there exists positive C = C(n,s)
universal, such that

2 01w(e) = c(ao)

|Oiw(z) — c(xo)(€; - Vay )w0,s(Qug (%), Tnt1)]
< C(TL, S)|LE - $0|ﬁw0,8(Q$0 (:C)v anrl)

holds for any xo € I'y, and x € By 4(x0). The same applies to the use of Os
in (i) and (iii).

Remark 3.7. Proposition 2.1 implies that the asymptotic expansion from
Proposition 3.6 also yields an analogous asymptotic expansion around the
reqular free boundary of a solution w to (5) with inhomogeneity fe c3(B])
(i.e. without the modifications of Proposition 2.1). We also note that the
asymptotic expansion for tangential derivatives d;w, i € {1,...,n}, only re-
quires that f € CY%Y(By). The higher regularity assumption on f is only
needed for the asymptotic expansion of Opy1w (and hence of w).

Proof. We first show property (ii). This follows by applying the boundary
Harnack inequality (Proposition 3.5) to d.w and hg, where e € C;(e,) and
ho(x) is the barrier function from Lemma 3.2 with 7 = 0. Here C(ey)
denotes a cone with opening angle n in R"™ x {0}. More precisely, by the
proof of Lemma 3.2 (c.f. (12)) we have that on the one hand

Lsho = |2n41]'2k(z) in By \ Au,
where the function £ satisfies

Hdist(-, Fw) < Cn,s[v”g]CO,a'

2_S_akHL°°(Bl\Aw)

Moreover, hg satisfies the non-degeneracy conditions and the asymptotics
stated in Lemma 3.2 (ii), (iii). Thus, hg satisfies the assumptions of Propo-
sition 3.5. On the other hand, by the assumption (A2) and Proposition 3.4,
if €g is sufficiently small, then d,w with e € C;](en) is positive in By \ Ay.
Moreover, it solves

Ls(0ew) = |27 20 f in By \ Ay, Oew =0 on Ay,

where by (A4) [|Ocf| Lo < po. Thus, by Proposition 3.5, if o = po(n, s, @)
and [V"g] 0. are sufficiently small, the quotient d.w/hg is C%P regular up
to A, for some 8 = ((n,s). More precisely, there exists a C%# function
be : Ay — R and a constant C' = C(n, s) such that for each z¢ € Ay,

Oew(x)
ho (x)

— be(x0)| < Clx — xo|”.
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Multiplying by hg on both sides of the estimate, we obtain that
dew () = be(0)ho(x) + Os(ho(z)|z — 20]?).

Using the asymptotics of hg (c.f. (iii) in Lemma 3.2) and restricting b to
Ty, we therefore deduce that around xy € I'y,

dew(x) = be($0)w0,8(on (%), Tny1) + OS(WO,S(Q:BO (%), Zny1)|e — $0|B)-

For 7 ¢ C%(en), we express T = cie, + coe for some e € C%(en) and write
Orw = 10w + c20.w (c.f. Theorem 7.7 of [4]).
In order to obtain the leading order asymptotic expansion for the (weighted)

normal derivative x};ﬁsanﬂw, we note that it satisfies the conjugate equa-
tion with respect to w (c.f. [5]): More precisely, let w(x) := |Tn11| 72501 1w.

We reflect w and f oddly about x,41 (thus w is even about z,4+1). From
the equation we have |z, 1|**710, 1w = 0 on A,. Thus, @ solves

Lt = 0p1f in B\ Qy, @=0o0nQ,,

where

f(x) — $727,+1f(xa $n+1) for Tpt1 > 07
—p 1 (2, —an41)  for an <0

We note that the inhomogeneity 9,11 f is of the form |z, 1|h(z) with h(x) €
L*°. Moreover, by assumption (A4) the smallness condition for f implies a
smallness condition for h. As a consequence, we may apply the comparison
result of Proposition 3.4 to w with s being replaced by 1—s. This concludes
the proof on the asymptotic expansion for w.

To obtain the asymptotic expansion of w at xg € I'y, which is claimed in (i),
we use an argument relying on path integration as in Corollary 4.8 in [16].
We obtain that

w(z) = ce(20)w1 s(Quo (), Tny1) + Os(|z — xo|1HHP),

where ¢(zg) = %bn+1(l‘0). Thus, c¢(xg) > 0 for any zy € I'y, and ¢ €
CO8(Ty,).

In the end, we express b.(zp) in terms of c(zp) and vy,, and infer that
be(x0) = c(xp)(€-vy,) for any e € S"N{ep+1 = 0}. This completes the proof
of property (i). O

For convenience of notation we introduce the following convention:

Convention 3.8. Let o € (0, 1) be the exponent from assumption (A3) and
let B € (0,1) be the Hélder exponent from Proposition 3.6. Then in the
sequel, we assume that § = .

We stress that this does not cause severe restrictions on our set-up, as we
did not specify the explicit form of the exponent « (therefore we can always
reduce its size appropriately) and as the regularity of the free boundary is
also inferred from a boundary Harnack inequality (c.f. Theorem 7.7 in [4]).
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Convention 3.9. Without loss of generality we assume that ¢(0) = 1, i.e
the blow-up of Op,w at 0 is wos. Moreover, without loss of generality we
will assume that % < c(xg) < % for any xg € T'y,. This can be achieved by a
scaling w(Xox) /NS for a sufficiently small Ao = Mo(n, s).

Invoking interior regularity estimates for the fractional Laplacian in non-
tangential regions (c.f. Propositions 8.1 and 8.2), we also obtain the leading
order asymptotic expansion for higher derivatives of w. To this end, we
compare the derivatives of w with their blow-up at a given free boundary
point . More precisely for z¢ € 'y, and A € (0,1/2), we consider

w(xg + Az
(o) = A, (15)

We denote the associated blow-up of wy, x by wg, () := )l\ir% Wy, A () and
—

note that by the asymptotics from Proposition 3.6

Wao () = c(@0)w1,s(2 - Vag, Tnt1)- (16)

Using interior estimates in non-tangential regions around each xg € I'y,, we
obtain the following (higher order) asymptotic expansion:

Proposition 3.10. Let w : B] — R be a solution to (9) and assume that
the conditions (A1)-(A4) hold. Let o be the constant from Proposition 3.6.

; ; — . 1 2 .
Then in a non-tangential cone No = {x : |z| < 54/x2 + x|} we have:

(i) In A_ == NoN{zp < xpy1,1/4 < |z| < 2}, there exists a constant
Cs > 0 such that for any v € (0,1) and X € (0,1/4)

H%;ﬁ(wxo,)\ Way )l o (a +Z||$n+18 WA — Wap) [[com(a)

+ [ 3 O 1 (weg x — wwo)HCO»W(A,)
n+1

+ Z Ha 'T}L+218 (Wgg N — wxo)HCOW(Af)
,7=1
< C A%

(ii) In Ay = Ny N{xp > —xny1,1/4 < |z| < 2} there exists a constant
Cs > 0 such that for any v € (0,1) and X € (0,1/4)

[wzo,x = Wag llo2r(ay) < CsA™

Proof. We note that since the regular free boundary in By is a Cb® graph,
Ty ={z: 2, = g(z")} with g(0) = |[V"g(0)| = 0, we have

QO(Z') = Tn, ‘Q:}co (Jf) - QO(fE” < C[V/IQ]CO,a|$|1+a~ (17)
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Thus, for [V”g]eo. sufficiently small, 'y, , N {z € Np : 1/4 < |z < 2} is
empty for every A € (0,1/2). Hence,
Lg(Waon — Way) = T 3" faor i Ay UA_,
Wygx — Wy =0 0n BN A_,

: 1-2s /
lim 2, 7°Ons1(Wegn — Waze) =0 0n By N AL,
Tp+1—04

where

Frop(@) = A% 4y f o + M)
with
92—
Uzoalcon sty = A" fleor s, o))
Moreover, by property (i) of Proposition 3.6
[Wapx — Way| < CsA”.

Then (i)-(ii) follow immediately from the up to the boundary a priori es-

timates for the operator Ly = V - :p}jﬁv with Dirichlet and Neumann
boundary conditions, respectively (c.f. Propositions 8.1 and 8.2). (Il

4. Hodograph-Legendre transformation

Relying on the asymptotic expansion from the previous section, in this
section we carry out a Legendre-Hodograph transformation to fix and flatten
the regular free boundary (c.f. Proposition 4.2). While this fixes the free
boundary, it comes at the expense of transforming the fractional Laplacian
into a fully nonlinear, degenerate elliptic, fractional Baouendi-Grushin type
operator (c.f. Proposition 4.3 and Example 4.12). As in the previous section,
we assume throughout the section that the conditions (A1)-(A4) are valid.

We consider a partial Hodograph transformation which is adapted to the
fractional thin obstacle problem:

T:Bf = Qy:={yeR" :y, >0, ypy1 >0},
x = T(zx) =y,

1—-s5 _
= x}lff(‘)ﬂ“w(m’).

(18)

7

y'=a", (ya)* = Ouw(z), (yn+1)?" )

S

Here w : B] — R is a solution to the thin obstacle problem (9) satisfying
the assumptions (Al)-(A4). We note that by the asymptotic expansions in
(ii) and (iii) of Proposition 3.6, the Hodograph transform has the following
mapping properties

T(int(By)) C int(Q4), T(Aw) C {yn = 0,9n4+1 > 0},
T(int(Qw)) C {ynJrl =0,yn > O}v T(Fw) C {yn =0,Ynt1 = 0}'



772 HERBERT KOCH, ANGKANA RULAND AND WENHUI SHI

Associated with the transformation T', we define the Legendre function, v,
associated with w
% L 2 20-9)
o) = wle) —m+ gty (19)
where y = T'(x). With this definition, the function v satisfies the following
dual conditions

Oiv(y) = dw(x), i € {1,...,n— 1},
Yn Ono(y) = —(28)zn, (20)
yiﬁr_llanﬂv(y) =%
In particular, the free boundary is parametrized by
L 1o
%yn Sanv(y)|y:(y//7070)-

Thus the study of the free boundary reduces to the analysis of the regularity
properties of v and its (weighted) derivatives (c.f. Sections 4.3-7).

Ty = —

4.1. Invertibility. In this section we show that the Hodograph-Legendre
transform which was defined in (18) and (20) maps B;;E invertibly onto its
image (c.f. Proposition 4.2) if the radius dyp = do(s) is chosen small enough.
To this end, we observe that, if 7" is the Hodograph-Legendre transform with
respect to a solution w of the thin obstacle problem (9), the regularity of w
(c.f. Remark 2.3) and the asymptotic expansion of w (c.f. Proposition 3.6))
immediately imply that 7" is continuous up to Bj. Moreover, by using the
asympototics of d,w and x}lffanﬂw from Proposition 3.6, we also obtain
the asymptotics of y = T'(x) in a neighborhood of xg € T'y:

" "
y =x,
Yn = C($0)1/(28)(€n ) V:Bo)l/@s)wo,l/z(@ro (), Tnt1)
+ 05 (w0,1/2(Quo (), Tn1)|x — 20]*) (21)

Yni1 = c(20) 2w 1 19 (—Qu (), i)

+ 05 (wo,1/2(=Qay (2), Zns1) | — z0|”) -

Here Qu,(x) = (z — x0) - vz, We note that in deducing (21) we have
implicitly used that c(zg) > %, (en - V) > & for some § > 0 (in order to
expand the corresponding roots). These lower bounds are consequences of
the assumptions (A2)-(A4).

Using the asymptotic expansions from (21), we obtain improved regularity

properties for the Hodograph transform:

Proposition 4.1. Assume that w : B — R is a solution of (9). Let wy, x
and wy, be the associated rescalings and the blow-up limit from (15) and
(16). Denote by T"=0* and T"*o their respective Hodograph transformations
and use Ay, A_ to denote the non-tangential sets from Proposition 3.10.
Then T"=0x € CY (AL U A_) for any X € (0,1/2). Moreover:
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(i) For any v € (0,1) and X € (0,1/4),
| DT =0 — DT 0 [|coq(a,ua_) < CA%. (22)
(ii) There exist constants cs,Cs > 0 and Ao = Ao(s) > 0, such that for
any A € (0, ) and zo € Ty, it holds
¢s < [[det(DT*0*)[lcoca uay < Cs. (23)
Proof. Using (18), the Jacobian matrix (DT");; can be computed to read
&-T;‘):(Sij, i,jE{l,...,n—l},
8n7f’::0, an+1j?)::07

1 1
&T;f = ?yn 286’mw aiT'rILU—‘,-l 2 yn+1 8( n+1 8n+1’ll}),

(DT)i j=nn+1 =

< 247%n 2sannu) ‘*%n 2Sann-i-lw >
25 Yni1 On (x, Tyl PO t1w) stn+1 Ont1(z, Tyl PO 1w)
(24)
Here y = T%(x) = (11"(x),..., T 1(x)). We note that by the asymptotic
expansions from (21), there exists a constant ¢ € (0,1) such that
1- yn(x) ) |yn+1(‘r)’ < 1+ ¢, on A—7
Tn+1
() (25)
x
1—c< Ynt11T) y lyn(x)] <1+4¢, on Aj.
Tn+1

Thus, using the asymptotics in (21) in combination with the regularity of
Vgo, We infer that

| T%0 — T%s0A || oo < CA®.

We proceed with the Holder estimates. Here we seek to reduce the esti-
mates to already known bounds on the function w (c.f. the estimates from
Proposition 3.10). Hence, we have to control the terms in (24) which involve
expressions in y by comparable expressions in . To this end we write

yn(x) 2 —2s 1=2s
z 7~ 7 :( n_"_lanw) 2s s

Tn+1

2
2(1—s)

_ 1—s .
Y (2)27 = <_ ; %LJFQI 8n+1w> ,ifre A

and

1-2s
yn(l")li% = (Opw) 2,
2s5—1

25—1
1— 2(1—s)

Tn+1
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By (25) and Proposition 3.10, if [V”g] 0.« is sufficiently small, we have

1-2s _ 1-2s
I "+18”wx0 A= ( n—%-slanwifo) 2s HCO’”/(A—) < O™

Here we used that x,; +§8nwzo is uniformly bounded away from zero in A_
for each A € (0,1/2). As a consequence, combining the above estimates with
the estimates in Proposition 3.10 (which controls z. 1 250 (W ) — Way ) ), WE

infer a bound for ||8;Ty, " — &Iy " “Nlcovay with i € {1,...,n —1}.
Similarly,

1-2s_ 1— 1-2s_

S 1 2 2(1—s) S 1 2 2(1—s)
H Tpi 3n+1wxo,A) — | T Fnt1 Onrtag

2s—1

2s—1
1—s 2(1—s) 1—s 2(1—s)
e L1 On 1 Wiy A G Ty 41O 1Wa

1-2s 1-2s
+ H(anwxo)\) 25— (Onwz,) 2

COY(AL)

+

Cov(Aq)

< O\

CoOv(Ay)
Invoking Proposition 3.10 once more, then yields the Holder bounds. Finally,
we note that by (21)

T () = (2", w0 1 /2(Tn, Tni1), wo 1/2(—Tn, Tny1)) (26)

which in the x,, z,41 variables is the square root mapping. Moreover,
TWag . " L L
(z) = (2", c(wo)2s (e - Vmo)25w0,1/2($ Vs Tnt1)s

1
0(330)2“_3)700,1/2(—% : mexn-l—l)) .

Computing the explicit expression for det(DT™0) and using Convention 3.9,
we conclude that there exist constants cg, Cs > 0 which only depend on s,
such that

cs < |det(DT"=0)| < Cy, Vag €Ty N By, (27)

if [V"g] 0. is sufficiently small. Combining this with the first estimate from
(22) yields the desired result. O

As a consequence of the previous proposition the Hodograph-Legendre
transformation satisfies the same properties as the one in [17]. Arguing along
the lines of Proposition 3.8 of [17], we therefore obtain the invertibility of
the Hodograph-Legendre transform:

Proposition 4.2. Let w : B — R be a solution to (9) and assume that
the conditions (A1)-(A4) hold. If [V"g] 0. is sufficiently small, then there
exists a radius 09 = do(s) > 0 such that T := T" is a homeomorphism from
ng to T(ng) c{y e R" gy, > 0,yn01 > 0}. Moreover, away from T'y,,
T is a C'-diffeomorphism.
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Proof. The proof follows as in [15] and [17]; thus we do not repeat it here.
(]

4.2. Nonlinear PDE. In this section we compute the equation which is
satisfied by the Legendre function associated with a solution w of the thin
obstacle problem (9) such that the assumptions (A1)-(A4) are satisfied. As
our main result of this section we show that the Legendre function v solves
a Monge-Ampere type PDE. A first example (c.f. Example 4.12) indicates
that this equation should be interpreted as a perturbation of a fractional
Baouendi-Grushin equation.

Proposition 4.3. Let w: B — R be a solution to (9) and assume that the
conditions (A1)-(A4) hold. Let y =T"(z) and let v be a Legendre function
associated with w (c.f.(19)). Then in T“’(ng) (where §g = 0o (s) is the same

constant as in Proposition 4.2) the function v satisfies the fully nonlinear
equation

F(D?v,Dv,y) =

n—1
Z In+1(y)274s'
=1

8”11 Oinv Oi n+1v
det | FO(00)  —h O F00)  — Dyt 20,0)
1 a (yn+1 3n+11)) gsan(yn_H 8n-&—lv) 21san+1(yn+1 8n-&-l"U)
+ On(Yn " QSyTlL+:2lsa V) + Tnt1 ?J) (yis 1y721‘j_118n+1v)

— Tn+1 (y)3 QSJ(U)f(y ,xn(y),xn+1(y)) = 07
(28)
with mized Dirichlet-Neumann boundary condition
v(y) =0 on {ya =0}, lim >y, 3 010(y) = 0 on {yns1 = 0}
Ynt+1—04
Here
1

Ely) = — i 0u0(y),

1
anrl(y) (yn+118n+lv)7
J(v) = det <

Remark 4.4 (Boundary data). We point out that the boundary condition
for v is not uniquely determined. In particular, this holds for the Neumann
condition. By (20) we know that Op+1v(y) = yéﬁsxi‘il( ), which by (30)
is of the magnitude O(y2*yn+1) as yni1 — O4. Thus, the Legendre function

for instance also satisfies the condition limO 8n+1(y772811) = 0. In the
Yn+1 0+
formulation of Proposition 4.3 we have chosen boundary conditions which

~ 3500 (i **0n) ~ 35001y **0n) >'
2s 'n—i—ls8 (yn+1 6”+1U) 25 n+lsan+1(yn+1 67”L+1U)
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“fit” to the linearized operator and come handy in proving approximation
results in Sections 8.2. However, in the definition of our function spaces
Xa,e we will use the flexibility which we have at this point (c.f. Definition
5.8, Proposition 5.12 and its proof in Section 9.2.1).

Remark 4.5 (Relation to s = 1/2). We remark that for s = 1/2 the above
expression simplifies to the equation from [17] with a¥ = §".

Remark 4.6 (Divergence structure of leading terms). We remark that it is
possible to rewrite all terms of the form

$Z+1(y)aj(yi‘jfll@n+1v), ] € {17 .o, n + 1}a
into divergence form:
452 + ¢
25—1 25—1
xTCIJrl(y)aj(yni—l Opt1v) = ?33‘(9”%“(3/)%11 On410).
This demonstrates that we may view the leading order part of the equation
either as a divergence or as a non-divergence form operator.

Proof. We compute the corresponding expressions for w and its derivatives
in terms of v. We first observe that the following relations hold between
D?w and D?v:

Oyn,
Oiiw = 0330 + (Oinv, O p410) - (agfL) ;
ox;

- - 40
(anrl)l 2Sannw = (28)(xn+1)1 25y25 1#7
In

( 25) 1-2s 8yn+1

8 1 1‘17288 1w) = (—
1 ( n+1 In+ ) Ynt1 Tt
Let
Oz Oy
OYn, o
J(v) :=det | o207,  Hart
ayn ayn+1
1
— det 2 On, ( zsanv) 2 n+1(yn zsanv)
= de 558( 8 ) 558 ( 18 ) .
3 n+1 Ypi1 Ont1v) 35 n+1 1 (U1 Onr1v
Using
Oyn  _Oyn 1 Otny1  _ Oxy
Oxp, OTnt1 | _ OYn+1 OYn+1
OYyn+1  Oynt1 | — J(v) _ OTpy1 Ozn ’
OTn 8zn+1 8yn 3yn
we write

1 Oz

1—2s 1-2s, 25—1 n+1
n a’fLTL 2 n b
(Tnt1) w = (25)(Tn+1) Yn J(0) Oypi1

1 Oz
1-2s 1-2s n
Ont1(2,, 17 Onr1w) = (—25)y, 1 700) O
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By virtue of (20),

dn 1 2s Oxpi1 1 212
= = 7] = 50, 19,
ayn 2 (yn nv) 8yn+1 23 Lrt1 n+1(yn+1 n+1v)
Thus,
($n+1)17283nnw_ J(U)y?f 1x31+4i88n+1(y721i-_118n+11})7

—z8 1 S
87714‘1(1‘:77#21 an+1w) J( )yn+1 a ( - 8TLU)

In order to express J;;w in terms of v, we use

Oyn 1 axn+l _ Oxn O0xn
8$z — 0, n+1 8yn+1 . . ayz
Oyn+1 J(v) \ —92ns1 Ozn OTni1
"0 OYn OYn 0y;

= 1 (215 1iz+1218(3n+1(yg+1 On+1v) % 1n+1(y{1f2238nv)> .
J(v) 25Tnt1 On (yn+1 On41v)  —2;00(yn “0nv)

, ( Tt O ) .
2s n+1syn+1 0; n+1v
Recalling the equation of w
(@n41) AW+ Oy (23700 r1w) = (2041)° "> f in B,

the equation of w is transformed into a nonlinear equation for v:

1
71~b+21szauv+7y28 ! iﬁsanﬂ(ynﬂ 3n+1’0)+ J(v )yn+1 *On, ( G )

1:1728 n—1
+ELN " (Oimy Oip1v) -

J(v) 2=
<§sagiiﬁsgn+1<yiiz;an+w> ziqn+1<yzzsanv>> (1 FeUn Oy )
55 Tnt1 (yn+1 On41v) 5500 (Y~ 2°0n0) 2sTn+1 yn—i—l Dint1v

= (2n1) 2 F(T7H(Y))-

Multiplying by J(v) on both sides and rearranging, yields (28).

In order to deduce the form of the boundary data, we note that by the
mapping properties of 7% and by Proposition 4.2 we have that {y, =
0} N Tw(BIr/Q) TY(Aw N 31/2) Thus the statement on the Dirichlet
data then follows from the definition of v(y) in terms of w(z). In order to
infer the result on the Neumann data, we observe that by (20) and Propo-

sition 4.2 {yp+1 =0} N Tw(B;r/Q) T (Qy N Bf/2) The result then follows

by recalling that x2S = yn i 19p41v(y) and by consulting the asmptotics
from (21) (c.f. also the asymptotics of 2% in terms of y from Lemma 4.8):
(UnYn+1)"" 20410 ~ (Ynynt1)>>*, which vanishes as yn41 — 0. O
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4.3. Asymptotics of the Legendre Function. In this section we derive
the asymptotics of the Legendre function by exploiting the corresponding
bounds for the solution to the fractional thin obstacle problem (c.f. Propo-
sitions 3.6, 4.1). In order to achieve this, we first derive a relation between
the rescalings of the Legendre and the respective original functions (Lemma
4.7). With this at hand, we deduce an asymptotic formula for x in terms of
y. This then allows to transfer the results from Propositions 3.6 and 3.10 to
results on the Legendre function (c.f. Propositions 4.10, 4.11).

Lemma 4.7. Let v be the Legendre function associated to a solution w of
the fractional thin obstacle problem (9) satisfying the assumptions (A1)-
(A4). Let yo € T (' N B(’SO), where ng s as in Proposition 4.2. Then the
function

_ (o +0x®) — (359 **0nv) () (O ()77
UyoJ\(y) T )\2+2s )

with Sx(y) = (AN2Y", Ay, A\yn11) is the Legendre function of

w(zo + Nz w _
waga(a) = EOERE = (10 )

with the Hodograph transformation y = T3 (z). In particular, vy,(y),
y = T"=0(x), is the Legendre function of wy,, where vy, and wy, denote the
respective blow-ups of vy, x, Wy y2 as A — 0.

Proof. Consider the Hodograph transformation associated with w, y2 and
let y(x) := T"=0**(z) (c.f. (18)). Then,

()\yn)25 = 8nw(z) |z:x0+)\2xa

)2(1—5) — 1-s

(Ayn—s—l (>\2$n+1)1_286n+1w(z)‘z:mo—i-)\Qx'

Let 0y, » be the Legendre function of w,, 52 associated with the Hodograph

transformation T"#02?. Then by the definition of the Legendre function in
(19),

) S ]‘ S 2(1—s
Uyo A(Y) = Wag 22 (%) — TnYn’ + m$%+lyn(+l :
_ w(:):o + A21‘) )‘2$n()\yn)28 1 ()\2.217”4_1)25()\2/”_‘_1)2(1*5)
= A2+2s - \2+2s + 2(1—s) 253
~ w(zo + Nz) (2o + AN22)n(Mwn)® (20)n(Ayn)?
- )\2+28 - )\2+28 )\2+2S

L (@0 + X2)nt1)* Aynsn) %)

NI N+Zs
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Since v is the Legendre function of w associated with the Hodograph trans-
formation 7", equations (4.3) and (20) yield

1
zo+ Nz = (2", —%zrll_?sﬁnv(z), (zii_llﬁnﬂv(z))%)

= (T") " (yo + o (y))-

Using this in the expression of vy, x and invoking again the definition of v
n (19) we have

2=yo+0x(y) (29)

- _ U(yo + 5>\(y)) (-rO)n()\yn)ZS
fUZ!Ov)\(y) - \2+2s A\2+2s

Finally, recalling that

y 1

(z0)n = 9(*’36) = _?( . 28811'”)@0)

we obtain Uy, x = vy, A- O

Next, we reverse the asymptotic expansion of T% which yields the fol-
lowing explicit formulae. We recall that g is the parametrization of the
regular free boundary, i.e. I'y, N B} = {(2",2,,0) € B} : z,, = g(2")} with
g € Ch(BY).

Lemma 4.8. Suppose that w : B — R is a solution of (9) such that the
assumptions (A1)-(A4) hold. Let T" be the associated Hodograph transform
and let yo € T (T N Bsy), o = (T*) Y (yo). Then,

(i) the following asymptotic expansions hold:

20 (y) = 9(") + a0y )y — a1 (¥ )i 1+ Os ((yp + ya i)' ™),

(30)
w1 (y) = 201y )yn Y + Os (Ui Y (Ui + vig)®) -
Here,
1 1
ao(yo) =

2¢(x0) /3 (e - gy ) 1H8)/3” a1(yo) = 2e(20) V0 (e, - 7))

are positive C functions which are uniformly bounded away from
zero.

(ii) We have that

S
v(y) = —g(y")y2 — o ~ao(y" )y 2t a (YRt yh

+ 252 105 (W2 + yoi1)?) s
S
oy () = =V"g(yg) - (v — yo)ye* — s ao(yg)yat?

+ a1 (Y)ye Y 1.
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Proof. We begin by deriving the asymptotics in (i). Reversing the asymp-
totics (21) of y = T'(x) around zy € T'y,, we compute that in a neighborhood
of yo = T(zg) = (x7,0,0),

(x —x0) v :1( Yn _ Yni1 )
0) " Vxo = 5 c(x0) /3 (e - vgy) /s c(2)t/ (1-5)
+ 0, ((yz +ya)'™),

x _ YnYn+1

n+1 C(IEQ)l/(QS)C(xO)l/Q(l_S) (en . on)1/(25)

+ O (ynyn+1(y721 + y?z+1)a) .

(=V"g(x(),1,0)"

1+ V()2

xn = 9(yo) + V'9(w0) - (" — v5)

+ 1 Yn _ Z/r2L+1

2 C(ﬂfo)l/s(en . on)(1+8)/s c(xo)l/(l_s) (en . VIO)
+ 05 ((vp + ype)' ™)

By Convention 3.9 and by the assumption (A3) the functions ¢(x) and (e, -
Vi) are uniformly bounded away from zero and are C%“ regular functions.
Setting

Using that v, = we furthermore obtain

1 1
26(20) /3 (en - Vg ) A+9)/5 a1(yo) = 26(20) =9 (e - Vg)

we hence arrive at the desired asymptotics in (30). The formula for v in (ii)
follows by integrating the relations

Onsr0(y) = vt adin, Ouv(y) = 2592 Lo,

in combination with the asymptotics from (20) and the mixed Dirichlet-
Neumann boundary condition. Using the expression for v,, ) in Lemma 4.7
and passing to the limit we obtain the formula for vy,. O

ao(yo) =

With these auxiliary results at hand, we now address the asymptotic
behavior of the Legendre transform (which can be regarded as a partial
analogue of Proposition 3.6):

Proposition 4.9. Let Cf :=={y € Q4 : |[y"| < 1,1 < y2+y2, < 1}. There
exists Ao = Ao(s) > 0 such that for any X € (0, \9) and any xo € Ty, N B;g,
(T"=02*)=L € C17(C]"). Moreover, for any v € (0,1),
(T =022) =1 = (T0) 7Y Lo (B0, ) < CsA*,
HD(Twzoy)\Q)—l _ D(Twzo)_lucoﬁ(c;r) S CSAQ(X'
Proof. The first inequality directly follows from Lemma 4.8 (i) by exploiting

the coefficient regularity.
The second inequality follows from the first inequality and Proposition 4.1
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(i), (ii). More precisely, one uses the relation DT~ !(y) = (DT(T~(y)))~ .
The constant \g is determined in the same way as Proposition 4.1 (ii). O

Proposition 4.10. Let vy, » and vy, be as in Lemma 4.7. Let Ao and Cf
be as in Pmposition 4.9. Then,

Z Hyn Uyo AT vyo)”COv C+ + ||y1 288 (Uyo,/\ - vyo)HCOﬁ(Ci")

+ ||y_2syn+18n+1(vy07/\ - Uyo)HcOw(cj) < Cs)\Qaa

for any X € (0, \g) and v € (0,1).
Proof. We note that by (20)

_ Jiw(x) ,

259, - _

Yn 81’1)(?/) - ) w( )‘a::(Tw)*l(y)’ 1€ {1,-..,TL 1},

U 2200 (y) = —(28)@n] w1y (31)

-2 2s 2
Yn Syn+1an+lv(y) =Y, yn.t,jxni-l 2=(Tw)~1(y)"

Step 1: Estimates for i € {1,...,n — 1}. Using (31) and the explicit
expression for vy, in Lemma 4.8 (ii), we observe that
Oiwy, z2()
OnWy, y2()

yrzzsaivyo,)\(y) - y’;2$8ivyo (y) = }x:(Twzo,AQ)—l(y) - (_ai.g(yO))'

By the boundary Harnack inequality, for any y € CIL

Oiwy, x2(T) , T
TP w —(—0; < . 2.2 RPN
anwm,m)‘w w021y — (—0ig(y0))| < CNH[(T#02*) " (y) — yo|*.

This gives the L* bound.
To prove the Holder bound, noting that —09;g(yo

is constant, we have

(v2)|

~—

‘y;QSai(Uyo)\ - ”yo)(yl) - Z/ﬁzsai(vyw\ — Uy
. aiwxm)@ (.73) ‘ B a’iwaxo,)\2 (33
= 48nwx07>\2($) x=(T zo,)\2)71(y1) anwx07A2(x
By Proposition 3.6 (i) and by (33), there exists A\g = Ag(s) such that
C € T"=0** (A4 U A_) for any 0 < A < A\g. We will consider the Hélder
estimate in T"%03*(A,) and T"=0>*(A_) separately. First for y1,y2 €
Ci NT" =03 (A_), we rewrite

~— |~ ~—

om0 14|

Oiwgy 2 () @, 7100w, r2 ()

Ontwgy x2 () 2,2 00w, 22 (2)
Using Proposition 3.10 and the fact that the denominator is uniformly
bounded away from zero for z € A_ we have that for any v € (0, 1)

|y 203 (Vg1 — Vyo) (Y1) — Y 228i(vyo 1 — V) (2)]
< O (T %022) " (1) — (T2022) " ()"
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By Proposition 4.9 we thus conclude that
|9 200y, — V) (Y1) = Y 2*8i(vgo \ — vy ) (y2)] < CsA*y1 — yz\”- (32)

900 /\2( x)
dn’wZO )\2( z)’
Arguing similarly as above, we conclude that (32) also holds in this case.
Combining these bounds we deduce

Hyn (Uyo,)\ - vy0)||co,w(cl+) < Cs)\za-

Step 2: Estimates for the remaining two expressions. The remaining two
estimates are shown in a similar way. More precisely, we observe that

For y1,y2 € C{ NT"=03*(A,), we directly estimate the quotient

‘yqlz_QsanUyo)\(y) - yTlL_2saTL/UyO (y)’

= (28) [((T"702*) ™ (y))a — (T"=0) "} () -
Using Proposition 4.9, we obtain the desired bound for 3}=2%9,v.
Next we consider the term y,, QSyTZ}_l@nHU. Using (31), the asymptotics of
2251 (y) from Lemma 4.8 (i), and noting that ngsygilanHvyo (y) = 2a1(yo),
we immediately infer that

—2s

1 —2s, —1 2«
Hy yn+1an+1vy0,)\ —Yn yn+18n+lvy0HLoo(Ci‘r) S Cs)\ .

To show the Hoélder continuity, we write

2s
_92 9 Tn+1 . W, \2
Yn Syn+1an+lvy07)\(y) - ynJri < Un > ’z:(TwwO’XQ)_l(y) lf Yy e T "=o,A (Af)v

Yn+1

By the proof of Proposition 4.1, we have (z,11/yn)* € C%'(A_) and
(Tn1/Yns1)® € CY7(AL). Thus, arguing similarly as for (i) (where we
use that in T"%02*(A_), y,41 ~ 1 and that in 720> (Ay), y, ~ 1), we
infer that for any v € (0, 1) and for all y1,ys € C;

2s
_ — Tn+1 .
Un 2Syn+1an+1vyo,)\(y) = Un > ( . ) }x:(waO,AQ)—1(y) ifye T (A+)

Y 2 Y100 11090 A (U1) = U 2 U 1010y 2 (12) |
< GNP (T"502%) " (y1) — (T02*) " (g
Therefore, the estimate follows by invoking Proposition 4.9. This concludes

the proof. O

Similarly as in Section 3, it is possible to extend these asymptotics to
second order estimates:

Proposition 4.11. Let vy, x, vy,, Ao and CfL be as in Proposition 4.10.
Then for any A € (0,Xo) and any v € (0,1), 0;yL =200y, » € C*V(CT) with
i,7€{1l,...,n+1}. Moreover,

n+1

Z 9stn 0 (vyo. ”yo)HcM(cj) < O

,j=1



THE FRACTIONAL THIN OBSTACLE PROBLEM 783

Proof. By (20) a direct computation gives
O (Yl 20,0) = —(25) (DT,
Yn 2 0n11000 = —(28) (DT pint1,
U P On 10 = (29) W b1ty 2 0ns10) " 2 (DT )i
(1= 28y B
0i(yn~**0nv) = (28)(DT )i,
0i(yn > Op11v) = (25)(yy, yn+18n+lv) = (DT~ Dt

Here v stands representatively for vy, and vy, and T for T"z03% | TWao
respectively (zg = (T%)!(yo)). By invoking Proposition 4.10 and Proposi-
tion 4.9, this yields the estimates.
Finally7 we compute that for i,5 € {1,...,n— 1},
-2
82]” - yn sab]w( )‘szfl(y)
+ ynfzsanjw(ﬂf)(DT* Jng + Un 2 Onr1,jw(@) (DT st |,y

We only show the estimate for g}~ 258 jw in detail, as the remainder of the
proof is similar. Let

G(y) = y}li%aijw(x) ‘x:(Tw)—l(

If y € C NTY(A,), we have y,, ~ 1. By Proposition 3.10 (ii) and Proposi-
tion 4.9, for A € (0, \g),

”G)\(y) - GO( )HCO'Y T zq, ’\2(A )mc+) C )\2&

Here G)\(y) := yy 20;jw,, z2 (), @ = (T"#0**)~1 and and Gy corresponds
to Wy, -
If y € Cy NTY(A), we write

y)’

G(y) = ( - )1_25( ni1 Oijw(@ ))‘x:T*(y)

Tn41
1-2s, —2 2s-1 1-2
(yn+1syn San+1v) 2s ( n+1saijw($))‘$:Tf1(y)-
By Proposition 4.10, Proposition 3.10 and Proposition 4.9 we obtain

2«
||G>\ GOHQO«, T 20,22 (A_)OCT) < OA
In the end, arguing similarly as in the proof of Proposition 4.10 (i), we obtain
the desired estimate for G) — Gy in Cfr . This concludes the proof. O

Finally to conclude this section, we discuss the model solution vy which
is defined as the blow-up of v at y = 0 and which (up to constants) is the
Legendre function of the model solution w; s from (3):
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Example 4.12. Recalling the assumptions that g(0) = 0 = |V"¢(0)| yields
that the Legendre function, vy, of the blow-up wo at zero (c.f. (15)) is of a
particularly simple form (compare this also to the more general expressions
from Lemma 4.8 in Section 4.3). Up to rescaling it reads:

S S S
voly) = — o 1)yi 2yl (33)

Computing the expressions for x and J(vy) in terms of y (c.f. Proposition
4.3) in this particular case then yields

1

o(y) = (V2 = voi1)s  Tot1(Y) = UnYni1,  J(v0) = Y2 +y2. .
2

Hence, in the case of vanishing inhomogeneity, f =0, up to a constant, the
linearization of the nonlinear functional F' from (28) at vy is

AG,STJ = (ynynﬁ—l)li%(yg + y72L+1)8iﬂ~} + an((ynyn—i-l)li%anﬁ) (34)
+ 8n+1((ynyn+1)1_283n+16)'

This is a Baouendi-Grushin type fractional Laplacian, which serves as a
first motivation of the introduction of the Baouendi-Grushin geometry in
the following section.

5. Geometry and function spaces

Motivated by the linearization result from Example 4.12, we introduce
the geometry and function spaces in which we will be working in the sequel.
More precisely, we consider the intrinsic geometry which is induced by the
Baouendi-Grushin operator (c.f. Definition 5.1). For the choice of our func-
tion spaces (c.f. Definition 5.8) we build on this. Guided by the explicit
form of the model solution from Example 4.12 and the a priori estimates for
the fractional Baouendi-Grushin operator (c.f. Sections 9.1), we construct
weighted spaces with the right asymptotic behavior at the straightened free
boundary P := {y, = yp+1 = 0}.

We begin by introducing the relevant geometric quantities in Definition
5.1.

Definition 5.1 (Baouendi-Grushin geometry). Let

Yl = ynayly }/2 = yn—i-layl? )
Yon—3:= ynayn—17 Yon—o = yn+1ayn—1’
}/2”_1 = 8yn7 YQ’)”L = 8

Yn+1
denote the Baouendi-Grushin vector fields. We consider the associated
Baouendi-Grushin metric

n—1

gy('U, ’U)) = (yi + y?%—‘rl)_l (Z wi”z’) + VpWn + Vpgp1Wno1,
i=1
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for all y € R™"! and v,w € span{Y;(y) }iequ,...2ny- This induces a (Carnot-
Caratheodory) distance on R"T1:

b
de(z,y) = inf / S0 GO, AWt (@) = 2,A(b) =y, a,bER,

y(t) € span{Y;(y(t)) Yieqa,...2n} } -

We denote the associated (closed) Baouendi-Grushin balls of radius R and
with center yo € R™*! by Br(yo), i.e.

Br(yo) == {y € R"™ 1 da(y, y0) < R}.

Let Q4 = {y € R"" .y, > 0,y,11 > 0} denote the upper quarter space.
We denote the intersection of balls with Q+ by B (yo)-

The intrinsic metric associated to the fractional Baouendi-Grushin Lapla-
cian

2n
Ags =Y Yiw®)Yi, w(y) = lynyns|' ™
=1

is conformal equivalent to the Baouendi-Grushin metric on the space R"*1\
{ynyn—I—l = O}'

Remark 5.2. As in Remark 4.2 of [17], it is not hard to show that dg is
equivalent to the following quasi-metric:

de(9,9) = |9n — Yn| + [Int1 — Ynt1]
19" — |
|G| + [Gn+1] + Y| + |yn1] + 157 — " [V/2
Here g = (gﬁvynvyn-‘rl); Yy = (yﬁaynayN-i-l)'

Using the previous notation, it is possible to define Holder spaces with
respect to the Baouendi-Grushin metric:

Definition 5.3 (Hélder spaces). Let Q C R*! and let o € (0,1]. Then we
define

Moreover, we set

| llgoe : L2(Q) — 0,00,

||u||cg’a(§) ‘= sup lu(9)] + [u]cg,a@),
geQ
and define
0,00 -— 0 (0 -
Cy*(Q) :={ue L>(Q): ||u||CS,e@) < 00}
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Remark 5.4. As in the Fuclidean case, the spaces Cg’a(ﬁ) form Banach
spaces.

In order to approximate functions with respect to the Baouendi-Grushin
geometry, we rely on the notion of homogeneous polynomials. These are
polynomials whose tangential and normal degrees are counted differently.
This is motivated by the different scaling behavior of the tangential and
normal components of the operator from Example 4.12.

Definition 5.5 (Homogeneous polynomials). Let k € N and let the multi-
index B = (B1, ..., Pnt1) with B; € NU{0} be a multi-index. We define

n—1
PR =S p(y) = Y bgy® ibg €R, by =0if > 28, + B+ fur1 > k
|B|=k Jj=1

as the space of homogeneous polynomials with degree k. Here the notion
homogeneous refers to the scaling behavior

pe(0A(y)) = Nepi(y), i € PR,

where 5x(y) = (AN2Y", Ay, \yn11) is the dilation associated to the Baouendi-
Grushin vector fields. We define

n—1
P = p(y):Zbgyﬁ: bﬂER, bﬂZOifZ2,8i+Bn+ﬁn+1>k ,
181<k J=1
as the wvector space of the homogeneous polynomials with degree less or
equal to k.

Finally, as the last ingredient before defining our function spaces, we
introduce the notion of differentiability at P := {y, = yn+1 = 0}:

Definition 5.6. We say that a function f : Q+ — R is Ch at P if for
each point yo € P there exists a homogeneous polynomial Py, ) € Py such
that

1F(y) = Pyo ()] < Cda(y,y0)"*** in BY (yo).
We call the polynomial Py, ;, an approximating polynomial for f at yq.

Remark 5.7. We remark that if f is k-times differentiable at a point yg € P
in the classical sense, then the approrimating polynomial Py corresponds
to the Taylor polynomial (of homogeneous degree less than or equal to k) of

f at P.

With the previous preparation, we can now define our main function
spaces which are needed for the application of the implicit function theorem
in Section 7. We are seeking Banach spaces X and Y such that

(i) the nonlinear functional F in (28) is smooth (or analytic) from X to
Y, if the inhomogeneity f is smooth (or analytic),
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(ii) the model solution vy is contained in X, and Ag s = Dy, F : X =Y
is invertible,

(iii) the Legendre function v from Section 4 is in X. Morevoer, the
differential D, F is a perturbation of Ags: X — Y.

Definition 5.8 (Function spaces). Let a,e € (0,1). We set

Xoe:={veL®Qy): v=0 on {y, =0}, y,*v € C> at P,
lim  Ony1(y, 2 0(y)) = 0, lim 9 (y, > Fnv(y)) =0,
0+ y—)P

Yn+1—
supp(Ag,sv) C BY, |vllx,, < oo},

Yoer={f€eL®Q4) y25'feC at P,

yli_I}]lD yi‘jfll (y) =0= ylglej 3n+1(@/n+1 fW)),

supp(f) C By, || fllva. < oo},

where the associated norms are given by

d (2+2a) 2P H
HUHXQE Sllp (H G’ ( Yn y,2) Lo°(Q4)

—(24+2a—¢) TILfZSan(U o y?LSPg‘iQ)}

o
et

2a+€, —1 | —2 2
de (7)™ Y1 Onsa (v — ynSP?JSQ)]CS"(QH

Q)
n—1
+Z|: —(2a—e¢) _2587;(’0—:1/25P§2):| ‘
=1 o "y nge(Q+)
n+1
+ [dG("y) (e 9yiy, 2y, (U—yispﬁa)}co,e@ )
ij=1 Q4+
£l = sup |do ()" 225 S~ @50 o, -
geP C(Q4)

The functions Pg 5 and Q3 | denote the respective (in the homogeneous sense)
second and first order approxzmatmg polynomials (in the sense of Definition

5.6) of y, 2*v(y) and yi‘i—llf(y) at g = (y",0,0) € P.

Let us briefly comment on the main ideas leading to these definitions.
The spaces are constructed so as to measure the deviation of functions from
suitable approximations at the boundary of Q4. In this sense they mimic
the asymptotic expansions of the Legendre function v (for the definition of
the space X,,) and of the function Ag qv (for the space Y, ), c.f. Section
4.3. The asymptotic behavior at the boundary of Q+ is thus encoded by
considering the difference of v to y25P52 and yn +1 . These specific ap—
proximations are motivated by the structure of the elgenpolynomlals



788 HERBERT KOCH, ANGKANA RULAND AND WENHUI SHI

the fractional Baouendi-Grushin Laplacian and the associated elliptic reg-
ularity estimates (c.f. Sections 8.3-8.1). The existence of such an approxi-
mation is ensured by the requirement that y, 2v € C%* at P. The choice
of the norms rests on the availability of “Schauder type” elliptic estimates
for the Grushin Laplacian with mixed Dirichlet-Neumann conditions with
respect to these (c.f. Sections 8.3 and 9.1).

The pointwise conditions imposed on functions in the space X, ( are a mix-
ture of boundary and normalization properties: We require Dirichlet con-
ditions on {y, = 0} and a “strengthened” form of Neumann conditions on
{Yn+1 = 0} (c.f. Remark 4.4). The Neumann condition in particular rules
out the presence of a linear term y,, 11 in the asymptotic expansion of y,, 25v
at P and is hence adapted to the expansion of y,, 2*v. Finally, the remaining
pointwise condition is a normalization which excludes the presence of the
linear term y,, in the approximating polynomial for y,, 25y at P.

The requirement that v € L* in combination with the compact support
condition on Ag v entails that the space X, ¢ is a Banach space.

Remark 5.9. Restrictions on the specific form of the weights (which are
used in the norms) originate from the second order estimates (c.f. Proposi-
tions 8.1, 8.2), the compatibility with the linear and nonlinear operators, and
the aim of proving analyticity of the nonlinear function (28) in the function
spaces Xo.e, Ya,e. We remark that this still leaves a non-negligible amount of
freedom for instance in the exact choice of the weights for the lowest order
contributions.

Remark 5.10. Due to the compact support of f and due to the definition
of Pj 1, we have that

[do .m0zt = By

S |dat 502250 (s - By

L>(Q+)

CoQy)

As in [17] these function spaces have local analoga:
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Definition 5.11. Let a, e € (0,1). We set

Xoe(BE) :={ve L>®(BL): v=0 on {y, =0} NB,
y. v € C** at PN BE,

lim O,y 1(y, *v(y)) =0 on B,
Yn+1—04

lim &L(y}Z_QS@nv(y)) =0,
y—>PﬂB;g

1vllx, .55y < o0}
YooBE) :={f: Q4 > R:y27'f € C}* at PN B,
lim  y20 () =0= lim 91 (y2°5" f()),

y%PﬂBE y%PﬂBE

||f||ya7e(3;) < oo},

where the associated norms are defined as above but now contain the full
CY¢ norms, e.g.

lollx, 1) = Ivllx, .5+ sup  [Fal-
a,e( R) a,e( R) QGPQB}"{) Yy
Here || - ”XM(BE is the homogeneous part which is defined the same way

as for the global spaces (c.f. Definition 5.8) with Q4 replaced by B}, and
|P§,2| = ZWSQ bs(y)| for PEQ(?J) = Z|5|§2 bﬁ(g)yﬁ~

As in [17], the function spaces from Definition 5.8 have a characterization
in terms of decompositions in appropriate Hoélder spaces:

Proposition 5.12. Let o, e € (0,1) with € < « and let Xo ., Yo be the
function spaces from Definition 5.8. Then,

(i) v € Xae if and only if there exist functions ag,a; € CO¥(R"™1), ¢y €
CL(R" 1) and Cy, Cy, Cre € CS7€(Q+) with k,0 € {1,...,n+ 1} such that



790 HERBERT KOCH, ANGKANA RULAND AND WENHUI SHI

(a) fori,je{l,...,n— 1} the following decomposition holds:
v(y) = coly" )y’ + ao(y" )y > + ar(y" )y v
+yns 24+2a— 60( )
Y 2*Onv(y) = (28)co(y”) + (2 +28)ao(y" s + (25)a1 (y")yn
+r2+2a—50 ( )

n+1v(y) 201 (Y" )y Yns1 + Un Yn 417> Crpa (),
Biv(y) = Dico(y"Yyn® + v >~ Cily),
On, ( R, 0)(y) = 2(2 + 2s)ao(y" ) yn + T1+2a7€Cnn(y)7
On41 (Y 2000)(y) = (48)a1(y")yn41 + 7207 Crgrn(y),
Y 2 Onn1v(y) = (4S)a1( Vynt1 + 112 C a1 (1),
Y 2 n+1n+1v(y) ar(y" Vyn + 12 Cryrni1 (y),
Y20, 0(y) = 1120 (y),
ZSamU(y) (25)8 co(y //) + e Cin(y)-
(b) The following estimate holds:
n+1 ntl
[ao]zo.a + [a1] o + [colena + Z coe+ Y [Cijleoe < Cllvlx,,.-
i,j=1

(c) The functions Cy, Ci, Cyj, i € {1,...,n+ 1} vanish on P and Cy 41
vanishes on {y, = 0}.

(d) supp(Agsv) € BIL.

(ii) f € Ya. if and only if there exist functions fo € C¥(P), f1 € CS’E(Q+)
such that

F@) =yt foy") + yp ' 2 fuy),
with
[foleoa + [fi]goe < Cllfllva..
and f1(y) =0 for y € P and supp(fo), supp(f1) C By x R3.

Remark 5.13. For the local spaces Xo.(Bf,) and Yo (B}), there are similar
characterizations. One has the equivalence of the norms

laollco.estnp) T latllco.asinp + lollcra@sinp

n+1 n+l
+ 2l + 32 WCilensy ~ Ivlx, oy
i,j=1

Using these definitions and characterizations, we note that for v € X,
it follows that Ag sv € Y, . Here Ag s is the fractional Baouendi-Grushin
Laplacian defined in (34). Moreover, the decomposition from Proposition



THE FRACTIONAL THIN OBSTACLE PROBLEM 791

5.12 can be used to prove that X,, Y, form Banach spaces (c.f. Section
9.2.2):

Proposition 5.14. Let a,e € (0,1) with o > € and let Xy, Yo, be as in
Definition 5.8. Then, X, Ya,e are Banach spaces.

Next we state the following a priori estimate, whose proof is provided in
the Appendix (c.f. Proposition 8.3):

Proposition 5.15. Suppose that v € Xy ¢ for some a,e € (0,1). Assume
that Ag v = f for some f € Y, ., where Ag s is the fractional Baouend:i-
Grushin Laplacian in (34). Then,

[ollx, .57, < © (1l sty + 0ty

Last but not the least, we show that the Legendre function v associated
with a solution w to (9) satisfying the assumptions (A1)-(A4) is in XCM(B;;)
for some small §y > 0 which only depends on s.

Corollary 5.16 (Regularity of the Legendre function). Let v be the Legendre
function associated with a solution w of the thin obstacle problem (9). Then
there exists a small radius dg > 0 depending on s, such that for any « as in
Proposition 3.6 and 0 < € < « we have v € XCM(B%).

Proof. This follows immediately from the local version of the characteriza-
tion of the space X, ¢ in Proposition 5.12, from Lemma 4.8 (ii), from Propo-

sitions 4.10 and Proposition 4.11 by scaling, i.e. by setting A = /42 + yflﬂ.

Here we have used that in Cfr , where | /y2 + y2 41 ~ 1, the Baouendi-Grushin
metric is equivalent to the Euclidean metric. O

6. Mapping properties

In this section we discuss the mapping properties of the nonlinear function
F from (28) (c.f. Section 6.1) and of its linearization (c.f. Section 6.2). In
particular, we prove that F' is analytic as a function from a subset of X,  to
Y, . for a suitable choice of a, €, if the inhomogeneity f is also analytic (c.f.
Proposition 6.2). These mapping properties are necessary conditions for the
application of the implicit function theorem in Section 7. They a posteriori
justify the choice of our spaces from Section 5 and make the intuition from
Example 4.12 rigorous.

Throughout the section, we assume that the conditions (A1)-(A4) from
Section 2.1 hold.

6.1. Mapping properties of the nonlinear functional. Let
F(D?v, Dv,y) be the nonlinear functional from (28). For convenience, we
abbreviate it as F(v) := F(D?v, Dv,y). Let

2+42s 2s, 2

vo(y) = — Un Y Una

s+1



792 HERBERT KOCH, ANGKANA RULAND AND WENHUI SHI

be the model solution from (33). We note that
lvollx,, .5y =1+s/(s +1),

and observe that F' is well-defined in a small X, --neighborhood of vy.
In the sequel, given u € Xa,E(Bf) or u € Xy, we denote
the r-neighborhood of w in the corresponding Banach space by

U (w) = {v € Xp (Bt |lv— u”Xa,e(Bfr) <r}, 0<r<oo.

We will show that there exists 7o € (0, X |vo| x,,.] such that the nonlinear
functional F defined in (28) maps a neighborhood, Uy, (vp), of vg in X4 ¢ (B7)
into Y, (B;). Moreover, we discuss the analyticity (or smoothness) proper-
ties of F' as a mapping from Uy, (vg) into Y, (B;"). Here a major difficulty is
that the functional F' contains the term (yfﬁ;ll(?nﬂv)%, which, if s £ %,
is not analytic in standard Holder spaces. This however is overcome by the
use of the function spaces from Section 5.

Proposition 6.1. Let F' be the nonlinear functional from Proposition 4.3.
Assume that the inhomogeneity f € COY(B). Let o € (0,1) and € € (0,q]
and let X (B, Ya.c(Bf) be the spaces from Definition 5.8. Then for any

ro € (0, 4llvollx.. ]

Xa,e(Bf) D U (vg) D v F(v) € Yms(Bf).

Proof. The argument follows by inserting the characterization of the func-
tion spaces from Proposition 5.12 into the expression for F'. We concentrate

on dealing with the (yii_llf)nﬂv) =% contribution in the equation and the
inhomogeneity, as these are the only non-standard terms.

1-2s
We begin with the (y;* +118n+1v) s contribution and observe that

Y25 On1vo(y) = 202525 1.

Thus, suppose that v € X, (B]) N Uy, (vo) with 0 < 79 < i”UOHXa,e: and
suppose (by Proposition 5.12) that v has the decomposition

Y2 Ops1v(y) = 2a1(y" )y Y2, + Cran (y)y2oy25 r2e e

Then Remark 5.13 yields that 2 < a1(y”) < 2 and |Cpy1(y)| < 1 for any
y € Bf. This implies that [Cy41(y)/a1(y”)| < 3. Thus for any v € Z/{TO(U())

1-2s

_ 1-2s _
(223 On1v) = = y2 ¥ y2 P (a1 (y”) + Crga (y)r** )

2—4s, 2—4s 1=2s Cn—i—l(y) 2a—e€
= 14 )
=Yn Yn+1 al(y ) < + al(y”) r

= yn Py P (@y") + Cly)r**),
72.5

where @; = a, * € C%*(P N B{) and C’ G COE(B+). Here we used the

analyticity of the function t — (1 + t) " for |t < . Using this and

1-2s
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the asymptotics from Proposition 5.12, we then obtain the desired mapping
property.
In order to deal with the “inhomogeneity”, i.e. with the term

—2s
W2 0n 1) = T FY 20 (), 011 (y),
we make use of the asymptotics from Proposition 5.12 and the choice of «
and €, i.e. e < a:
_ 3-2s .
Wt On1v) = T (" 2n(y), Tas1(y)) = (Ynyn+1)* >r°Cly),  (35)
for some C(y) € C’S’E(Bf) It can further be written as yn+257“7 25C(y) with
- 3—2s_ 2
C(y) :== (W) Cy) € CE‘(BD. Here we have used the requirement

that s € (0,1). O

Based on the previous observations and the form of our function spaces,
we prove analyticity of F' as a mapping from an Xa,e(Bf) neighborhood,
Uy, (vo), of the model solution vy into Yy (B{). To simplify the notation,
we set
F(u,v,w)

allu 87,nu 81 n+1U
= det +0;(yp 2 0,v) —5-0n (YL ~2°0pv) 50 +1(y1 59,0) |,
- 1 8 (yn+118n+1w) ia (yn+118n+1w) 2158n+1(yn+1 an—&-lw)
and

¥ —2s _ 1 1—-2s
J(u,v) = det < 6 8 ( Onu) 25 1 (Un anu)>

(yn+116n+1v) 2—{98”+1(yii__118n+1v) (36)

2s5—1

= (Y2 Oprv) 5 J(0).

Then the nonlinear functional F' can be written as
1—2s
F(v) = (y271 Ong10) = F(v,0,0)

1—2s
+ O (U Y 100n0) + (U251 Ons1v) 5 Ot (U5 Y25 Ons1v)

_ 2-2s 1 _ 1
RO T, 001 (o= k00, (55 0r) )
Proposition 6.2. Let F' be the nonlinear function from Proposition 4.3
with inhomogeneity f. Denote by vy be the model solution from (33) and let
€, a,rg > 0 be the constants from Proposition 6.1. Then, if f is smooth in
its arguments, the mapping

Ur,(v9) 2 v — F(v) € YQ,E(BD,

is smooth. If f is real analytic in its arguments, the above mapping is real
analytic.
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Proof. We only prove the real analyticity result. The proof for the smooth
case is similar. We show that there exist rg,r; > 0 such that for every v €
Uy, (v9) and every h € Uy, (0), we have an absolutely converging expansion

o0

F(v+h) = Z

]'DJF(hJ)

where DJF denotes the j-th order differential of F' with respect to v.
Step 1: We claim that for each v € U (vo) C Xa(By) with 7o =
Hlvollx. ., for all hyu,ur, us, uz € Xo(By), for each k € N and for s € (0,1)

1-2s
H(yii_f@nﬂv) s R 2 O ) O (Y 2 D)

Ya,e(B)

—k
1 k
<G (ghollxaion) W, Vel ity

- 1-2s
25 0010) 5 2 O ) (1, 2, )|

Yoe(BY)

_ 3
1
<c, (snvorxa,é(lg;)) L | (e

2—2s —k

02531 010) 5 2 B a ) T (1, )|

Ya,e(BY)

—k 2
1
LA ey I ey (e
=1

2—2s ~ —92s
| (257 0ns) 5 T, ) (20

k
< Collbl g Il

Ya,e(BY)

Indeed, the estimates follow from the decomposition in Proposition 5.12 and
the proof of Proposition 6.1. We will only show the first inequality and the
arguments for the remaining ones are similar. Indeed, by the local version
of Proposition 5.12, for v,u,h € XO[,e(Bf) we may assume that they have
the decompositions

Y2 Opr1v = (2a1(y") + 12 Cri1 (v)) ¥22y25 1,
Yoy Onsah = (2@1( ")+ T2a_€én+1(y)> U Ynt1

an+1(y315 lyn+118n+lu) —45@/48 lyij_lla ( )_{_yis Qyn—i-l 7,,1+2a EC( )
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Then,
Ii= (23 0010) = R 25 001 h) Ot (425 25 O )
= (2a1(y") + TZO‘*ECnH(y))% (varyaia) .
: (zal(y”) + rQQ*E(}nH(y))k

(y2y)” (yff typstay”) + o e e e Cy ))

Simplifying the above expression leads to

I= (2a1(y”))% <&1(y//)>k

ar(y")

~ k
1+ r2a—€D(y) 1—9s 2, 1420—c
. (:HTQQG‘D(y) (yn+1 yn ( ) + yn+1 C( )) ,

where D(y) = S22 and D(y) = g;@s,; If u, v, h € Uy (v0) C Xae(BY)

with ro = %HU()HXQ (B’ then similarly as in the proof of Proposition 6.1 we
infer that

~ 1
latllgo.a st pys laollco.asrap = 7 2 §||”0”XQ,E(BI+)’

H»Mco

||Cn+1||c'§3’6(51+)= ||On+1”(j£v€(31+) < ||U0HXQE(B )

Using these relations and the characterization for space Y, . in Proposi-
tion 5.12, results in the claimed estimate for ||y, z+)-
a,e(Pq

Step 2: We first discuss the contributions originating from the expansion
of

_ 1-2s
Fi(v) :== (yiiqlan—i-lv) s an-l—l(y?ws 1yn+118n+lv)
We begin by noting that
1—-2s

1-2s

(yn+113n+1v) s (yn+1lan+l h)On+1 (928 !

Dy Fi(h) = yn+1lan+lv)

1-2s 25—1

+(y7211_113n+1v) s Ont1(Yy yn+113n+1h)
In general for k > 2
J— 17 —
Dy Fy(h") :C&k(yij—llan-i-lv) w YR O ) O (2 e O 0)

skt (U251 0n10) Y (2 0 ) 01 (525 25 O ),

k 1-2s—(j—1)s
]:1 Sj

2s

where ¢; = [] . Thus, by virtue of Step 1 we obtain that

DFFy satisfies

1 —k
k k k
IDEF(, o) < Cocen (gl o)) 0l gty
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To show the absolute convergence of the Taylor series, we note that

o

1 . <1 1 R
ZHHDUF () ly, 1) < Cskzok!cs,k <3||UOHXQ,€(BI+)> IRl .55

k=0

As lc& ’“‘ < C < o0, by majorization by a geometric series, the series hence
converges absolutely if ||k 5 (B85 <3 HUOHXa (B

Step 3: Next we discuss the contribution originating from the expansion
of

—25 ~

Fy(v) = (2531 0410) = F(v,0,0).
We observe that
DyE(h) = F(h,v,v) + F(v, h,v) + F(v,v,h),
DZF(h,h) = 2F (h, h,v) + 2F (v, h, k) + 2F (h,v, h),
D3F(h,h,h) = 6F(h,h,h).

Thus, estimating this similarly as in Step 2 and using Step 1, we obtain the
analyticity of Fs.
Step 4: We finally discuss the contribution coming from the inhomogene-
ity:
1

_ 3-2s 1 4_ _ 1
J) (Y25 Ongrv) = f (y",—yi 250, (yiif@nﬂv)?s)

2s
2s

SR FW),

(37)

= J(0,0) (4253 On 1)

with F(v) := f (", — 5=yt 20,0, 925" 9p110). Hence, F(v) is a composi-
tion of the analytic function f, and the maps

1/2
RS 2 0 g(2) == (2, 20, 215,

1 _
Uy, (vo) X ]R:”_H > (v,y) = h(v,y) = (", —?S@nv,yi‘illanﬂv).

We note that away from {z,4+; = 0} the function (f o ¢g)(z), as a function
of z € RTFH, is analytic. However, instead of expanding on this observation
to provide the proof of the analyticity of (37), we argue similarly as in
Steps 2 and 3. We use the product and chain rules and invoke the last two
inequalities in Step 1: More precisely,

1 2s
,—ﬁyrlf%@nv,(yiiilanﬂv)%) <_2yn o h)
1

_%Syn Sdn'U (yn+1 n+1v)25)28

Dy F(h) = ( nf)l(,/

+ (an+1f>|<y,,7 (yn+1 3n+1v) (yn+1lan+1h)

Using the chain rule, it is possible to explicitly compute the higher deriva-
tives DF F(h¥). Thus, to estimate D¥ (J( )(yn+11<'“)n+w) < Fu )), if the
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differentiation falls on F(v), we invoke the last inequality in Step 1. Us-

ing the analyticity of F in its arguments, we obtain the convergence of the
~ 2—2s ad .

power series 72 JI,J(U U)(yii_llanﬂv)iDj]:(hJ) in Y, .. If the differ-

entiation falls on J(v,v) or on (y2 +118n+1v) = , the argument is analogous

as in Steps 2 and 3: We use the last two 1nequahtles from Step 1 and the
linear dependence of J(v1,v2) on vy, vo. O

6.2. Mapping properties of the linearized equation. Let L, = D, F
denote the first order differential of the nonlinear functional with respect to
v. In this section we show that for v € U,,(vo) with ro = iHUOHXa () the

linear operator L, : Xa,e(Bf) — Ya,e(Bf) is a perturbation of the constant
coefficient fractional Grushin operator Ag ¢ in (34).

Proposition 6.3. Let vy be the model solution from (33). Let f be the inho-
mogeneity in (9) and suppose that it is C¢(B]") regular (in x coordinates).
Assume that o, €,m9 are as in Proposition 6.1. Then for any v, h € Uy, (vo)
with ro = vo| x,.. we have

I(Lo = Bc.)hlly, sty < Crs (I = vollx, o) 0l x, a1
ol sy 1l il leress)) -
Proof. The proof follows from the chain rule and Proposition 6.2. To fur-
ther simplify the notation, we define

1—2s 2—2s

Wi(v) == (y2°5 Ong1v) = Wa(v) i= (¥25 On1v) 5,
G(v) == F(U 0,0) + Ont1(yp . 1yn+118n+1v)
J() := J(v,v),

~ 1 s 1
F0) 1= 1 (1= ok 00, G 00 ).

where J(v,v) and F(v,v,v) are as in (36) (note that .J(v) differs from J(v)

25—1

in (28) by a factor (ynJrl On41v) 2= ). Then F' can be written as
F(v) = Wi(0)G(v) + 0n(yn Y1 0nv) + Wa(v)J (0) F(v).
By the product rule,

Lyh = G(v)DyWi(h) + Wi (0) DyG(h) + O (yn~ 2 ynt1°0nh)
+ J(0)F(0) Dy Wo(h) + Wa(v) DyJ (h) F(v) + Wa(v)J (v) Dy F(h).
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Noting that Ag sh = G(vo)DyyWi(h) — Wi(v9) Dy, G(h), we obtain

Loh — Agsh

= G(v)D,Wi(h) + Wa(v)DyG(h) — G(vo) Dy W1(h) — Wi(vo) Dy G(h)
+ J(0) F (0) DyWa(h) + Wa(v) Dy J (h) F(v) + Wa(v)J (v) Dy F (h)

= (DuW1 = DyyWh) ()G (v) + Dy Wi (h) (G(v) = G(vo))
+ (DoG = Dy G) ()W (v) + Dyy G(h) (Wi (v) — Wi(vo))
+ J(0)F (0) DyWa(h) + Wa(v) Dy J (B)F (v) + Wa(v)J (v) Dy F (h)

= I+I1I+1II.

Using the estimates in Step 1 of Proposition 6.2, we obtain
||I||ya,€(5j) + HIIHYQ,E(BT)

<Cyllv = wolx, .2 (IVx.0) + Ivollx, .oy + 1) Il sy

Hence it remains to bound III. To this end, using Step 4 of Proposition 6.2
we note that

HIIIHY%G(BT) < CSHUH;M(BDHh‘|Xa7€(B;L)”f”cLe(B;L)'

Here we used a bound similar as in the proof of Proposition 6.2, Step 1. [

7. Application of the implicit function theorem

In this section we invoke the implicit function theorem to deduce the
smoothness and analyticity of the regular free boundary (for smooth and
analytic inhomogeneities respectively). To this end, we introduce an auxil-
iary one-parameter family of diffeomorphisms, which infinitesimally acts as
a translation on P. Composing our function with this one-parameter fam-
ily of diffeomorphisms creates a parameter-dependent problem, to which we
apply the implicit function theorem (c.f. [1], [14], [17]). This then yields the
desired tangential regularity of our solution and hence proves Theorem 7.1.

As we rely on the results of the previous sections, we always assume that
the conditions (A1)-(A4) are satisfied in the sequel.

We begin by defining our family of diffeomorphisms. As this is identical
to the set-up in [17], we do not present the details of the proof.

Lemma 7.1 (One-parameter family of diffeomorphisms, [17]). Let y € By,
a € BY. Consider ¢, : [0,1] — R"™1 which is defined as the solution to the
ODE

Gu(t) = a ((3/4)% = |o(t)] ) N(Yns Yn+1),
$a(0) = y".

Here n : R? — R is a smooth, radial cut-off function, which is one for
|(Yns Yn+1)| < 1/4 and which vanishes for |(Yn,Yn+1)| = 1/2. Let ®4(y) :=
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(ay(1), Yn, Ynt1). Then the mapping @, : B — R is well-defined and
satisfies the following properties:

(i) For any fired y € B;F/Q, the map B > a = ®,(y) € R"! is analytic.
(ii) For each a € By, the map By > y — ®.(y) € R" is C3, and

moreover ||®q(y) — yHC3(Bf) < Ca.

(iil) ®a({yn =0}) C{yn =0}, Pa({ynt1 = 0}) C {ynt1 = 0}.

(iv) On41®al gy, =0} = €nt1-

(v) 0n,®%(y) = 0 = 0p11P%(y) for all y with |(Yn,ynt1)| < 1/4 and
jell,...n—1}.

(Vi) @aly) =y fory € {y € B :1y"| = § or |(yn, yns1)| = 5}

We now apply the implicit function theorem to deduce the tangential
smoothness or analyticity of our Legendre function v. Recall that given a
solution w to the fractional thin obstacle problem (9) satisfying the assump-
tions (A1)-(A4), the Hodograph-Legendre transformation was invertible in
B;g with some small radius dy = dy(s). Hence, it is possible to consider the
Legendre function v (c.f. (19)) in the corresponding image domain. The
asymptotics and regularity properties of v were studied in Section 4.3. In
particular, by Corollary 5.16, v € X()[7E(l’>’('5';)7 where « is the Holder exponent
of the regular free boundary I';, and € is any number in (0, ) (here dp might
be different from above the constant from above, but it also only depends
on s).

To simplify the notation, in the sequel we will assume that

So=1, ie ve Xy (B).
Furthermore, we suppose that v is close to the model solution vg in Xa’E(Bf),
ie.
1

vE Ll%o(vg) C Xa,e(Bf), where rg = ZHUO”XQ,E- (38)
We remark that by Proposition 4.10 and Proposition 4.11, these assumptions
are always satisfied by choosing ep, po and [Vg]soa in (A2)-(A4) to be
sufficiently small, and by a scaling with a factor which only depends on s.

After these normalizations, given a Legendre function v as above, as in
[17] we now consider a one-parameter family of Legendre functions:

Ua(y) == v(Pa(y))- (39)
We note that by Lemma 7.1 (vi), the perturbation @, is only active in BT/Q €

Bi". More precisely, 7,(y) = v(y) in Bf \ {y : [y| < %, | (Yns Ynt1)] < %}
We claim that v, satisfies the following further properties:

Proposition 7.2. Let a,e satisfy the same assumptions as in Proposi-
tion 6.1 and let v, v, be as above. Then,

(i) there exists a constant ny = no(n,s) € (0,1/4) such that for all
a € B,’7’O we have, Uy, € Uy, (vg) C XQ,E(BT) for rog = %HUOHXM(BT)'
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In particular, U, satisfies the mixed Dirichlet-Neumann conditions

o =0 on {y, =0}, lim 4, 28,110, =0 on {ynt1 = 0}.

Yn+1—04

(ii) 4 is a solution to the fully nonlinear equation
0= Fa(uv y) = F(U 0 (I)gl(z)’ Z)’Z=<I>a(y)'

Proof. To show (i) we compute the derivatives of 0, in terms of the ones
of v:

0i0a(y) = 00l (4, 0P (y),
OiTa(y) = Ojevlw, () 06 (y) kP4 (y) + 050 ()Pl (v).
We first note that in the domain in which |(yn, yn+1)| < 1/4, the tangential
and normal derivatives are not mixed (c.f. Lemma 7.1 (v)). Thus, as all
tangential derivatives are treated homogeneously, around P the function v,
satisfies the decomposition from Proposition 5.12, if |a| < 1/4. Away from
P we invoke the radial assumption on n: In order to conclude that v, €
Xo.c(Bf), it remains to discuss the region in which 1/4 < |(yn, yn+1)| < 1/2.
As r(y) ~ 1 in this region, it suffices to study the behavior of d;v at the

boundaries {y, = 0} and {y,+1 = 0}. Due to the radial dependence of 7
(and by considering the ODE from Lemma 7.1), we however have

|3n<13£(y)| < Cy, and \8n+1¢£(y)] < Cypyr for je{1,...,n—1}.

Hence, the asymptotics at the boundary (and the Dirichlet-Neumann bound-
ary conditions) follow in this region as well.

Additionally, choosing |a| < 79 for some sufficiently small ng(n,s) > 0, we
further infer that 9, € Uy, (vo) with ro = %[lvo| Xae(BH) (this follows from
(28) and the estimate ||, — ”HXM(Bfr) < al).

In order to compute the equation satisfied by v,, we set ¥, := &, ! and
observe that 0,(W,(y)) = v(y). This then yields:

9v(y) = 9jValw, (40 Vi (y),
Ourv(y) = BjeValw, ()0 VE (Y)Y () + 0jTalw, () 0k Vh (),
from which we infer the equation for . O

Remark 7.3. The linearization D, Fy(-,y) of the nonlinear function Fy(-,y)
still satisfies local a priori estimates in the spaces Xq. e, Ya,e. This is a conse-
quence of the existence of a one-to-one correspondence between the solutions
of Fy and F by means of the diffeomorphism ®, and by the discussion in
the preceding Proposition 7.2.

We finally prepare the application of the implicit function theorem by
extending our problem to a problem on the whole quarter space ¢+ and
by working with the function w, := 9, — v rather than with v,. We point
out that as w, is compactly supported in Bfﬂ, we can avoid dealing with

artificially created boundaries 9B, N {yn > 0,yny1 > 0}.
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Proposition 7.4. Let v, 7, € Xa,e(Bf) be as (39). Let w, := U, — v in Bf
and set W, =0 in Q4 \ By . Let e, € (0,1) with € < . Then,

(i) supp(w,) C B;)r/4. Moreover, W, satisfies the equation

Go(Wa,y) = N(y) Fu(Wa,y) + (1 = N(y))Ag,sWa = 0 in Q+,

+

¢ 3/4
outside B, Fy(a,y) = Fo(v + a4,y), and Ag s is the fractional
Baouendi-Grushin Laplacian in (34).

(ii) For no = mo(n,s) > 0 as in Proposition 7.2 and for a € Bgo, the
map

where 7 is a smooth cut-off function that is one on B;,, and zero

w = Go(w) € Yo,

is analytic in Uy, 2(0) C Xae with ro = Hlvollxa.-
(iii) For any w € Uy, 2(0),
BZO Sar— Go(w) € Yo,

)

s analytic.
(iv) There exists po = po(s,n) > 0 such that if HfHCl’E(Bl*) < o, then

DwG|(w,a):(0,0) : Xa,e — Ya,e
s an invertible map.

Proof. The proof of (i) follows immediately by noticing that w, = 0 outside
8;/4 and by rewriting 0, = W, + v.

To prove (ii), we first note that w+v € Uy, (vo) for each w € U, /2(0) C X .
Applying Proposition 6.2 we obtain that w +— F(w + v,y) is analytic in
Uyy/2(0) C Xo.c(Bf). The analyticity of w — F,(w +v,y) for fixed a (recall
F, is defined Proposition 7.2 (ii)) follows from the properties (ii), (v) (in
Lemma 7.1) of the diffeomorphism ®, and the analyticity for F. Thus by
the definition of G, the map w +— G4 (w) is analytic in U, /5(0) as well.
The statement (iii) follows from the analytic dependence of ®, and ¥, on
a (cf. Lemma 7.1 (i), (ii)). Finally, using Lemma 7.1 (ii), we can di-
rectly compute that DwG}(w,a):(O,O) =nLy,+ (1-1)Ag,s, where L, = D, F.
Since Ag,s : Xa,e — Yo, is invertible, Proposition 6.3 combined with the
global invertibility result of Proposition 9.4 implies that the linearization
DwG‘(o,o) : Xa,e = Yo is also invertible, if |’fHClv€(Bl+) is sufficiently small
(e.g. by rewriting DyGl,0) = Ag,s(Id + Aa}s(ﬁp)) with P being the op-
erator from Proposition 6.3 and using the norm bounds from Proposition
6.3). O

With this at hand, we can finally prove our main theorem:
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Theorem 7.1 (Analyticity). Let v be a Legendre function associated to a
solution of the fractional thin obstacle problem (9) with smooth or analytic
inhomogeneity f. Then there exists a constant nyg > 0 such that the mapping

1 1-2
%yn sa”v(y”y:(y”,o,[)):
is smooth if f is smooth and real analytic if f is real analytic. In particular,

the regular free boundary I'sy1(w) is locally smooth if f is smooth and locally
real analytic if f is real analytic.

Bl 5y —

Proof. The proof follows by an application of the smooth/analytic implicit
function theorem (c.f. [8]). We only show the real analytic case. The
arguments for the smooth case are analogous.

By Proposition 7.4 (ii) and (iii) the mapping G : B} X Uy, (0) = Yo is
analytic for ro = }||vol|x, .. By Proposition 7.4 (iv) the operator D,,G/|(o )
is invertible from X, to Y, .. Due to the implicit function theorem there
exists a neighborhood (—&, &)™ ! x U:(0) of (0,0), such that for each a €
(—€0, €)™ ! there exists a unique function w, € Uz(0) C Xq.e satisfying

Ga(wa) =0. (40)

Moreover, this solution w, depends analytically on the parameter a. As the
function w, = 0, — v € Xq, (defined in Proposition 7.4) also satisfies the
nonlinear equation Go(,) = 0, and as ||@,| x, . < |a] < 7 for a small choice
of |a|, the local uniqueness result of the implicit function theorem asserts
that w, = w,. Hence, as a function in X, ., W, depends analytically on
a. Thus, by definition of the norm of X, . the function y}L_258n11)a also de-
pends analytically on a. As a consequence, this remains true for g} =29, 9,.
Recalling that ®, infinitesimally corresponds to a (tangential) translation
at P, this implies that the function y!72*0,v depends analytically on the
tangential variables. This yields the desired result. O

Remark 7.5. It is clear that by carefully tracking our arguments, the set-
up of analytic and smooth inhomogeneities can also be extended to that of
Holder inhomogeneities. More precisely, let w be a solution to the fractional
thin obstacle problem (5) with inhomogeneity f € C*P for some 5 € (0,1)
and k > 1, then

(i) if s € (0,1/2), then the regular free boundary I'14s(w) is locally a
CFtLe graph for some a € (0,1);
(ii)) of s € (1/2,1), furthermore assume k > 3, then the regular free
boundary T'14s(w) is locally a C*T5% graph for some a € (0,1).
(iii) iof s = 1/2, then the regular free boundary T'145(w) is locally a
Cr+1+1B+318+3-18+3] graph.

Here case (iii) was proved in [17] (c.f. Theorem 2 (ii) of [17]). We remark
that by using similar techniques as in [17] (c.f. Section 5.2 and the proof for
Theorem 3 in [17]), it is possible in cases (i) and (ii) to obtain a regularity
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result analogous to (iii), i.e. it is possible to show that locally the regular
free boundary Ty 4(w) is a CFHHEHA=)LA+A=8)=[8+(1=)] grgph,

8. Appendix A

The following sections contain auxiliary (regularity) results for the linear
fractional Laplacian with Dirichlet, Neumann and mixed Dirichlet-Neumann
data. Moreover, in the last section of this first appendix, by using the
square root mapping these results are then also transferred into regularity
statements for the fractional Baouendi-Grushin Laplacian. These regular-
ity results are deduced by relying on the compactness method similarly as
in [24] and build on approximation properties in terms of eigenfunctions of
the respective operator. On the one hand this is reminiscent of Campanato
type arguments of proving regularity [6], on the other hand it also reminds
us of the methods used in obtaining the up to the corner (or edge) asymp-
totics of the solutions for elliptic equations in conical domains by means of
eigenfunction approximations (c.f. [10], [18]).

Let us formulate our main regularity results for the fractional Laplacian:

Using the notation Lg := V-x}lffv with s € (0,1) from above, in the sequel
we consider the equations

Lsu:fian, u =0 on B,

and

_ 125, + 1—2s _ /
Lyw=xz,,7fin By, z,,70+1u=0on Bj.

In both cases, we assume that the inhomogeneity f € C%¢(B;") for some
e € (0,1). For solutions of the above equations, we prove the following
Schauder apriori estimates which hold up to Bj:

Proposition 8.1 (Dirichlet data). Let u € L™ (B )N H(B{") be a solution
of
Lau=f z'anr, u=20 on B,

where f € CY%¢(By) for some ¢ € (0,1). Then there exists a constant
C =C(n,s,e) >0 such that

n
||:I:;_%_1u\|00,6(3;r/2) +) ||x;i§aiu||co,e(31+/2) + \|x;;21san+1u||co,e(31+/2)
=1

n+1
+ 3 10l 30l coest, < C (Wlleoess) + vl iz ) -

4,j=1

Here, for simplicity, we set w(x) := x,llfls, abbreviate

w(Q) = /:L’%H_ledl'
Q
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for Q C R’};H and denote the associated weighted Lebesgue and Sobolev
spaces by L2(Q) := L?(Q,wdx), HL(Q) := HY(Q, wdx).

In the case of the Neumann problem we analogously show the following
regularity result:

Proposition 8.2 (Neumann data). Let u € L=(B{")NH(B;) be a solution
of

Lou=22%f in Bf, lim :1:71;2158,1+1u =0 on B,
Tp+1—04

where f € CO¢(B]") for some € € (0,1). Then there exists C = C(n,s,e) >0
such that

-1
”UHco,e(BIr/2) + ”aiUHCo,e(B;r/Q) + ”37n+1an+1“”00’6(31+/2) + ||8iju‘|co,e(B;F/2)

<C <||f||CO!5(Bf') + HUHL%(BT)) :

Finally, using the square root mapping, we exploit these results to infer
Schauder estimates for the Baouendi-Grushin Laplacian

2n
AG,S = ZYVlw(y)YVl’ W(y) = |ynyn+1|1_28> 5 € (O’ 1)a
i=1

where {Y;}2", are the Baouendi-Grushin vector fields in Definition 5.1 and
derive the proof of Proposition 5.15:

Proposition 8.3 (Apriori Schauder estimate). Suppose that v € L (B] )N
ML(By) is a weak solution to

Agsv=fin B with f € Yo,
v =0 on By N{y, =0},
lim  w(y)Odn+1v(y) =0 on By N{yn+1 = 0}.

Yn+1—04

Then, v € Xa,G(BDQ) and it satisfies

ol x5, < € (Iflly, o) + 0l s)) -

1/2

Here L2(Q) := L?(Q,wdy) for @ C R, Moreover, the weighted L>-
based Sobolev space M} () associated with the Baouendi-Grushin vector
fields {Y;} is defined as

MAQ) = {u:uec L2(Q), Yiue L2(Q)}.

The spaces Xq e, Yao,e are the ones from Definition 5.11.

Although we deal with linear problems, the results in this section might
be of independent interest. For instance, we obtain a full classification of all
eigenvalues and eigenfunctions of the mixed Dirichlet-Neumann problem in
the slit domain. This situation can be regarded as the linearization of the
thin obstacle problem.
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For us the results in this section play an important role in deducing the
asymptotic expansions and mapping properties for the fractional Baouendi-
Grushin operator (e.g. in Propositions 3.10 and 5.15). In particular in
Section 8.4 we transfer the results from the Laplacian to the Baouendi-
Grushin Laplacian by means of the square root mapping.

The Section is structured as follows: First we compute all global homo-
geneous solutions to the fractional Laplacian with Dirichlet, Neumann or
mixed Dirichlet-Neumann data (c.f. Section 8.1). Relying on this we use
the compactness method as e.g. in [24] to approximate the solution w by
(a linear combination of) homogeneous global solutions to Lsu = 0 (c.f.
Section 8.2). With this at hand, we then prove Propositions 8.1 and 8.2 in
Section 8.3 and Proposition 5.15 in Section 8.4.

8.1. Eigenfunctions and eigenvalues. In the following two sections we
discuss the form of the global homogeneous solutions to Lsw = 0 in the upper
half-plane with Dirichlet, Neumann and mixed Dirichlet-Neumann data on
the boundary. These results will play a crucial role for our approximation
arguments in Section 8.2 and hence in the regularity statements of Section
8.3 and also of Section 8.4.

8.1.1. Mixed Dirichlet-Neumann data. In this section we compute ho-
mogeneous solutions to the mixed Dirichlet-Neumann problem. In the fol-
lowing section we then deal with the Dirichlet and Neumann problems, re-
spectively. In deducing the approximation result for the mixed Dirichlet-
Neumann problem, we argue in two steps: We first compute the solutions in
the two-dimensional set-up (c.f. Section 8.1.1) and then exploit the transla-
tion invariance in tangential directions of our problem to infer an analogous
(n + 1)-dimensional result from that.

We begin by considering the mixed Dirichlet-Neumann problem for the
fractional Laplacian with s € (0, 1) in the two-dimensional upper half plane:

(611’%_2881 + 32x%_2582)u =0in R?I—’
u(z1,0) =0 on {z; <0} N (R x {0}), (41)
lim x5 *dyu(w1,z2) = 0 on {z1 > 0} N (R x {0}).
+

T2 —0

In the polar coordinates (x1,x2) = (rcosp,rsing), ¢ € [0,7], and with
a separation of variables ansatz u(r, ) = u1(r)uz(p) the bulk equation in
spherical variables reads

(02 + (2 — 25)r 710, )ur (1) = A2~ 2wy (1),
sin(p) 19, (sin(p) ' *9p Jua () = —Aua(p),

(we stress that the separation ansatz is justified here, as the spherical oper-
ator forms a basis of L(S},sin(p)' %) and as the separation ansatz essen-
tially corresponds to an expansion into these eigenfunctions). The Neumann

(42)
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condition becomes

lim (sin(p)) ' ~2*0pua(p) = 0.
©—0

In the sequel we focus on the spherical part of the problem and determine
the corresponding spherical eigenfunctions:

Lemma 8.4 (2D spherical eigenfunctions). Let ua(p) be a solution of
sin(p)** ™ 9y (sin(p) 70, Juz () = —ANua(p) for ¢ € (0,m),
up(m) =

lim (sin(p)) 2% 0pus(p) =

p—r

0,
0
Then, the eigenvalue A\? has the form

M =Fk(k+1) —s(s—1) for some k € N.
The associated spherical eigenfunction is given as

1 ® 1

uz(p) :C’<+C;S(S0)> F<1—s—k:,k+5,1+s;cos((p2)+>,

where F' is a hypergeometric function. Moreover, the hypergeometric func-
tion F(1 —s—k,k+s,14 s;2) is a polynomial of degree k in z.

Proof. In order to prove the lemma, we consider the following change of
variables: We set © = cos(¢) and define ua(p) =: v(cos(¢)). In these
coordinates the equations become

(1 — 20" (x) + (25 — 2)2v'(x) + No(z) = 0 for 2 € [1,1],
v(=1) =0,

lim (1 —2%)'%/(z) = 0.
z—1_

This equation has three regular singular points at x = +1,00. By further
defining z = ZH and v(z) =: w(z), we transform this into a standard
hypergeometric equation with the three regular singular points z = 0, 1, co:

2(1 = 2)w"(2) + (1 = s) + 2(s — 1)2)w'(2) + N2w(z) = 0 for z € [0,1],
w(0) =0,
: o 1—s —
zl_lglﬁ (2(1 = 2)) *0,w(z) = 0.
(43)
The general solution of the bulk equation is given as

w(z) = AF(a,b,¢;2) + Bz “Fla+1—¢,b+1—¢,2—¢;2), A,BER,

(44)
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where F' denotes the hypergeometric function and where

1
a:§(1—28—|—\/4)\2+4s2—43+1),

1
b:§(1—28—\/4)\2—|—452—48+1),

c=1-—s.

As F(a,b,c;0) = 1, the Dirichlet boundary conditions immediately imply
that A = 0 and thus, for some B € R,
w(z) = Bz'“Fla+1—c,b+1—c¢,2—c;2)=BzF(a+s,b+s,1+s;2).

In order to determine the possible values of A\, we now use the Neumann
condition. To this end, we recall the following relations for hypergeometric
functions:

0.F(a,b,c;z) = %bF(a—l—l,b—l—l,c—l— 1;2),
I'(e)l'(c—a—Db)
I'(c—a)l'(c—b)
c—a—bF(C)F(a’ +b— C)
I'(a)l(b)

Thus, 0,w(z) turns into

F(a,b,c;2) =

F(a,b,a+b—c+ 11— 2) (45)

+(1-2) F(c—a,c—bc—a—-b+1;1—2).

D.w(z) = sz 'F(a+s,b+ 5,1+ s;2)
(46)

+2° ab
1+s

We consider the two terms separately. For the first contribution we note
that

Fla4+s+1,b+s+1,2+s;2).

(14 s)I'(s)
T(1—a)(1—b)
L0+ 9T (1 —5)

L(a+s)T'(b+ s)
In the relevant Neumann derivative (coming from the equation) the previous
expression is weighted with the vanishing factor (1 — z)!~% (we recall that
s € (0,1)). Since the prefactors in the expression for F'(a+ s,b+s,1+ s;2)
are all finite and as F'(a, b, c¢;0) = 1, the first part in (46) always satisfies the

boundary conditions. As a consequence, we turn to the second contribution
from (46). We have:
Fla4+s+1,b+s+1,2+s;2)
2+ s)I'(1+s)
= F(1 1+ 2—s5;1—
Ta—ara_p Utatsltbts2-sl-z)
L2+ s)I'(2—s)
FNl+a+s)I'(1+b+s)

Fla+s,b+s,1+s;2) = Fla+s,b+s,1—s;1-2)

+(1-=2 F(1l—a,1-0,14s;1—2z).

+ (12!

F2—-a,2—-0,2+s;1—2z).
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Similarly as above, the first summand vanishes in the limit z — 0 if it is
multiplied with the weight (1 — z)'~%. Therefore, it suffices to consider the
second term which does not vanish in the limit z — 0 unless the prefactor

2+ s)'(2-s)
'l+a+s)I'(1+b+s)
vanishes. This is the case iff at least one of the I'-functions in the denomina-
tor explodes (i.e. iff at least one of the arguments of the I'-functions in the

denominator is a negative integer). Plugging in the definition of a, b, this is
the case iff

11
§:|:§\/1+4)\2+482—4S=—k‘, k € N.

This however is equivalent to

N=k+k+s—s>

The result on the eigenfunction representation in terms of the corresponding
hypergeometric functions therefore follows from inserting these values of A
into the expressions for a, b.

We prove that F(1—s—k,k+s,1+s, z) is a polynomial of degree k: To this
end, we first set w(z) = 2°h(z) (where w(z) is the solution of the transformed
equation (43)). Inserting this into the equation for w, we deduce that h(z)
satisfies

2(1—=2)h"(2) + (1 + s —22)h (2) + k(k + 1)h(z) = 0.

o0
Making a series ansatz, h(z) = > ap, 2" thus yields

m=0
oo
Z X{m>1}m m+ 1)ami1 — X{mzz}m(m — Day,
m=0

+ (1 +s)(m + D)amt1 — 2X{m>13Mam + k(k + 1)ay]2™
For a prescribed non-zero value of ag this corresponds to the following system
of equations for the coefficients a,,:

(1+s)ar + k(k+ 1)ap =0,

(44 2s)ag + (k(k+ 1) — 2)a; =0,

(m? 4+ 2m 4+ ms + 1+ 8)ame1 — (m(m +1) — k(k + 1))am, = 0.
As m?+2m+ms+1+4s#0for m € N, s € (0,1), this system is up to order
m = k uniquely solvable for given ag. Moreover, we note that it is possible

to choose a,,, = 0 for all m > k4 1. This yields the claimed polynomial form
of the hypergeometric function F(1 — s — k. k+s,1+ s, 2). O

As a corollary of Lemma 8.4 we obtain the following result on the structure
of 2D homogeneous solutions to (41):
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Corollary 8.5 (2D homogeneous solutions). Let v : R2 — R be a k-
homogeneous solution of (41) with k > 0. Then,
k=k+s, for somek €N,

and u has the form

1+ Z\° &4
u(:z:):C]x\k+s<2x|> F(l—s—k,k—i—s,l—i—s; |x|2 ),

where F' denotes the hypergeometric function from 8.4. By the observation
on the polynomial structure of the relevant hypergeometric function F', this
can also be rewritten as

u(z) = wo s(x1, 2) Pe(x1, |2]),
where Py, is a polynomial and wo s is the function from Section 3.
Remark 8.6. For later reference, we note that for instance for k = 0,1 we
have
uo(r) = cowo,s(1, 72),
ui(z) = crwo s(x1, x2) (s|x] — z2) .
Here we used the series approach from the proof of Lemma 8.4 to compute

the coefficients of u1. We note that these functions correspond to the ones
from the asymptotic expansion in Proposition 3.6.

Remark 8.7 (Orthogonality). We note that the spherical eigenfunctions
are pairwise orthogonal with respect to the L?((sin(p))!=2%dy, [0,7]) scalar
product. This entails that the homogeneous solutions from Corollary 8.5 are
orthogonal with respect to the L?(xy **dx) scalar product on Bf C RZ.

Proof. The corollary is an immediate consequence of the form of the solu-
tions in Lemma 8.4, the fact that x; = r cos(¢) and of the equation for the
radial component of uy. O

Relying on the two-dimensional result from above, we now proceed to
determining the full set of (n + 1)-dimensional homogeneous solutions for
the mixed Dirichlet-Neumann problem.

Proposition 8.8 (Homogeneous solutions in IR{IH). Let u : R:‘_'H — R be
a k-homogeneous solution of
Va2 ¥Vu =0 in R},
u=0 on {x, <0} N (R" x {0}), (47)
lim 2} 301w =0 on {z, > 0} N (R" x {0}),

xn+1—>0
with k > 0. Then, the possible homogeneities are of the form

Kk =38+ with ¢ € N.
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The corresponding k homogeneous solutions are

Uy () = Z ](wn,xn+1)|2de,2k(m”)um(x),

k=m+d+s
d—2k>0

where d,k € NU {0},
(s Try1)] +xn>s

) = lomsme P (12222

%ﬂLl
F 1—s—m,m+s,1+s;T ,

and Pi(z") denotes a l-homogeneous polynomial. In particular, a general
(n + 1)-dimensional eigenfunction can also be represented as

ﬁ,{(.ﬁ) = Z wS,O(xnvanrl)Pk(xnv \/ ZL‘% + x?z—i—l)Pd('r))

k+d=kx
where Py is one of the k-homogeneous polynomials from Corollary 8.5 and
Py(z") denotes a polynomial of degree d.

Proof. We begin by introducing new coordinates (z”, r, ¢) which are defined
as

(2", 2p, tne1) = (2”7 cos(p), rsin(e)).

Dividing our equation (47) by a:};fls and rewriting it in the new variables

leads to

(A" + (92 + (2 — 28)r710,) + 2 (sin(p)* 19y (sin(p) ' ~?*)0,))u = 0.
(48)

Let uy,(¢) denote the functions from Lemma 8.4. As they form an orthogo-
nal basis of L?(S%, sin()' "**dyp) (as they are eigenfunctions of an associated
Sturm-Liouville operator), we obtain an expansion
oo
u(@”,r o) =) em(@” r)um(p). (49)
m=1

By orthogonality of the functions w,,(y), each of the functions ¢,,(z",r)
solves

(*A” + 7,,2(87.2 + (2 — 28)7"_187-) — A?n)cm(x”ﬂ“) - 07 (50)

with A2, = m? + m — s + s. Moreover, again by orthogonality and by the
homogeneity of u each of the functions ¢, is K homogeneous.

Since the problem is translation invariant in tangential variables 2, we carry
out a Fourier transform of ¢, (2", r) (interpreted as a Fourier transform on
tempered distributions) in the tangential variables 2" and denote the partial
Fourier transform of ¢, by

em (€7, 7).
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We note that by the k-homogeneity the functions ¢,,, we obtain that
EmNTEE M) = AT (€ ). (51)
Therefore,
|em (", )| < Cmax{r=l g7 (52)
After the Fourier transform the equation (50) for ¢, reads
(=r?|€" | +72(87 + (2 = 28)r™10,) — A7 )ém(€",) = 0, (53)

with A2, = m? + m — s% + s.
Considering the ansatz, ¢, (", r) = r2s2;1fm(§”, r), we deduce that f,,(¢”,r)
satisfies a modified Bessel equation:

2.l (et 1ol - 1" 2 (1 — 23)2 212 )
r fm(€ 7T)+Tfm(§ 7T) fm(€ 7T) Am—i_ 4 +r ‘5 | =0
A fundamental system of this ODE is given by the modified Bessel functions

fn(§" 1) = di (") az2m (I€"7) + d(€") K wszm (|87 7).

These functions satisfy the following asymptotics:
x x

L(z)~(T(v+1)! (5)1/, K, (x) ~ %F(V) <§>_V forx — 0 and v > 0,

I(2) ~ ——, K, (z) ~ e\/%% for |a| — co.

Combining this asymptotic behavior with the bounds from (52), we infer
that f,,(£”,r) is only supported in |£”| = 0 (this follows by considering the
limits » — 0, and r — oo for fixed £” # 0). Thus,

=3 3 g€ (54

k=0 |a|=k

Here a = (au,...,an—1) is a multi-index with o; € NU {0} for all j €
{1,...,n—1}, and 5%?,%20}(5”) denotes the distribution which is obtained by
taking « distributional derivatives of the delta distribution dren_gy. Using
the homogeneity of ¢,, (c.f. (51)), we deduce that cp,o(7) is K +n — 1 —
k homogeneous. However the Dirichlet data (which hold on part of the
domain) require that k& < k + n — 1, whence we observe that the series in
(54) is a finite sum. We use Ky(m) to denote the largest positive integer
less than & +n — 1 with ¢, g (m)(r) # 0. Then,

Ko(m)

ém( Z Z Cma 5// 0}(5/,) (55)

k=0 |a|=k
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Here [-] denotes the floor function.
We plug this expression back into (53) and test it with a smooth, compactly
supported function . This yields

Ko(m)
o D [FUDEIE" o) er=olr?em,alr)

k=0 |o|=k
+ [(Dg‘,,cp)(O)](TQ(?? +(2—28)r 10 — A2))cma] = 0.
Successively inserting the test functions
(&) = 1€") for j € {1,..., Ko(m)}

with ¢; being extended away from zero to have compact support in &”
(and beginning the testing with large j first and then decreasing the power
in each step), we obtain the following equations for ¢, (r): For & with
|a] € {Ko(m), Ko(m) — 1} we have

(7“287? +(2- 28)7“_18r — )\gn)cm,&(r) =0,

(56)

from which we obtain ¢, (1) = 6m7arm+s with an absolute constant ¢, g in

both cases. As ¢, is however homogeneous (in the sense of (51)), this implies
that either ¢, 5(r) = 0 for all & with |&| = Ko(m) or ¢pna(r) = 0 for all &

with |a| = Ko(m) — 1 (as the functions cm7&5§?,%:0} with |&| = Ko(m) and
Cm,d5?g//:o} with |@| = Ko(m) — 1 can else not have the same homogeneity).
We assume that the second case holds (the other one is analogous).

Again invoking (51), we obtain a condition for Ky(m) depending on m, k, n:
Ko(m)=k+n—-1—s—m>0.

This in particular entails that k+s € N. Further we note that with increasing
m the value of Ky(m) decreases. Hence ¢é,, # 0 only for finitely many values
of m (depending on ). In particular the sum in (49) is finite.

We return to the condition on the coefficients ¢, o(r): Evaluating (56) for
o with k € {1,..., Ko(m) — 2}, we then have

(7283 + (2 - 25)7”7167“ - )‘?n)cmpz("ﬂ) = dm7dcm,d(r)a

where || = k and @ = k + 2 and d,, o is an absolute constant. Inte-
grating this iteratively and recalling that c,, obeys the homogeneity con-
dition (51), we thus deduce that for |a| = Ko(m) — | we have ¢y q(r) =
o H20=131/2) - By homogeneity of ¢, we conclude that dp, 2541 = 0
for all j € {1,...,[(Ko(m) — 2)/2]}. Therefore, (55) turns into

AGEDY S s (@),

ke2NU{0}, |a|=Ko(m)—2k
k<Ko(m)/2

()
{¢"=0}
is a homogeneous polynomial of degree |a|, and transforming back into

Inserting this information, using that the inverse Fourier transform of &
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(2,7, ¢) coordinates then yields

em(2” r) = Z PSR Py m)—2h— 1 (27 Y (9).
ke2NU{0},
k<(Ko(m)—n+1)/2

Here Pg,(m)—2k—n+1 15 @ polynomial of degree Ko(m) — 2k —n+12>0. As

u(a”, 1) = Z > P2 Py )21 (&)t (40),
ke2NU{0},
Ko(m)>0 k<(Ko(m)—n-+1)/2
where Py 1 1]42k(2") is a polynomial of degree 2k and x—[k+n+1]—s € N,
this concludes the proof of the proposition. O

8.1.2. Dirichlet and Neumann data. In this section we determine all
homogeneous solutions to the (n + 1)-dimensional Dirichlet and Neumann
problems for the fractional Laplacian. This is slightly less involved than
the argument for the mixed Dirichlet-Neumann problem, as the problem
has only one “broken symmetry” originating from the operator (which is
inhomogeneously weighted in the z’ and x,; directions). In contrast in
the mixed Dirichlet-Neumann case we had to deal with two directions of
“symmetry loss” as the boundary data caused an additional direction with
loss of symmetry.
For the Dirichlet and Neumann problems our main result is:

Proposition 8.9 (Dirichlet, Neumann homogeneous solutions in R?fl). Let
UDN : RTFI — R be a k-homogeneous (k > 0) solution of

Laupn =0 R, Bpyu=0inR" x {0}.

Here Bpup = up and Byuy = lim x;flsf)n_,_lu;v, respectively. Then,
xn+1%0+
[m/2]
up\x) = xn+1 E $n+1pm ok ('),
[m/2]

Z anrle 2k )

with m € NU {0} and P,,_o being a polynomial of degree m — 2k.

Proof. We begin with the Dirichlet case. Carrying out a Fourier transform
(interpreted as a tempered distribution) and dividing by :U,llfls yields an

ODE for (&, p41):

1-2
<8i+1 + Tlsan_l,_l — ‘5/’2> U = 0 for Tn+1 € (0,00),

n—+ (57)
a(€',0) = 0.
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Similarly as in the proof of Proposition 8.8, homogeneity further implies
that

[@(€' 2nr1)] < Cmax{|¢| ™, znpa} " (58)

Making the ansatz a({',zny1) = 25, v(,2py1), the ODE from (57) is
transformed into a modified Bessel equation

Tp 10" + a1t = (€7 + 5% =0,

where differentiation with respect to x,11 has been abbreviated with the
dashes and ¢ plays the role of a parameter. The general solution of this
ODE is of the form

(€, wnt1) = CLEN (€ [wnt1) + Co(€) Ks(|€|2n41)-

The asymptotics for I, K (c.f. the proof of Proposition 8.8) and the Dirich-
let data (i.e. the limit 2, 4+; — 0) imply that for |{'| # 0, C2 = 0. Consider-
ing the asymptotics z,,4+1 — 0o in combination with the bound (58) and the
exponential growth of I then also results in C; = 0. Hence, v is supported
in ¢ = 0. Thus 4 can be written as

§ xn—i—l Z Z Ca «Tn—',-l {gl 0}(5)

k=0 |a|=k

where a = (a1, ...,a,) € (NU{0})" and 5%?,) 0}(5') denotes an a-fold dis-
tributional derivative of the delta-distribution dy¢/—gy (&"). Using the homo-
geneity of 4, we further obtain that ¢, (z,+1) is kK — |a| —n homogeneous. As
@ has to satisfy Dirichlet boundary conditions, we thus have that |o| < k—n,

which yields that the series is a finite sum:

[k—n]

6 anrl Z Z Co xn+1 {5/ 0}(5) (59)

k=0 |a|=k

As in the proof of Proposition 8.8, we can further compute the functions c,
iteratively, by plugging it into (57) and by testing with test functions which
vanish of sufficiently high order. More precisely, we obtain that for a with
o] =Kk —n

1-2s
c+ c, =0,

Tn+1

ie. co(rpt1) = 5a$,2{11 with é, € R (where we used the Dirichlet data).
The functions cg(z,+1) with 8 = [k —n] — 1 also satisfy this equation and

are hence of the same form. Inductively, for [ € {2,..., [k —n] — 1}, & with
|a| = [k —n] — 1 and B with |3| = [k — n] — [ + 2 we have
1-2
Cg + 786/5[ = dch'

Tn41
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Inductively and by invoking the Dirichlet data, we thus infer that

1-1+(1/2]
— 28 § = 2j
Jj=1

for some constants ¢; ;5 € R. Due to the homogeneity condition on cs from
above, this further simplifies to

S 2s+2(1-1+[1/2
calwnt1) = Gamnyp .

for & with |&| = [k —n] — [ and é5 € R. Therefore transforming (59) back
into z-coordinates, leads to
[m/2]
U(.%'/, anrl) = $’?ﬁ|—1 Z xgzlff—lp’m—Qk(x,)v
k=0

where m € N and P, _s4(z’) denotes a polynomial of degree m — 2k depend-
ing on the 2’ variables and [-] denotes the floor function. This concludes the
proof for the case with Dirichlet data.

For the Neumann problem we argue analogously. As in the Dirichlet case,
the Neumann boundary condition implies that the transformed function
(¢, xpe1) has the form

[k—n]

f iL'n_H Z Z ca(Tn+t1) {5/) 0}(£)

k=0 |a|=k

As before the finiteness of the sum is a consequence of homogeneity. We
obtain the same recurrence relation as above for the coefficient functions
Clx—n]—1- However, as these now satisfy Neumann data, we have that

Clk—n] (:L‘n+1) =celR.
Thus,
[m/2]
'LL z :En+1 Z $n+1Pm 2k )

which concludes the proof. [l

8.2. Approximation results for the fractional Laplacian. In this sec-
tion, we prove approximation results for the fractional Laplacian in the
upper half-space with Dirichlet, Neumann and mixed Dirichlet-Neumann
data. The proofs of these results are based on the compactness method as
for instance in [24], [23]. As a key step we exploit the characterization of
the homogeneous global solutions (with corresponding Dirichlet, Neumann
boundary data). These rely on the computations of the eigenvalues and
eigenfunctions in the preceding Section 8.1. As shown in Section 8.4, these
results for the fractional Laplacian also suffice to prove a corresponding
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approximation result for the fractional Grushin Laplacian Ag s (c.f. Propo-
sition 8.18).

The main result of this section is the following approximation statement,
in which we use the notation from the beginning of Section 8 (below the
statement of Proposition 8.1) and where for abbreviation we also set || -
Hi%(ﬂ) = ﬁ\] |22 for any Q C R’}r“.

Proposition 8.10 (Approximation). Let u € HL(B]) be a solution of

Lsu =g in B,

60
Bu =0 on B, (60)

where B € {Bp, By, Bpn} is one of the following operators:
e (Dirichlet) Bpu := u,
e (Neumann) Byu := Opt1u,
e (mized Dirichlet-Neumann) Bpyu := u on {z, < 0} and Bpyu =
Op+1u on {x, > 0}.
Assume that the inhomogeneity g is of the following form:

e g = f in the case of Dirichlet data,

e g= x}zjjsf for Neumann data,

e and
g(@) = 233 (@ + a1 1) " o s (@, ) fo(@) + (2 + 25 40) "2 fi(w)

in the case of mized Dirichlet-Neumann data.

1

Further suppose that

e in the Dirichlet and Neumann cases f is C% at 0 in the sense that
for all z € Bf

[f(x) = f(O)] < Cla]*,

e in the case of mived Dirichlet-Neumann data fo is C® at 0, and
for all v € B, f1 satisfies

|[fi(@)] < Claf' o,

Then, there exist a constant C' = C(n,s,a) > 0 and functions hg,(x) such
that for all r € (0,1/2)

o~ oy llz2 5y < Cr%5+ (£ + Tl z2 )

Here, || f|| denotes || f||co.a(y in the Dirichlet and Neumann cases, or
I follco.e(oy + sup [|2|71=¢ fi(x)] in the mized Dirichlet-Neumann case,
By

1+ 25 in the Dirichlet case,
Bp :=< 2 in the Neumann case,
1+ s in the mized Dirichlet-Neumann case,
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and
n
0)  1+2
a2iy | a+ Zlbj%' + 1]12)3%113
j:
in the Dirichlet case,
- S £0) 2
hgp(@) == ¢ ¢+ 21 a;xj + “21 dijTi%j + yg—g5) Tnt1
j= i,j=
in the Neumann case,
0) 1+1
Wo,s (Tn, Tt 1) (a0 + a1 (slz] = @) + oGwg L (@, 2i1)
in the mized Dirichlet-Neumann case.

(61)
All coefficients of hg, are bounded in terms of HUHE%(Bj) and || f1]-

Remark 8.11 (Inhomogeneity for the Dirichlet-Neumann data). The spe-
cific form of the inhomogeneity in the mized Dirichlet-Neumann case stems
from our definition of the spaces Yo e and the transformation behavior under
the opening of the domain transformation described in Section 9.1. Carrying
out this transformation carefully leads to an inhomogeneity of the form

_ _ 25—1 1, e

glx) =z, 3o (wo,s(fﬂn,ﬂfnﬂ)fo(ﬂf) + w5 (T, Tng1) 2= T2 2f1($)) ,
where r = (x2 + :C?H_l)l/z, fo € C%(0) and f1 € CO</2(0) with f1(0) = 0.
This inhomogeneity however falls into the class of the inhomogeneities from
Proposition 8.10.

Remark 8.12. In the sequel, we assume that f(0) = 0 in the Dirichlet and
Neumann cases and that fo(0) = 0 in the mized Dirichlet-Neumann case.
This can be achieved by subtracting the profiles csf(0)$7lli2ls, csf(O)x%+1 and

es fo(Oywy t1/°.

Remark 8.13. We point out that in the Dirichlet and Neumann boundary
data cases, the approzimation result of Proposition 8.10 holds at all points
xo € {xny1 = 0}, while in the mized Dirichlet-Neumann case, it holds at
all points xg € P := {x, = 0 = xp41} (if the inhomogeneities [ satisfy
suitable regularity assumptions at these points). This observation follows
immediately from translation invariance of the problem in the corresponding
directions.

In order to infer this result, we first approximate the inhomogeneous prob-
lem by the corresponding homogeneous one and then use the fact that homo-
geneous solutions are well-approximated by “eigenpolynomials” (i.e. homo-
geneous global solutions with corresponding Dirichlet Neumann boundary
data).

Lemma 8.14. Let u be a solution of (60) with

251
lullza sy < 1. oy 9llzagsr) < 6 (62)
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For each € > 0 there exists § = 6(e,n,s) > 0 such that if (62) is satisfied,
then there exists a solution h of the homogeneous equation

Lsh =0 in B, Bh=0 on B, (63)
such that

=Pl a) <
Here B- denotes the Dirichlet, Neumann or mixed Dirichlet-Neumann op-
erators from Proposition 8.10.

Proof. In order to infer this result, we argue by contradiction. Assuming
the statement were wrong, there existed € > 0 and sequences of solutions uy
of (60) with inhomogeneities g such that
2s5—1
== -1
lukllze iy < 1o l2nty gkllz2pry < *7°
but
[l — h”ig(B{) > € (64)
2

for any solution h of the homogeneous problem (63). However, by energy
estimates, all these solutions w;, satisfy

251
19kl 2 sy < CUlurll e st + Ity 9illpaae) < € < o0
2

Hence, on the one hand uy — 4 in H}(B7), with @ being a weak solution

2
of the corresponding homogeneous problem (63). On the other hand, by
compactness up to a subsequence the functions u converge to 4 strongly in
LZ(BY) (cf. the Sobolev inequality in Proposition 9.1). This contradicts

the aSQSquptiOIl (64). O

Remark 8.15. An alternative proof in which § ~ € would have been possible
by using the existence results and kernel estimates from Lemmas 9.2 and 9.3.

As the next step towards the proof of Proposition 8.10, we approximate
solutions of (63) by “eigenpolynomials”:

Lemma 8.16 (Eigenpolynomial approximation). Let h be a solution of (63)
with ||k 72 (B < C Then there exist solutions hg, of (63), which are of

the form (61) (c.f. Proposition 8.10), such that for all r € (0,1/2)
1h = hapllzz gry < C@r7E*.

All coefficients of hg, are bounded by C¢ with C = C(n, s).

Proof. We first prove that h can be decomposed as

h(z) = aphg(z) with Y |ogl” < &, (65)
k=0 k=0
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where the functions hy(x) denote the homogeneous solutions from Section
8.1. Indeed, rewriting the equation (63) in (standard) polar coordinates
(r,0) with 6, yﬁl yields

0 2 r "0, (r 0, ) h 4+ 1T T Vg, P Venh = 0 in S x Ry,

Bgn-1th =0o0n "' xR,

where Bgn-1 denotes the suitably transformed boundary data operator B
from (63).

Due to the compact embedding H'(6}72¢d6, S) — L*(6%72*d6, S%) (and
due to the form of the boundary data), there is an orthonormal basis of
L?(0125dH, S consisting of eigenfunctions {hy, }men of the spherical oper-
ator as well as an associated discrete set of eigenvalues Ay, i.e., the functions
hp, and the values A, satisfy

VnOL 2V gnhy, = —A2,00"h,, in ST,
Bgn-1th =0 on S" 1.

Thus, h can be expanded into these eigenfunctions:
0) = am(r)hm(6). (66)

By orthogonality the functions o, (r) satisfy
0 ("0 ) g — N2 %0, = 0,

and are hence homogeneous. As a consequence the functions au, (r)h,(6)
are homogeneous solutions to (63) which satisfy the boundary conditions
(which implies that the homogeneity « is larger than or equal to zero). Ho-
mogeneous solutions to (63) are however exactly the ones which are classified
in Propositions 8.8 and 8.9. Combining this with (66) shows the existence
of the claimed decomposition (65).

Building on this decomposition we prove the claim of the lemma: As the
functions hy, are homogeneous, orthogonal with respect to the L2 (B;) scalar
product and normalized on Bfr , the result follows by setting

hgy (x Zakhk

and noting that
oo
I =hspllz ey = D lowllhels o)
k=pp+1
< r2(63+1)+2(n+1)+1—230(5)_

This concludes the proof. O
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Combining the results of the previous two lemmas, we obtain the following
key approximation lemma. An iteration of it yields the proof of Proposition
8.10.

Lemma 8.17 (Iteration). There exist 6 > 0 and a radius ro € (0,1) such
that for any solution u of (60) with HuHig(BD <1 and
2s—1

HUCEQHP(BD <9,

there exists a sum of homogeneous functions hg, as in (61) in Proposition
8.10 with all coefficients bounded by a uniform constant C' = C(n, s, «) such
that

+
o= gnllz ) < 702

Here 0y and ro are constants depending only on n, s, c.

Proof. For a sufficiently small ¢ > 0 which will be determined later, Lemma
8.14 implies the existence of § = d(e,n,s) > 0 and a homogeneous solution

251
h of (63) such that if ||z, 2, QHP(B;“) < 6, we have
lu — hHZE_J(BJ%“) < €.

Moreover, Lemma 8.16 then yields a sum of homogeneous solutions of the
form (61) from Proposition 8.10 such that for all r € (0,1/2)

1B~ hggll 2 ) < CPO2H,

where C' is an absolute constant, since by the triangle inequality we have
|l 2 (g+.) < 2. Thus, the triangle inequality leads to
o\P1/2

lu—=hsplliz gy < lu=bllz2 gty + 1h = heslli2 1)
<e+CrfEtL 1 e(0,1/2).

Choosing first ro € (0,1/2) such that Cris™ < %rgBJra and then e such

that € < %rgBJra gives the desired estimate. Here the constants § and rg
depend on n, s and a. O

Iterating this result and exploiting the structure of the right hand side,
then yields the proof of Proposition 8.10:

Proof of Proposition 8.10. It suffices to prove the iteration statement:
If |lul|z2 B <1 and if for some sufficiently small 6 > 0 (which can be
chosen as in Lemma 8.17)

2s—1

[z, 21 9||132(BT,5)

_3_g
< oriPrrema), (67)
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where 8p is the exponent from Proposition 8.10, then there exist solutions
hgg . which satisfy the corresponding boundary data and which are as in
(61) in Proposition 8.10 such that

k a
||u — hﬁkaHZ%(BTk) < TO(/BBJr )' (68)

0

Once this is shown the remainder of the proof is similar as in [24] or [17].
In order to derive this claim, we argue by induction. As the base case
corresponds to the statement of Lemma 8.17, it suffices to prove the step
from k to k+1. To this end, let hg, . be the approximating solution at step
k. We consider
(u— hgpp)(rgz)

r§(63+a) ’

ug(x) ==

By the inductive assumption assumption (68) we have that |lug]| ;2 B <L
Moreover,

_ —k + 1+2s)k
V-2l 3 Vg = rg OO g ) = g, (a).
By (67)
25-1 k(Bpta) (B+s)k, 21
22y aroll72 5y = 7™ 3 alag, < 6
0

Hence, Lemma 8.17 is applicable and yields a solution iLﬁB’k_Fl which is of
the form of (61) such that

luk = hgp g1l 2 oy < 7727

Rescaling and setting

~ x
B k1 () = hy(@) + 707 hgy g (7“’“) ’
0
yields the claim. Using the geometric decay of the coefficients of i~1537k+1
hence allows us to find a limiting function hg, o () := klim hgg k(z) which
—00

is still a solution and of the desired form (61) and satisfies the right boundary
conditions. We remark that this iteration procedure is applicable in the
setting of Proposition 8.10 as scaling allows us to assume that the inductive
hypotheses are satisfied. ([l

8.3. Up to the boundary a priori estimates. In this section we exploit
the results of the previous two sections and prove the Schauder estimates
from Propositions 8.1 and 8.2, which were stated in the introduction to
this first appendix. At the set {z : x,4y1 = 0} at which the operator Lj
degenerates, we employ the approximation result from Proposition 8.10,
while away from this degenerate set, we use the usual uniformly elliptic
Schauder estimates for second order elliptic operators.
We begin by proving the result for Dirichlet data:



822 HERBERT KOCH, ANGKANA RULAND AND WENHUI SHI

Proof of Proposition 8.1. The result follows from the approximation re-
sult at B} /2 which will be shown in Proposition 8.10 and a scaling argument.

More precisely, let zg = (x(,0) € B} /2° Without loss of generality we may as-

sume that f(zg) = 0, as we can always subtract the function 75 +2$ f (xo)x};fls.

Then, by the polynomial approximation at z¢ (c.f. Proposition 8.10 in Sec-
tion 8.2), there exists a polynomial Py (x) with the properties that

n+1PﬂEO( ) _$n+1 370 +Zb J)o -73]

LS(xv%ilPxo) =0 and ||Pwo||Loo(B;r) < C(HfHLoo(B;r) + HUHLL%(B;r))’ such that

o= 33 Proll g 5y < P2 (Floweispy + lellzgsy) — (69)
1-2s
for all » € (0,1/2). Here HuHEg(Q) = W\\xnﬁl ul|r2(0) With w(Q) =

fx}l_flsda: and C' = C(n, s,€). Given X\ € (0,1/2) , we consider
Q

- (u— n+1pmo)($0 + )‘Z)
ux(2) = NI F2ste

By (69) we infer that Hu,\HLg B < C([f]CO,E(B;r) + Hu”i%(Bj))' Moreover,

2
Lsuy(z) = fa(2), fa(z) := A" f(zo + A2).
Since f € C%¢(By), we have that fy € C%¢(B;) with Hf,\Hcové(B;) <

CHfHC’(LE(Bj)' We notice that in Bg/4(en+1) the equation for 4y is uniformly
elliptic with a C%¢ inhomogeneity. Hence, by classical elliptic estimates, we
have

lallczesy atenn) < € (leoeis + 10l 2ss)) -

Scaling back, yields that in the non-tangential balls By /(zo + Aent1) it
holds
ATOH2D |l — 22| Pyl 1% (B, a(mohensn))
4 A~ (2ste€) 1|0; (u — .iU?.[:.leo) ‘|L°°(B>\/2(xo+>\en+1))
4+ A~ (Fl+2s+e) 11035 (u — l’ii_lpmo)||L°°(B>\/2(leo+/\5n+1)) (70)

P A1) g, - x?zS—HPffo)]Cove(BA/z(:co+/\en+1))
< C(fleoesry + 1wl iz 5:1))-
Repeating the above procedure at every zg € B /20 leads to (70) for each
2o € Bj ), and each A € (0,1/2).
Based on this, a triangle inequality argument implies that xg +— a(xg) is
in 0176(31/2) and xg — bi(xo), ¢ € {1,...,n}, is in 005(31/2) with norm
bounded by the right hand side of (70). More precisely, let xo, Zo € B] /2
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Let & be the mid point of zp and &o. We apply (70) with A = 2|zg — Zo| at
ro and #o. By a triangle inequality (note that B 4(Z + Aent1) C By 2(wo +
Aent1) N Byja(1 + Aent1)),

—(142s+4€ 2s
A ( )| n+1Pxo - xn+1PJ31 ||L°°(BA/4(1+)\en+1))

+)\7(28+6) ”al( n+1Px0 - xn+1le)HLOO(B)\/4(3~3+A€7L+1)) <C.

Using that in x,41 ~ X in B /4(Z + Aent1), we have |b;(2o) — bi(Z0)| < O,
la(zo) — a(Zo)| < CA, |[Va(zg) — Va(zg)| < CA°. Recalling the definition of
A, we obtain the desired estimate.

A further triangle inequality argument combined with a covering argument
gives the up to B /2 Holder regularity of the weighted derivatives:

—2s 1-2s l,e +
T, U, 2, 7°Oppiu € C (B1/2)

2s 1-2s 1-2s 0,6 p+
T 100 2,5 O0ing1t, Ong1 (2,77 Opq1u) € C (Bl/g)

and for each zg € Bi/Q

x;—%ﬁlu =0 = a($0)’
1
2
r, 10 u| =5
8n+1(95n+1 8n+lu)|m:x0 = f(xﬂ)

This yields the desired estimates. O

711_,'_21 0; n+1u|$:x0 = bi(.%'()), 1€ {1, e ,n},

Similarly as the Dirichlet case, we can treat the Neumann case.

Proof of Proposition 8.2. Again the proof follows by approximation at
the set {z,,11 = 0} (where the Muckenhoupt weight z,,;3° degenerates) and
by rescaling. Let zg € B} /2 Without loss of generality we may assume that
f(zo) = 0 (as we can always subtract the polynomial ﬁf(xg)xiﬂ). By

Proposition 8.10 we have
[(u — Q-TO)Hi,%(BT(yO)) < CTQJrE([f]co,s(B;L) + ”UHi%(Bj))?

for all € (0,1/2). Here,

n n
Quo () = c(z0) + Y aj(zo)z; + Y dij(wo)mizj,
j=1 ij=1
which satisfies L;Qq,(z) = 0. With the approximation result at hand, we
argue similarly as in the previous proposition and rescale. Let A € (0,1/2)
and consider

. (U= Q) (o + A2)
a(2) :== \ore )
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This makes the equation uniformly elliptic in Bj/4(en+1) and thus yields

10:050xllcoe(B, jy(ensa)) < C (Hf)\HCQE(BSM(enH)) + H@A\|zz(33/4(en+l))) :

Here f,\(z) = zé;?s)\—éf(mo + \z), with Hf/\HCO’e(Bg/4(en+1)) < C[f]CO’G(Bi‘r)7
and ‘|7~)/\"L§(Bg/4(en+1)) < C([f}CO,G(BD + ||uH£2@(Bl+)). Undoing the rescaling
therefore yields the desired result in a non-tangential neighborhood of x.
Applying this at each o € B] /2 and using a triangle inequality argument as
in Proposition 8.1, we obtain the Hélder continuity of the coefficients of Q)
in terms of xg. This then implies the estimate up to the boundary. Since
this part of argument is similar as in the proof of Proposition 8.1, we do not
repeat it here. O

8.4. Schauder estimates for the Baouendi-Grushin Laplacian in
the quarter space, opening up the domain. Last but not least, we
invoke the square root mapping to transfer the regularity results which were
obtained for the fractional Laplacian to the Baouendi-Grushin Laplacian.
This allows us to derive the proof of the apriori estimate from Proposition
9.15.
In the sequel we will consider weak solutions to
Agsv = fin int(Bf), B =BiN{yn > 0,ynt1 > 0},

with mixed Dirichlet and Neumann boundary conditions:

w =0 on B; N {y, =0}, lim  w(y)Op+1w(y) =0 on By N {yn+1 = 0}.

Yn+1—04

Here f is a given function with w=!f € L2(B;"). More precisely, we consider
w e ML(B]) and

_ / YiwYiduwdy — / fody,
B B

for any ¢ € C°(By) with ¢ =0 on By N {y, = 0}.

As our main result in this section we prove an apriori Schauder esti-
mate for the Baouendi-Grushin Laplacian Ag . The idea is to interpolate
the asymptotics at the singular set P = {y, = yn+1 = 0} (c.f. Proposi-
tion 8.18) and the Schauder estimate for the standard fractional Lapacian
L (c.f. Section 8.3) in the region distg(y, P) ~ 1. A combination of this
apriori estimate and the existence result from Section 9.1 then also imply a
global invertibility result for the fractional Baouendi-Grushin Laplacian in
our spaces Xq,e, Yo, (c.f. Proposition 9.4).

We begin by deriving the asymptotics at the corner {y, = 0 = y,+1}:
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Proposition 8.18 (Approximation). Let Ag s be the fractional Baouendi-
Grushin Laplacian. Assume that v € ML(B]) is a weak solution to

AG,sv =Yy i1 foy) + fily) in int(BY),
v =0 on Bf Nn{y, =0}, (71)
Opt1v =0 on Bf N {Yn+1 = 0},

where fo € CS’2O‘(BIF) and where f1 satisfies

[fy)] < Cily e,

Then, there exist a constant C = C(n,s,a) > 0 and a function

n—1
hayas(y) = yp° (ao + Z aiyi + any, + an+1y¢%+1>
i=1

with coefficients

n+1
> lail < € (€1 + o)+ Uolgozn sy + 107281

=1

such that
o= Faszilzg ) < Or*724 (C1 4 1RO+ lcpangap) + I0lz30))
for all r € (0,1/2).

Here we have used the notation introduced at the beginning of Appendix
8 (below Proposition 8.3). In addition, in analogy to the notation in Section
8.2 we have set

1
Iz ) = m” Nz

for any Q c R™+1,

In proving this result the main idea consists of transforming the Baouendi-
Grushin setting to the mixed Dirichlet-Neumann problem for the fractional
Laplacian from Proposition 8.10. To this end, we note that, as already
seen in the Example 4.12, Ag s is the push-forward operator of the operator
Ly;=V"- x}jfv by means of the square root mapping.

Proof. Step 1: Square root transformation. First we observe the following
relation between Ag s and L, which is established by means of the square
mapping: Suppose that h is a solution to

AG,sh = O in Q+,
h =0 on {yn = 0}7 lim w(y)an-i-lh =0 on {yn+1 = 0}

Yn+1—04
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Let

T:Qr - R 2=T(y),
1

x;=y; forie{l,...,n—-1}, =, = 5(3/721 — yi_i_l), Tnal = YnYntl-

We define h(z) := h(T'(z)). Then h solves Lsh = 0 in R with the
mixed Dirichlet-Neumann boundary condition

h =0 on R" x {0} N{z, <0},

. 1-2 7
zn+hlril>0+ 2,170 r1h =0 on R" x {0} N {x,, > 0}.

Thus, global homogeneous solutions to Ag sh = 0 with Dirichlet-Neumann
boundary data are characterized by invoking the characterization result for
Lsh = 0 from Proposition 8.8.

Step 2: Approrimation. Transforming all the quantities in the formula-
tion of Proposition 8.18 hence reduces the desired approximation result to
the approximation result for the mixed Dirichlet-Neumann case treated in
Proposition 8.10. O

Remark 8.19. By translation invariance of the operator, this approzima-
tion result holds at every point y € By N {yn, = yn+1 = 0}.

Relying on the asymptotics, we now proceed with the proof of the main
Schauder estimate from Proposition 8.3:

Proof of Proposition 8.3. Step 1: “Figenpolynomial” approrimation at
P. Given f € Y, Proposition 5.12 implies that

) = ynyni i foy") + yp 3 2 i (y)

with supp(fo), supp(f1) C BY x R? and with || folco.(s,np) + [ fill o) <
C|llfllya.- Let g € By /2N P be an arbitrary point. Without loss of generality
we may assume that fo(7”) = 0 (as else we can subtract the correction
ﬁy}lﬁsfg(gj”) from v). Note that f satisfies

sup_ 2w e < Ol
re(0,1/2)

By virtue of Proposition 8.18, there exists a function

n—1
v Pyly) = v’ (ao + ) aiyi + anyp + an+1y3+1> ,
=1

with coefficients a; depending on g and > |ax| < C|f|y., B such that
k y€

[0 =y Pyllz2 5 ) < CrHot2e (”f”Ya,e(Bf) - ”“”%(W)) :

for all r € (0,1/4).
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Step 2: Interpolation. We consider

2s =
. v =y, Py)(y + dx(y
UA(?/) = ( )\2£S(+2a /\( ))7

A€ (0,1/4),
where 6)(y) = (A", Ayn, A\yn+1). By Step 1,

Ionlz2.m5) < € (1, .oy + 102285 ) -
Moreover, vy solves

Ag,st(y) = A2 f(g + 6yy)
=Yt A o+ 03 W) TN AT+ 0w) = A):

In the region y € C = {y : || < 1,4 < y2 +y2,1 < 4,yn > 0}, the
operator Ag s can be viewed as

L= (ynyn+l)1_2sA// + 8n((ynyn+l)1_2san) + 8n+1((ynyn+l)1_2san+1)v

i.e. the weight (y2+y?2 +1) in front of the tangential Laplacian can be ignored.

Moreover, since fy € C%%, f; € %€ and since both vanish at P, the function
f satisfies yii_llf)\(y) € C%e(C).

We highlight that by definition on Cj it is not possible that both values
of |yn| and |yn+1| are close to zero. We will exploit this by distinguishing
between three regions in which the operator £; behaves differently:

Cp:=CyNn{0<y,<1/8},
Cy = C5 O {Jynsa| < 1/8},
Cg:= C;_ \ (Cny UChp).

These correspond to the regions in which the equation is governed by a
fractional Laplacian with Dirichlet (Cp) or Neumann data (Cn) or where the
equation becomes uniformly elliptic (Cg). We discuss these cases separately:

(i) We observe that by definition in the region Cp we have y,4+1 > 1/8.

Hence, y}z__ﬁs is smooth in this region. Thus, the operator L4 can be
viewed as a simple variation of V - y1=2°V. Furthermore, we note
that ©) = 0 vanishes continuously on C5” N {y, = 0}. Therefore, the
up to the boundary apriori estimate from Proposition 8.1 applies.

(ii) Similarly, in the region Cy we have y,, > 1/8. Thus, we can invoke
the apriori estimate with the Neumann data from Proposition 8.2.

(iii) In the remaining region Cfg the operator L is uniformly elliptic,
therefore classical Schauder estimates hold.
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Combining the three cases from above, therefore leads to the following apri-
ori estimate for vy:
n—1
1-2s9 =~ —259 ~ —2s, —1 ~
Hyn SanUAHCO,e(cf‘) + Z Hyn Sa’i,U)\HCO,e(CIF) + Hyn Syn_;_lanJrlU)\Hco,e(cf—)
i=1
n+1
—2s~ 1-2s 9 ~
+ lyn sUA”co,e(cj) + Z 10i Y saj”/\HCO»E(cj)
ij=1

<cC (Hyii?fxﬂcw(c;) + ”MLE(CJ)) : (72)
72

Scaling (72) back results in
[Yign Y50 = 4" Py)] g er gy S N0 (Hf v, .s5) T HUHLg(Bj)) ;

where C (§) = {y : [y — 9l <A, N?/4 <yl +y2,, <Ay, >0}
Applying this to every § € P N B;/5 and every A € (0,1/4), yields the
boundedness of [|v]| (B},)° i.e. alocal version of the estimate from Propo-
a,e(P/9

sition 5.15. We note that from the specific expression of the approximation
eigenpolynomials y2°P;(y), the boundary condition of v on B; /2 N P are
satisfied. (|

9. Appendix B

In this second appendix, we study the fractional Baouendi-Grushin Lapla-
cian Ag s, which is related to the operator Lg by a square root transforma-
tion (c.f. Section 8.4 from above). As the main result in Section we show
that Ag s is invertible as a map from X, to Y, . Here X, and Y, . de-
note the function spaces which were introduced in Section 5. To this end,
we prove a Sobolev embedding for the energy spaces associated with the
operator, and kernel estimates (c.f. Section 9.1). In Sections 9.2.1 and 9.2.2
we finally deduce the characterization results of Proposition 5.12 for our
function spaces X, . and Y, . and give the argument that they form Banach
spaces which had been claimed in Proposition 5.14.

9.1. Fractional Baouendi-Grushin Laplacian, kernel estimates and
global invertibility. We first recall the fractional Baouendi-Grushin Lapla-
cian

2n
Ags =Y Yw(y)V;
=1

where {Y;} are the Baouendi-Grushin vector fields from Defnition 5.1, and
W(Y) = |Ynyna1|' 72 is the associated Muckenhoupt weight.

We recall a number of relevant notions: The definitions of L2 () and
ML(Q) for © < R*™™! were given in Section 8 (c.f. the definitions below
Proposition 8.3). If Q = R™™! we omit the domain dependence and write
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M} and L2 for simplicity. We denote the associated homogeneous Sobolev
space by Mj It is defined as the completion of C§° with respect to the
homogeneous norm |||y = >, [|Yiv][z2 -

In the sequel, we seek to deduce the existence of weak solutions to the
equation Ag su = f (c.f. (75) and Lemma 9.2 for the precise definition of
this). A central tool towards this is the Sobolev embedding for the space
ML

Proposition 9.1 (Sobolev embedding). Let % + m = %, then for all
u € M}
2n
lullzg, < Crs D it - (73)
i=1

Proof. The proof follows the same strategy as the argument for Lemma 5.1
n [15]. Suppose that u € C§°(R™™) with supp(u) C Bg. We write

00

d

u(y) = - / %u(y” + 0-”7(3)7 Yn + OnS, Yn+1 + Un+18)d37
0

where ¢ := (6", 0, 0n+1) € B x (—1,1) x (—1,1) with B{ being the n — 1
unit ball, v : [0,1) — R is a C! function satisfying v(0) = 0 and ¥(s) =
|(yn +0nS, Ynt1 + Un+13)|' Thus,

o0
fu(y)| < / " + "), Yo + T, Ynst + Tns15)ds,
0
where

FW) = 1Wn Y DIV u(¥)] + [(Onu(y), Ontru(y))]-

Integrating with respect to o”, we obtain that

o0
lu(y)| < Cn/o /| " fW" +0"v(8), Yn + onS, Ynt10n+15)do” ds
a—// <
o

= Cn/ T / F@" 1" yn 4 ons, yni1 + ong18)dn’ ds.
o I o)

By Minkowski’s inequality and Young’s convolution inequality we infer that

[ f( Yn + oS, Yns1 + O'n+18)HL2(Rn71)dS

Hu(’vynvyn—s—l)HLp Rn—1 < cn/
T ()| ")

Similarly as in [15] |y(s)| > s%/4 for any (o,,0n11) such that |o,| < 1,
|ont1] = 1. Thus,

| f( Yn + TnS Yns1 + O-n+1s)||L2(Rn71) s

) e < i | )
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Integration with respect to o, € (—1,1) yields

Nw(-s Yns Ynt1 ”LP(R" 1)
/ / If (s yn + ons, Yna1 + Un—i-ls)HL2 Rn—1)
lon|<1 $2=D(E—3)

_, / / o yn + s Yng1 + ongas) ||
" n|<s

2(n 1)(7—7)—1-1

dopds

LAR ) dnpds.

We apply the following weighted (1d) Hardy-Littlewood-Sobolev inequality
(c.f. [12])

If *e gll e jep-20ar) < |2 jep-20a0) 191 La(r)- (74)

in the 7, variable and with exponents such that I=141 +(1 2s) (% — %) —
1. This entails

H'LL(, . yn+1) HLP(Rn7|yn‘1—2sdy//dyn)

oo
< Cn/ 3)‘/]R Hf(, S UYnal + Un+18)HLQ(Rn7|yn|172sdylldyn)d87
0

where

1 1 1 1 1

A=2n—-1)(-—-)+1-==2n—-1)+2—2s (—)

-1 (3-3)+1-1 = @n-1 (-
Finally, we consider 0,11 = +1 and obtain

Hu(, . yn+1)||LP(R“7|yn|1—Qsdy//dyn)

o0
< Cn/o |77n+1’_/\/R||f('myn+1 + Mt 1) | L2y |1 =25 dy dy, ) 45

As a consequence an application of the weighted Hardy-Littlewood-Sobolev
inequality [12] in the 7,11 variable results in

HuHLp(RnJrl"ynPst'ynJrl|172sdy) < cnHf”LQ(R”,|yn|1*2S|yn+1|1*25dy)d3-
Therefore, recalling the definition of the function f, we have shown that
2n

lull g, < ens Y 1 Yull 2.
i=1
By the density of C§° (R™*1) in M} an approximation argument hence con-
cludes the proof. O

With the Sobolev embedding at hand, we deduce the existence of weak
solutions to the fractional Baouendi-Grushin operator. Here we say that
a function v € M}(Q) is a weak solution to Agsv = f with f satisfying
fute ijl(Q) (here p' is the Holder conjugate of p), iff for all ¢ € C°(Q)

/ YioYiduw(y)dy = / 7o dy. (75)
Q Q



THE FRACTIONAL THIN OBSTACLE PROBLEM 831

Moreover, we derive the existence of the fundamental solution to (75). These
results follow from the Riesz representation theorem and the Schwartz kernel
theorem:

Lemma 9.2. Let p > 1 be as in Proposition 9.1 and assume that fw™! €
LY. Then there exists a unique function uy € H := Mulj N LY, satisfying
(75). It holds

luglly, < Clfw™ - (76)
Moreover, there erists a kernel K(x,y) : Rt x R"*!1 — R such that

z = K(2,y) € Lip(R™\ {y}, wdz),
y = K(2,y) € Ljpo(R"\ {2}, wdz),

and for fwu=! € Lf,/ compactly supported it holds

up(z) = / K (2, y) f(y)dy. (77)

Rn+1

Proof. Step 1: FEwistence. By (73), the space H with the inner product
(u,vy = 21221 rn+1 YiuYjvwdy is a Hilbert space. Given any f with fw™le
Lg, where p’ is the Holder conjugate of p, Holder’s inequality and (73) entail
that the induced linear map Fy : v — f]R’H'l fudy is a bounded linear map
from H to R. Thus, by the Riesz representation theorem there exists a
unique uy € H such that Fy(v) = (uy,v) for any v € H.

Furthermore, the energy estimate

YiuglZs < Ifw™ M llugllce,

and (73) imply that the map F : w™!f + uy is bounded from LY to LY,
which yields (76).

Step 2: Kernel estimates. We deduce the existence of the claimed kernel
K. Let w™'g € L? and supp(g) C Bi(y) for some . Then outside B1(¥), u
is a solution to the homogeneous equation Ag su = 0. By Moser’s inequality
(c.f. equation (2.2) in [19]), for any 2z € R* ™1\ Bs(7)

sup |u(2)] < Cllull Lz (58,(2))-
zeBi(z)

By (76) and the fact that g is compactly supported, we infer that

sup [u(Z)| < Cllgw™ 2 (5, ())-
EGBl(Z)

Hence, for fixed z, the mapping
L2,(Bi() 3 g ulz) € R,
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is a continuous linear functional, which is thus represented by a function
K(z,y) € L3 (By(7)) with

1K (2, ) 2 (8. ()) < C- (78)
Moreover, scaling (78) yields
_1
1K (2, ) 22 (85 () < CAw(Ba(y)) ™2 (79)

for any y and z with dg(y,z) > 3XA > 0 and C' > 0 independent of A. In
particular this holds for A = %‘y’z), ie. fory,z € R?fl it holds

1
)
K (25 ) 12,8 440y ) < Cda(y, z)*w (Bdmy,z) (y)> : (80)
/) 3

Arguing similarly for the adjoint operator (and using the self-adjointness of
Ag,s) therefore gives the respresentation

/K:L‘y )dy for x ¢ supp(f).

By a limiting argument which is based on (80) this can then be extended to
yield the desired representation (77). Using the regularity result of Propo-
sition 8.3 similar bounds hold on the level of the derivative. O

Next we prove a global L> estimate for weak solutions to (75), if f is
compactly supported and w™!f is contained in some Morrey type space.

Lemma 9.3. Given f with w™'f € L2 and supp(f) C By. Suppose that

1

1 / —14\2 ’ -
sup | ——— (W) wdy | < Cor™7 for some vy € |0,2).
Br(y) (W(Br(y)) r(y)

Then there exists a unique weak solution u € M‘i N LY solving (75). More-
over, u € L* and it satisfies ||ul poo@mn+1y < ¢y Co for some ¢ > 0.

Proof. Step 1: Preliminaries. We first note that for p > 1 as in Proposition
9.1 Holder’s inequality and the compact support condition imply

27;7/

o™ g,y < 0™ a9l i,y < Callfo™ N2z -

Hence, Lemma 9.2 is applicable yielding a unique solution u in H to (75),
which is represented in terms of a kernel K as in Lemma 9.2.

Step 2: L estimate. With the previous considerations at hand we pro-
ceed to the claimed L™ estimate. Let f satisfy the assumptions of the
lemma, and let u = Aéls(f) = Jant1 K(z,y)f(y)dy € M} N LE. For any

z € R", by Hélder’s inequality,

2)| < Z 1K (2, )2 (ap o™ Fllzz ca5)-
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where A; := By—j(z) \ By-j-1(z) are dyadic annuli centered at z. Using
the estimate (79) on the kernel K(z,-) from Step 2, as well as our growth
assumption on f, we further obtain

lu(2)] < C (2792w (By-i(2)) 2 Co(277) w(By-4 ()
J

NI

<CCo Y (279)*77 = ¢, Co.
J
This completes the proof. ([l

Combining Lemma 9.3 and Proposition 8.3, we obtain the invertibility of
the fractional Baouendi-Grushin Laplacian Ag s from spaces Xq ¢ to Yy ¢

Proposition 9.4 (Invertibility). Let Xq., Ya,e be the function spaces from
Definition 5.8 with € < a.. Then the operator Ag s : Xa,e = Ya,e 5 tnvertible.
Moreover,

[0l Xa,c < CllAG sy,

Proof. Given f € Y, ., we extend f to the whole space by reflection about
yn and y,41. By Proposition 5.12 it is not hard to see that w='f € L2,
supp(f) C Bi, and moreover,

1 / 1 .2 a—(1-2s)
sup | —5—= (W™ f)” wdy < fllvaer .
B (y) (w(Br(y)) B, (y) ) ’

Thus w™!f satisfies the assumption of Lemma 9.3. Then, by Lemma 9.2,
there exists a unique weak solution v € ML N LY to Agsv = f in the sense
of (75). Moreover, by Lemma 9.3

[0]] oo rn+1) < Cllf (o e (81)

By Proposition 8.3, v € X, (B}) for each R > 0. Moreover, it satisfies
”U”XM(B;) S O f v + R_I_QSHUHLM(B;R)) with a constant C' > 0 which
is independent of R (here we used that the norm of X, . is a homogeneous
norm). Combining this with the L estimate in (81), we infer that v € X, ¢
and that it satisfies [|v[|x, . < C|/f|ly,... Note that this estimate also implies
the uniqueness of the solution. ([l

[N

9.2. Characterization and Banach property of the function spaces.
In this section we show the characterization of the functions spaces X, .
and Y, . stated in Proposition 5.12, and the Banach property of the func-
tion spaces stated in Proposition 5.14. As these follow from ideas which
are similar to those presented in [17] and as they would have obscured the
structure of the main argument, we decided to present them separately in
this appendix.
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9.2.1. Proof of Proposition 5.12. In this section we provide the proof
of Proposition 5.12

We begin with the discussion of the decomposition and regularity of f.
We show that if f € X, the decomposition and the estimates from the
Proposition hold.

We define fo(y") := Qyéil(y), where @y 1(y) denotes the first order approxi-

mating polynomial of f(y) = yii_llf(y) As f was assumed to be Cr* at
P, these limits exist. We further define

AW) =y @) ) = foy ) ymyni3)-

By Remark 5.10 and the definition of the norm on Y, . this quantity is finite.
Hence, it remains to prove the claimed regularity properties for these two
functions. We begin with the estimate for fy: Let y1,y2 € P be given.
Define y € P such that y;,y2 € B1(y). Further let y € Bi(y) be another
point with the property that y, = dg(7,v) = |y1 —y2|"/2, yns1 = 0 and with
da(y,y1) ~ da(y,y2) ~ da(y,y). By to Remark 5.10 we infer that

lde (v, y:) 7 220 (F(y) — yai 3 Que)| < C for i € {1,2}.

Thus, the triangle inequality and the choice of y, 7y yield

|Qy1,1(y) - Qyz,l(y)| < C(dG(y,yl)HM + dG(y, 3/2)1+2a) < CdG(y»??)Hzao

Using the form of Q. ; and the choice of y again by dividing by ¥, we obtain
that

|fo(yr) — foly2)| < Cda(y, §)** = Clyr — yal|™.

This proves the claimed regularity of f;. We proceed by discussing the
regularity of fi(y). We first note that we can always bound

fiy)] < Cr(y)*

Therefore, for points y1,y2 € Q4+ with max{r(y1),7(y2)} < 10dc(y1,y2) we
infer

|f1(yr) = fi(y2)| < 1fily)| + [ f1(y2)] < Clr(y1) +r(y2)) < Cda(yr,y2)"

In the case that y1, y2 are such that max{r(y1),7(y2)} > 10dg(y1, y2), there
always exists a point € P with y1,ys € C (). In this case the estimate
follows by an application of the triangle inequality and the result for fy.
Indeed, setting r; := r(y;), for i = 1,2, we note that in this case dg(y2, y}) ~
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r1 ~ 3. By the triangle inequality,

|f1(y1) — f1(y2)]

= | P ()i f () — fo(wi) (ya)n]
—ry TR ()i f () — fo(w5) (y2)nl|

< e P () f () = folyl) (y1)n]
—da(y2, )7 2 U(y2) 2 f(y2) — fo(yi) (w2)al|

+ [(de(y2, y1) 7 2 =y ) (n2) 00 F (02) — o) ()|
+ [y (o) — fo(ys)) (w2)nl -

Using the bound on the norm of Y, ., the estimate for fy and the Holder
continuity of x — z¢ in combination with the form of the Y, norm, then
bounds the three terms. Conversely, we show that, if f is of the form stated
in Proposition 5.12, then f € Y, .. Indeed, for any g € P, let Py(y) :=
fo(9)yn. Therefore,

Waia £ (W) = Pra@)] < 1fo(@) — foly")lyn + r' 27 fi(y)]
< [folgoaly” = 7" 1%yn + r() 2 fily)] < Clfo]go.adaly, 7).

Thus, yn i Lf(y) is CH® at § € P. It hence remains to discuss the bounded-
ness of || f|ly, .. This however follows from the regularity of fo and fi.

Conversely, if f is of the form stated in Proposition 5.12, then y +11 fisCy Lo
at P and || f|ly,. < C([fol¢zo.e +[fil¢o.e). The remaining properties satisfied
by functions in the space Y, . follow by assumption.

We proceed with the characterization of the space X, .. First we note
that if v € X, then the boundary and pointwise conditions which are im-
posed in the definition of X, ¢ imply that the (homogeneous) approximating
polynomial P;Q(y) of y%5v at §j € P is of the form stated in the decompo-
sition in (a). The regularity results for the functions cg,ag, a1 and Cj, Cj;
follow as in the proof for the space Y, ..

In the end, we show that if a function v satisfies the conditions (a)-(d) in
Proposition 5.12, then v € X, .. It is not hard to see that the boundary

conditions are satisfied. We claim that v € C2**: For each y € P, we set

Pyaly) == co(y +Zaco — i) + ao(@)ys + ar(D)ypy-

Then it is not hard to check that
Y 2v(y) — Py2(y)|
< [Veolgoaly” — 31" + [ao) o [y — 9%

+ [a‘l]C’O,a‘y” - g|ayi+1 + [00]02767'24_20"

<C ([VCO}C'O,Q + [ao]c'o,a + [al]CO,a [CO]CO e) da(y, y)2+2a,
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with C independent of §. Hence, y,, %%v is C22 at each y € P. To show the
boundedness of the remaining terms in the norm ||v[| x, ., we argue similarly
as for the space Y .

9.2.2. Proof of Proposition 5.14. In this section we show that X, . and
Y,,e are Banach spaces.

Proof of Proposition 5.14. For the space Y, . the Banach property fol-
lows from the compact support assumption: Using the characterization from
Proposition 5.12, we have that for a given function f € Y, the functions
fo, f1 are supported only in Bf x R%. Thus, the homogeneous Hélder norms
control the lower order L* norms. This yields the Banach property for Y, ..

Next we show that X, ¢ is complete under the homogeneous norm. Indeed,
for any v € Xo ., it is not hard to check that Ag sv € Y, c and [|Ag sv]ly, . <
|v]| x.... By Lemma 9.3 we have

||’UHL00 S CHAG731}||YQ,E S CHUHXQ,E'

This then also implies L> bounds for the functions ¢y, ag, a1, C;, C;; in terms
of ||v]|x,.. Indeed, recalling the characterization for v € X, in Proposi-
tion 5.12:

v(y) = co(y" )y’ + ao(y")yn > + a1y )y yn i +un T Coly), (82)
with Co(y) = 0 for y € P and [Co| 0 < O] x, ., implies that

0(y) = coy")yn’ + ao(y" )yt + ar(y")yn ynsr € L({y : dist(y, P) < 2})

and [|0|| oo (y:dist (v, P)<2}) < Cllv][x,... Now varying the values of yp, yni1 €
{y : dist(y, P) < 2} yields the desired bounds

llcoll oo rn—1y + llaoll oo (mn—1y + lla1 | oo mn—1y < Cllvllx,.. -

This together with (82) then also implies the global L*® bound for Cy in
terms of ||v]|x, .. We note that the L> bounds for C;, Cyj, i,j € {1,...,n+
1} follow from the a priori estimates for Ag s. More precisely, by (72) we
have

lde (-, 5) =2y, Y (v =y Pya)llie @y < C (1Acsvlva,. + [lollze) -

Expressing the left hand side using C;; we obtain the L> bounds for Cj;.
Similar estimates for the properly weighted first derivatives hold true. Using
those we obtain the L* bound for C;. O
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