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Geometric normal subgroups in mapping
class groups of punctured surfaces

Alan McLeay

Abstract. We prove that many normal subgroups of the extended
mapping class group of a surface with punctures are geometric, that
is, that their automorphism groups and abstract commensurator groups
are isomorphic to the extended mapping class group. In order to ap-
ply our theorem to a normal subgroup we require that the “minimal
supports” of its elements satisfy a certain complexity condition that is
easy to check in practice. The key ingredient is proving that the auto-
morphism groups of many simplicial complexes associated to punctured
surfaces are isomorphic to the extended mapping class group. This re-
solves many cases of a metaconjecture of N. V. Ivanov and extends work
of Brendle-Margalit, who prove the result for closed surfaces.
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1. Introduction

The mapping class group Mod(Σ) is the group of symmetries of an ori-
ented surface Σ. In more formal language it is the group of isotopy classes of
orientation-preserving homeomorphisms of Σ, relative to boundary. When
denoting a specific surface we may use the notation Σm

g,n for a surface home-
omorphic to the complement of n singular points and m open discs in a
closed surface of genus g. We say that Σm

g,n has m boundary components
and n punctures. If Σ = Σm

g,n then we define g(Σ) := g and n(Σ) := n.
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When a surface has no boundary components we omit the superscript and
when the surface has no punctures we usually omit the second subscript.

The extended mapping class group Mod±(Σ) of Σ is the group of isotopy
class of all self-homeomorphisms of Σ, including the orientation-reversing
ones. We say that a normal subgroup N of Mod±(Σ) is geometric if it
has Mod±(Σ) as its group of automorphisms. In his seminal paper, Ivanov
showed that if Σ has genus at least three, or is a punctured surface of
genus two, then Mod(Σ) is geometric [17]. The equivalent result was given
by Korkmaz for punctured tori and punctured spheres [23]. The proofs of
these results use the action of Mod±(Σ) on the curve complex, a simplicial
flag complex associated to Σ which we define in Section 1.2. Ivanov’s result,
and proof, acted as a springboard for a series of related results; see Bavard-
Dowdall-Rafi [3], Brendle-Margalit [6], Bridson-Pettet-Souto [9], Irmak [14],
and Kida [22], among many others.

1.1. Main theorem on geometric normal subgroups. In this paper
we will show that many normal subgroups of Mod±(Σ) are geometric. The
proof of this result extends work of Brendle-Margalit, who proved the theo-
rem in the case of closed surfaces, that is, where Σ = Σg,0 [7]. In fact, these
results also determine CommN , the group of abstract commensurators of
the normal subgroup N . Recall that elements of CommN are equivalence
classes of isomorphisms between finite index subgroups of N . Here, two
isomorphisms are equivalent if they agree on some common finite index sub-
group. In this sense, the elements of CommN are virtual automorphisms.

Roughly, the theorem requires that some elements of the normal subgroup
are supported in subsurfaces that are topologically “small enough”. To that
end, for a mapping class f ∈ Mod±(Σ) we write Rf for a single-boundary
proper subsurface such that f is supported in Rf and f is not supported in
any single-boundary proper subsurface of Rf . It follows that Rf ∼= Σ1

k,l for
some k ≤ g, l ≤ n, and k + l < g + n.

Note that there are some elements for which Rf is not defined. For
example, if f has finite order then there is no proper subsurface that supports
f . Furthermore, if f is the identity in Mod±(Σ) then we say that Rf is not
defined.

Elements of minimal support. Fix a normal subgroup N of Mod±(Σ).
We say that f ∈ N is of minimal support if for all elements h ∈ N such that
Rh ⊂ Rf we have that Rh and Rf are homeomorphic. As noted above, h
cannot be the identity.

Consider a closed surface with positive genus, or a punctured sphere. If
f, h ∈ N are two elements which both have minimal support then Rf and
Rh must be homeomorphic. For punctured surfaces with positive genus this
is not true in general.

Elements of small support. Let Σ = Σg,n and let N be a normal sub-
group of Mod±(Σ). We say that f ∈ N is of small support if there exist
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elements h1, h2 ∈ N such that

g ≥ g(Rf ) + max{g(Rh1) + g(Rh2), 2}+ 1, and (1)

n ≥ n(Rf ) + max{n(Rh1) + n(Rh2), 1}+ 1. (2)

If g = 0 or n = 0 we may ignore (1) and (2) respectively.

Theorem 1. Let N be a normal subgroup of Mod±(Σ). If every element of
minimal support in N is of small support then the natural homomorphisms

Mod±(Σ)→ AutN → CommN

are isomorphisms.

If N is a normal subgroup of Mod(Σ) which is not normal in Mod±(Σ)
it can be shown using similar methods that AutN ∼= Mod(Σ), see Brendle-
Margalit [7, Section 6] and the author [29, Section 5]. We note that finding
such a subgroup is itself an interesting problem.

Suppose N contains an element of small support. It follows that at least
one of the elements of minimal support in N will necessarily be of small
support. Furthermore, if g = 0 or n = 0 then all elements of minimal
support in N are of small support. This observation allows for the statement
of the theorem to be consideribly simpler in these special cases. In particular,
if n = 0 and N contains an element f of small support, that is, g ≥ 3g(Rf )+
1, then Theorem 1 applies, see [7].

We now discuss two applications of Theorem 1.

The Johnson filtration is geometric. We may apply Theorem 1 to a
well known sequence of normal subgroups. Write Γ0 for the fundamental
group of the surface Σ. Consider now the lower central series of Γ0, that is,
Γk := [Γ0,Γk−1] for any k > 0. There is a natural action of Mod(Σ) on the
quotient group Γ0/Γk. We may now define for each k ≥ 0 the group

Jk(Σ) := ker
(

Mod(Σ)→ Out(Γ0/Γk)
)
.

It was shown that this sequence of groups is a filtration by Bass-Lubotzky [2].
Due to the work of Johnson, we name the sequence the Johnson filtration [19]
[20]. The first term in the Johnson filtration is known as the Torelli group.
This group has been studied by Brendle-Margalit-Putman [8], Kasahara [21],
Mess [30], and Putman [31] [33], to name only a few. It was shown by Farb-
Ivanov that the Torelli group is geometric [12]. Furthermore, the second
term, the Johnson kernel, is also geometric. This is a result of Brendle-
Margalit for closed surfaces [6], and Kida for punctured surfaces [22]. Farb
then asked the question for what values of k ≥ 2 is Jk(Σ) geometric [11,
Question 5.18]. It was shown by Brendle-Margalit [7] and Bridson-Pettet-
Souto [9] that if g ≥ 7 then Jk(Σg,0) is geometric for all k ≥ 0. We may
apply Theorem 1 in order to answer this question for punctured surfaces.
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Corollary 1.1. Let Σ = Σg,n such that g, n ≥ 5. For any k ≥ 0 the natural
homomorphisms

Mod±(Σ)→ AutJk(Σ)→ CommJk(Σ)

are isomorphisms.

See Section 6.3 for details on the bounds on g and n given in Corollary 1.1.
It is likely that by studying these groups directly, and using the techniques
in this paper, one could improve upon the bounds on g and n.

Surface braid groups. We may also apply Theorem 1 to the surface braid
group Bg,n, that is, the kernel of the homomorphism

Mod(Σg,n)→ Mod(Σg,0),

induced by the forgetful map Σg,n → Σg,0. Groups of this type have already
been shown to be geometric, see for example An [1] and Irmak-Ivanov-
McCarthy [4]. Now, if f ∈ Bg,n is of minimal support then Rf is homeomor-
phic to either Σ1

1,1 or Σ1
0,2. Furthermore, if n < 3 then there are no elements

of small support in Bg,n. We therefore have the following corollary.

Corollary 1.2. If g ≥ 4 and n ≥ 5 then the natural homomorphisms

Mod±(Σg,n)→ AutBg,n → CommBg,n
are isomorphisms.

Conjectured definition of small support. We note that the bounds
given for Theorem 1 are not strict. Indeed, consider Σ = Σg,n where g > 0,
and N = Mod(Σ) with an element f of minimal support such that Rf ∼= Σ1

1,0

(for example, a Dehn twist about a nonseparating curve). In order to apply
Theorem 1 we require that

g ≥ g(Rf ) + 2 + 1 = 4.

It has been shown however by Ivanov [17] and Korkmaz [23] that N =
Mod(Σ) is geometric for surfaces of genus one, two, and three.

We conjecture that Theorem 1 remains true when the definition of small
support is modified to be as follows. An element f ∈ N is of small support if
there exists some h ∈ N such that Rf and Rh do not intersect and have non
isotopic boundary components. A similar conjecture was made by Brendle-
Margalit for the closed case [7, Conjecture 1.5]. This is supported by the
recent work of Clay-Mangahas-Margalit [10].

1.2. Complexes of regions. A region is a compact, connected subsurface
of a surface Σ such that each boundary component is an essential simple
closed curve. We define R(Σ) to be the set of Mod±(Σ)-orbits of regions in
Σ. For any subset of orbits A ⊂ R(Σ) we say that a region R is represented
in A if the Mod±(Σ)-orbit of R belongs to A. We now define a complex of
regions CA(Σ) to be a simplicial flag complex whose vertices correspond to all
homotopy classes of regions represented in A. If a vertex v corresponds to the
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(i) (ii)
Figure 1. (i) Any region that has essential intersection with
the annulus must also intersect the disk with two punctures.
(ii) Any region intersecting one region must intersect the
other, unless it is a subsurface of a once punctured non-
separating annulus.

homotopy class of a region R, we usually say that v corresponds to R. Two
vertices of CA(Σ) span an edge when they correspond to disjoint regions.
We say that two regions fill a surface when their boundary components
fill the surface. In particualr, we can always find two regions in the same
Mod±(Σ)-orbit that fill Σ.

The curve complex. If A ⊂ R(Σ) is the set of orbits of annular regions
then the complex CA(Σ) is called the curve complex. In this case it makes
sense to think of homotopy classes of annuli as isotopy classes of essential
simple closed curves. This complex has been of fundamental importance in
the study of mapping class groups and Teichmüller space, see Hamenstädt
[13], Ivanov [17], Masur-Minsky [27], and Rafi-Schleimer [34], to name only
a few. Due to its importance, we reserve the notation C(Σ) for the curve
complex.

As discussed before, Ivanov proved that Mod(Σ) is geometric by studying
the action of the extended mapping class group on the curve complex. In
particular he showed that Aut C(Σ) ∼= Mod±(Σ). By using the fact that
powers of Dehn twists about distinct curves commute if and only if the
curves are disjoint one is able to construct an homomorphism

Comm Mod(Σ)→ Aut C(Σ).

This is a key step in the proof; allowing us to move between automorphisms
of C(Σ) and automorphisms (and commensurations) of Mod(Σ).

The complex of domains. If A = R(Σ) then CA(Σ) is called the com-
plex of domains. In some sense, the complex of domains is the extreme
generalization of the curve complex. Furthermore, McCarthy-Papodopoulos
proved that if Σ is closed, or has a single puncture, then Aut CA(Σ) ∼=
Mod±(Σ) [28]. If Σ has more than one puncture there exist automorphisms
of CA(Σ) that are not induced by mapping classes.

Suppose u, v ∈ CA(Σ) are the vertices described in Figure 1(i). We may
define an order two automorphism φ ∈ Aut CA(Σ) such that φ(u) = v, φ(v) =
u, and φ(w) = w for all other vertices w ∈ CA(Σ). Any automorphism
that swaps two distinct vertices and fixes all others in this way is called an
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exchange automorphism. In Section 2 we discuss exchange automorphisms
further. In particular, we visit the fact that exchange automorphisms occur
in complexes of regions if and only if there are vertices of the following type.

Corks and holes. For any region R we define a complementary region to
be a connected component of Σ \ R. We say a vertex v of CA(Σ) is a cork
if it corresponds to an annulus with complementary region Q represented
in A with no proper, non-peripheral subsurface of Q represented in A. If u
corresponds to Q we call the vertices u and v a cork pair. If u and v are
vertices that correspond to the two regions in Figure 1(i) then u and v span
an edge, and any other vertex spans an edge with u if and only if it spans
an edge with v.

A vertex v of CA(Σ) is a hole if it corresponds to a non-annular region that
has a complementary region Q such that no subsurface of Q is represented
in A. Suppose no subsurfaces of punctured annuli are represented in A. If
u, v are vertices of CA(Σ) corresponding to the regions shown in Figure 1(ii)
then a vertex spans an edge with u if and only if it spans an edge with v.

The metaconjecture of Ivanov. There are many other complexes of
regions that have been studied; such as the complex of strongly separat-
ing curves by Bowditch [5], the complex of separating curves by Brendle-
Margalit [6], and Kida [22], the complex of nonseparating curves by Irmak
[14], the arc complex by Irmak-McCarthy [15], the arc and curve complex
by Korkmaz-Papadopolous [24], and the truncated complex of domains by
McCarthy-Papadopolous [28], among others. Each of these complexes has
been shown to have the extended mapping class group as its group of auto-
morphisms for all but finitely many low complexity surfaces. Furthermore,
there are numerous other complexes associated to surfaces which are not
complexes of regions. It was shown that the extended mapping class group
is the group of automorphisms of; the Torelli complex by Farb-Ivanov [12],
the flip graph by Korkmaz-Papadopolous [25], and the pants complex by
Margalit [26]. In each case there are restrictions on the surfaces for which
the result holds. These results led Ivanov to make a metaconjecture [18].

Metaconjecture 1.3 (Ivanov). Every object naturally associated to a sur-
face Σ and having sufficiently rich structure has Mod±(Σ) as its group of
automorphisms. Moreover, this can be proved by a reduction to the theorem
about automorphisms of C(Σ).

This paper partially resolves the metaconjecture for complexes of re-
gions related to a surface Σ = Σg,n. Furthermore, Theorem 1 resolves the
metaconjecture where we consider normal subgroups as objects naturally as-
sociated to Σ and the conditions of the theorem provide sufficiently rich
structure. This extends work of Brendle-Margalit, who deal with the case
where n = 0 [7]. The case where g = 0 is the focus of a previous paper
by the author [29]. We may assume throughout this paper therefore that
g, n > 0.
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1.3. Main theorem on complexes of regions. For any region R ⊂ Σ

an enveloping region R̂ of R is a single-boundary region such that R ⊂ R̂
and R is not a subsurface of any proper single-boundary region contained in

R̂. Let v be a vertex of a complex of regions corresponding to the region Rv.

We write v̂ ⊂ Σ for an enveloping region of the region Rv, that is, v̂ := R̂v.

Minimal vertices. Let CA(Σ) be a complex of regions. We say that a
vertex v ∈ CA(Σ) is minimal if for any vertex u such that û ⊂ v̂, we have
that û and v̂ are homeomorphic. If a vertex v is minimal, then every vertex
in the Mod±(Σ)-orbit of v is also minimal.

The following definition is strongly related to the definition of elements
of small support given in Section 1.1

Small vertices. Let Σ = Σg,n and let CA(Σ) be a complex of regions. We
say that a vertex v ∈ CA(Σ) is small if there exist two vertices u1, u2 such
that

g ≥ g(v̂) + max{g(û1) + g(û2), 2}+ 1, and (3)

n ≥ n(v̂) + max{n(û1) + n(û2), 1}+ 1. (4)

As before, if g = 0 or n = 0 then we ignore (3) and (4) respectively.

Theorem 2. Let CA(Σ) be a complex of regions. Suppose that every minimal
vertex of CA(Σ) is small. Then the natural homomorphism

ηA : Mod±(Σ)→ Aut CA(Σ)

is an isomorphism if and only if CA(Σ) has no holes and no corks.

Outline of the paper. The majority of the paper is dedicated to prov-
ing Theorem 2. In Section 2 we first discuss the injectivity of the natural
homomorphism ηA and exchange automorphisms of complexes of regions.
Very roughly, the proof of Theorem 2 proceeds by defining two complexes
CS(A)(Σ) and C∂A(Σ) which carry similar information to CA(Σ). In each case

we prove that the usual natural homomorphism from Mod±(Σ) to the group
of automorphisms is an isomorphism.

Mod±(Σ)

Aut CA(Σ) Aut C∂A(Σ) Aut CS(A)(Σ) Aut CS(Σ)

ηA η∂A ηS(A)

∼=

In Section 3 we define a subcomplex CS(A)(Σ) of the curve complex C(Σ)
related to a complex of regions. We then prove in Theorem 3.1 that the
homomorphism ηS(A) is an isomorphism. In Section 4 we define a second
complex C∂A(Σ). In this case, the vertices correspond to so-called dividing
sets, multicurves in Σ that separate the surface into precisely two compo-
nents. Note that since multicurves are not necessarily connected, C∂A(Σ) is
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not a complex of regions. In Theorem 4.1 we show that the natural homo-
morphism η∂A from Mod±(Σ) to the automorphism group of this complex is
also an isomorphism. In Section 5 we use Theorem 4.1 to prove Theorem 2,
that is, every homomorphism in the diagram above is an isomorphism. Note
that the isomorphism Mod±(Σ) → Aut CS(Σ), where CS(Σ) is the complex
of separating curves, is due to Brendle-Margalit [6] and Kida [22]. This
outline is analogous to that of Brendle -Margalit [7, Theorem 1.7].

Finally, in Section 6, we prove Theorem 1 as an application of Theorem 2.
Similar to Ivanov’s application of the curve complex result, the proof relies
on constructing a homomorphism

CommN → Aut CN (Σ),

where CN (Σ) is a complex of regions associated to a normal subgroup N of
Mod±(Σ). This argument uses the mathematical machinery developed by
Brendle-Margalit for the closed case. As such, some details are omitted and
appropriate references are given to their paper [7, Section 6].

Acknowledgments. The author would like to thank his supervisor, Tara
Brendle, for her helpful guidance and support. He is grateful to Dan Margalit
for several helpful discussions and suggestions that greatly improved the
paper. He would also like to thank Javier Aramayona, Vaibhav Gadre,
Tyrone Ghaswala, Chris Leininger, Johanna Mangahas, and Shane Scott for
their support and helpful discussions about the paper. Finally, he thanks
the referee for suggestions that improved the clarity of the arguments. This
work was partially supported by the National Research Fund, Luxembourg.

2. Preliminary results

In this section we prove that the homomorphism ηA from Theorem 2 is
injective. This result is in fact more general and will be used many times
throughout the paper. Following the work of McCarthy-Papadopoulos [28,
Section 4] and Brendle-Margalit [7, Section 2] we then look at the precise
conditions for a complex of regions CA(Σ) to admit exchange automorphisms
as defined in Section 1.2.

2.1. Injectivity. We will first prove that the natural homomorphism ηA
is injective.

Lemma 2.1. Let Σ = Σg,n be a surface such that g, n > 0. If CA(Σ) is
connected then the natural homomorphism

ηA : Mod±(Σ)→ Aut CA(Σ)

is injective.

Proof. Let c be a nonseparating curve in Σ and let R := Σ\c. Since CA(Σ)
is connected, the subsurface R is filled by regions that are represented in A.
Indeed, if a region Q represented in A contains c then the Mod(R)-orbit of
any region in Σ\Q fills R. If there is no such Q then all regions represented
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in A are contained in punctured disks, and so R is filled by such regions. It
follows then that if f ∈ Mod±(Σ) is in the kernel of ηA it must also fix c.
Since our choice of c was arbitrary we can find a pants decomposition P of Σ
such that f fixes every curve in P . We conclude that f is a product of Dehn
twists and is therefore orientation preserving. In particular, f ∈ PMod(Σ).
If Tc is the Dehn twist defined by the curve c then we have that

Tc = Tf(c) = fTcf
−1.

Since our choice of c was arbitrary and PMod(Σ) is generated by Dehn
twists we have that f is in the center of PMod(Σ). The center of PMod(Σ)
is trivial and so ηA is injective. �

2.2. Exchange automorphisms. In Section 1.2 we gave the definitions
of holes, corks, and exchange automorphisms. A filling of a hole v is the
union of the subsurface corresponding to v and its complementary regions
that do not contain regions represented in A. We say that two holes have
equal fillings if two such fillings are homotopic.

We state two results of Brendle-Margalit relating these notions which
together imply the ‘only if’ condition in the statement of Theorem 2. Note
that Brendle-Margalit state Theorems 2.2 and 2.3 for closed surfaces only
[7, Theorem 2.1, Theorem 2.2]. The proofs can be adapted for surfaces with
punctures using the notion of a small vertex given in Section 1.3.

Theorem 2.2 (Brendle-Margalit). Let Σ be a punctured surface or a closed
surface of genus g ≥ 3. Let CA(Σ) be a complex of regions with no isolated
vertices or edges. Then CA(Σ) admits exchange automorphisms if and only
if it has a hole or a cork. Moreover, two vertices can be exchanged by an
exchange automorphism if and only if they are holes with equal fillings or
they form a cork pair.

As an example we consider the cork pair and the holes depicted in Figure
1. Recall that the link of a vertex v, denoted Link(v), is the subcomplex
spanned by the set of all vertices adjacent to v. The star of a vertex is
the subcomplex spanned by the union of the vertex and every vertex in its
link. The two vertices corresponding to the regions in Figure 1(i) have equal
stars. Similarly the vertices described in Figure 1(ii) have equal links and
the vertices do not span an edge with each other. If two vertices have equal
links or equal stars then we can define an automorphism that exchanges the
vertices. The proof of [7, Theorem 2.1] tells us that if two vertices have
equal links then they are holes with equal fillings, and if they have equal
stars then they are cork pairs.

When a complex of regions does admit exchange automorphisms, Brendle-
Margalit give us an explicit description of the automorphism group of the
complex.
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Theorem 2.3 (Brendle-Margalit). Let CA(Σ) be a connected complex of
regions. If every minimal vertex of CA(Σ) is small then

Aut CA(Σ) ∼= Ex CA(Σ) o Mod±(Σ).

Here, the group Ex CA(Σ) is the normal subgroup of Aut CA(Σ) generated
by all exchange automorphisms.

3. Subcomplexes of the separating curve complex

Given a surface Σ, let S be the set of Mod±(Σ)-orbits of separating curves
in Σ. We denote by CS(Σ) the separating curve complex, the subcomplex of
C(Σ) spanned by vertices corresponding to separating curves. In this section
we study the automorphisms of particular subcomplexes of the separating
curve complex.

For any separating curve c in Σ there are two associated regions defined by
cutting Σ along c. For any subset A ⊂ R(Σ) we say that c separates regions
represented in A if both of its associated regions contain regions represented
in A. We define CS(A)(Σ) to be the subcomplex of CS(Σ) spanned by vertices
corresponding to curves that separate regions represented in A. The main
goal of this section is to prove the following theorem.

Theorem 3.1. Let A ⊂ R(Σ) and let CS(A)(Σ) be the subcomplex of CS(Σ)
defined above. If every minimal vertex of CS(A)(Σ) is small then the natural
homomorphism

ηS(A) : Mod±(Σ)→ Aut CS(A)(Σ)

is an isomorphism.

Proving Theorem 3.1 is the first step on the proof of Theorem 2. Note that
we may consider CS(A)(Σ) to be a complex of regions (since S(A) ⊂ R(Σ))
and so the definitions of minimal and small vertices of CS(A)(Σ) make sense.
Indeed, Theorem 3.1 is just a special case of Theorem 2. For a surface
Σ = Σg,n, Theorem 3.1 has been proven for the cases when n = 0 [7,
Theorem 1.10] and g = 0 [29, Theorem 1.5]. This section will deal with the
general case when g, n > 0.

We say that a set of vertices in a simplicial complex is characteristic if it
is preserved by all automorphisms of the complex. We will prove Theorem
3.1 in three steps;

Step 1. Consider a subset X ⊆ S such that S(A) ⊆ X. We may then
define the subcomplex CX(Σ) in the usual way. If u and v are two vertices
of CX(Σ) that correspond to curves with homeomorphic associated regions
we say that u and v are of the same vertex type. In Proposition 3.5 we
prove that for any vertex v ∈ CX(Σ) and any automorphism φ ∈ Aut CX(Σ)
the vertex φ(v) is of the same vertex type as v. That is, vertex types form
characteristic subsets.
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Step 2. We consider CX(Σ) as above and let CY (Σ) be the subcomplex of
CX(Σ) obtained by removing all vertices of a particular vertex type. In
Proposition 3.10 we prove that if ηX : Mod±(Σ)→ Aut CX(Σ) is an isomor-
phism then under certain conditions ηY : Mod±(Σ)→ Aut CY (Σ) is also an
isomorphism.

Step 3. From Brendle-Margalit [6] and Kida [22] the homomorphism

ηS : Mod±(Σ)→ Aut CS(Σ)

is an isomorphism. We define a sequence of subcomplexes starting with
CS(Σ) and ending with CS(A)(Σ). We are then able to use Step 2 (Proposition
3.10) repeatedly in order to show that the homomorphism ηS(A) from the
statement of Theorem 3.1 is an isomorphism.

More informally, we begin with the isomorphism ηS and show that by re-
moving vertex types from the complex, we sustain an isomorphism between
the extended mapping class group and the automorphism group of the sub-
complex of separating curves. That the conditions of Proposition 3.10 are
met follows from the assumption that every minimal vertex of CS(A)(Σ) is
small.

3.1. Characteristic vertex types. In order to tackle Step 1 we intro-
duce some terminology to help determine different vertex types. We call a
separating curve c in Σ a (k, l)-curve if it has an associated region R of genus
k with l punctures. Note that a (k, l)-curve is also a (g − k, n− l)-curve.

If c is a (k, l)-curve then for any f ∈ Mod±(Σ) we have that f(c) is a
(k, l)-curve. We call any vertex of CS(Σ) that corresponds to a (k, l)-curve a
(k, l)-vertex. Our goal is therefore to show that the subset of (k, l)-vertices
is characteristic in certain subcomplexes of CS(Σ) for any k and l.

Sides. Given a vertex v of a subcomplex of separating curves CX(Σ) we say
that vertices u,w lie on the same side of v if u,w ∈ Link(v) and there exists
another vertex in Link(v) that does not span an edge with either u or w.

The following definitions will be useful when showing that vertex types
form characteristic subsets.

Linear simplices. We say that a simplex σ of CX(Σ) is linear if there is
a labeling of its vertices v0, . . . , vm such that vi−1 and vi+1 do not lie on
the same side of vi for all i = 1, . . . ,m − 1. We call the vertices v0 and vm
the extreme vertices of the linear simplex σ. We say that a linear simplex
σ ⊂ CX(Σ) is maximal if its vertices do not form a subset of another linear
simplex. Note that a (1, 0)- or (0, 2)-vertex v belongs to a linear simplex σ
only when v is an extreme vertex of σ. Indeed, in such cases all vertices of
Link(v) lie on the same side.

For any two vertices u, v ∈ CX(Σ) we say that u is an increment of v in
CX(Σ) if there exists a maximal linear simplex σ ⊂ CX(Σ) in which u and v
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u v

a

b

Figure 2. The vertex corresponding to the curve u is a
genus increment of the vertex corresponding to the curve v.
The curves u, v, Ta(u), and Tb(v) correspond to vertices
that span a square.

are sequential with respect to the labeling. Note that u is an increment of
v if and only if v is an increment of u.

Linear subcomplexes. We say that a subcomplex CX(Σ) of CS(Σ) is linear
if

u is an increment of v in CX(Σ) =⇒ u is an increment of v in CS(Σ).

Genus increments. Suppose the vertex u is an increment of the vertex v
in some linear subcomplex CX(Σ). Since CX(Σ) is linear the vertex u must be
an increment of v in CS(Σ). Suppose u and v correspond to the boundary
components of a region R in Σ. We observe that R is homeomorphic to
either Σ2

1,0 or Σ2
0,1. Indeed, if this is not the case then we can find a curve

in R that separates the boundary components of R. The existence of such a
curve contradicts the fact that u is an increment of v in CS(Σ) and therefore
CX(Σ) cannot be linear.

Given vertices u, v ∈ CX(Σ) and the region R above; we say that u is
a genus increment of v if R is homeomorphic to Σ2

1,0, see Figure 2. Once
again, note that if u is a genus increment of v, then v is a genus increment
of u.

Lemma 3.2. Let CX(Σ) be a linear subcomplex of CS(Σ) and let u, v be
vertices of CX(Σ). If u is a genus increment of v then φ(u) is a genus
increment of φ(v) for all φ ∈ Aut CX(Σ).

Proof. We claim that the vertex u is a genus increment of v if and only
if there exist vertices x and y, such that the vertex set {u, v, x, y} spans
a square in CX(Σ). The result then follows from the claim. The forward
implication of the claim is clear. We take appropriate Dehn twists of repre-
sentative curves of u and v, see Figure 2.

Suppose now that the vertex u is an increment of the vertex v and vertices
x and y exist as in the claim. Let R be a region such that u and v correspond
to the the boundary components of R. Assume u is not a genus increment
of v, that is, R is homeomorphic to a punctured annulus. Let the vertices u
and x correspond to the curves u and x respectively such that u and x are
in minimal position. Take B to be the regular neighbourhood of u∪x. One
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of the components of ∂B is the boundary of a disc D1 ⊂ R with a single
puncture. Since y does not span an edge with v it corresponds to a curve
that intersects either to u or the disc D1. This implies that y fails to span
an edge with either u or x, a contradiction. �

We can now begin to prove that vertex types form characteristic subsets
of a linear subcomplex CX(Σ). We do this in two steps, the first of which
deals with the minimal vertices of CX(Σ). We will make use of the following
result of Andrew Putman [32].

Lemma 3.3 (Putman). Let G be a group acting on a simplicial complex X
with v a distinguished vertex in X0. Let S be a set of generators of G and
assume that;

(1) for all u ∈ X0, the orbit G · v intersects the connected component of
X containing u, and

(2) for all s ∈ S±1, there is a path Ps in X from v to s · v.

Then X is connected.

Let v be a (k, l)-vertex of CX(Σ). Recall from Section 1 that v is small if
there exists a (k1, l1)-vertex and a (k2, l2)-vertex in CX(Σ) such that;

g ≥ k + max{k1 + k2, 2}+ 1, and (5)

n ≥ l + max{l1 + l2, 1}+ 1. (6)

Lemma 3.4. Let CX(Σ) be a linear subcomplex of CS(Σ) where every min-
imal vertex is small. Let v be a (k, l)-vertex of CX(Σ). If v is a minimal
vertex then φ(v) is a (k, l)-vertex for all φ ∈ Aut CX(Σ).

Proof. We first show that the set of minimal vertices is characteristic. This
is clear, as a vertex v is minimal in CX(Σ) if and only if it is an extreme
vertex of some maximal linear simplex.

Assume then that the set of minimal vertices contains (k, l)-vertices for
some values of k and l. We need to show that vertices of this type form
a characteristic subset. For any two minimal vertices v1, v2 we will write
v1 ∼ v2 if;

(1) there exists a vertex u such that u and vi are extreme vertices of
some maximal linear simplex σi,

(2) the simplices σ1 and σ2 have N vertices, and
(3) the simplices σ1 and σ2 have K ≤ N genus increments.

Let v1 and v2 correspond to the curves c1 and c2 respectively. Suppose u
corresponds to a curve with associated region Q disjoint from c1 and c2. It
follows that c1 and c2 bound regions R1 and R2 such that; g(Ri) = g(Q)+K
and that n(Ri) = n(Q)+N −K. We conclude therefore that if v1 ∼ v2 then
they are of the same vertex type.

LetM be the graph whose vertex set is all the minimal vertices of CX(Σ).
Two vertices v1, v2 ∈ M share an edge whenever v1 ∼ v2. Let v be some
distinguished vertex of M corresponding to the curve v. By the definition
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u v

. . .

. . .

Figure 3. Any Dehn twist or half twist about one of the
curves shown either fixes the (k, l)-curve v, or else both v
and its image are contained in a subsurface R homeomorphic
to Σ2

k,l+1. There exists a curve u that does not intersect R.

of ‘∼’ we have that if two vertices are connected in M then they are of the
same vertex type. Let M(k, l) be the subgraph of M spanned by (k, l)-
vertices. The mapping class group Mod±(Σ) acts naturally on M(k, l) and
each vertex u ∈ M(k, l) corresponds to some curve f(v). This implies that
the first condition of Lemma 3.3 is satisfied with respect to the subgraph
M(k, l).

Take the Humphries generating set S of Mod±(Σ) such that every element
of S fixes v except for l + 1 Dehn twists and a single half twist, see Figure
3. If s ∈ S then v, s(v) are both contained in a subsurface R ∼= Σ2

k,l+1. As

(k, l)-vertices are small, there exists a minimal vertex u of CX(Σ) that spans
an edge with both the vertex v and the vertex s · v corresponding to s(v).
It follows that v ∼ s · v. This satisfies the second condition of Lemma 3.3
and so the subgraph M(k, l) is connected. It follows that φ(v) is a vertex
of M(k, l), completing the proof. �

We can now finally prove that each vertex type determines a characteristic
subset of vertices in the linear subcomplex CX(Σ).

Proposition 3.5. Let CX(Σ) be a linear subcomplex of CS(Σ) where every
minimal vertex is small. Let v be a vertex of CX(Σ). If v is a (k, l)-vertex
then φ(v) is a (k, l)-vertex for all φ ∈ Aut CX(Σ).

Proof. Let v be a (k, l)-vertex of CX(Σ) corresponding to the curve v and
let φ be an automorphism of CX(Σ) as in the statement of the proposition.
Suppose the vertex φ(v) corresponds to the curve c. We need to show that
c is a (k, l)-curve.

Since CX(Σ) is connected, there exists a maximal linear simplex σ that

contains v. Suppose one of the extreme vertices of σ is a (k̃, l̃)-vertex u.
From Lemma 3.4 we have that φ(u) is an extreme vertex of φ(σ) and is also

a (k̃, l̃)-vertex. If there are N vertices between u and v in the labeling of
σ then there are N vertices between φ(u) and φ(v) in the labeling of φ(σ).
Finally, from Lemma 3.2, if there are K genus increments between u and v
in σ then there are K genus increments between φ(u) and φ(v) in φ(σ).

Without loss of generality we can assume that k = k̃+K and l = L̃+N−K
and so it follows that c is a (k, l)-curve. �
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Note that in order to prove that vertex types determine characteristic
subsets for a surface Σ = Σg,n where g = 0 (or n = 0) we need only define
maximal linear simplices. Indeed, all minimal vertices are of the same vertex
type and all increments are genus increments (or no increments are genus
increments).

3.2. Sharing pairs. The purpose of this section is to show that certain
intersection data is characteristic to the linear subcomplexes introduced
in Section 3.1. We will generalize the notion of sharing pairs defined by
Brendle-Margalit [7, Section 3] into two flavors. In each case, we say a pair
of (k, l)-curves a,b share a curve c. If c is (k − 1, l)-curve we call a,b a
genus sharing pair. If c is (k, l − 1)-curve we call a,b a puncture sharing
pair. We use these definitions to complete Step 2 of the strategy outlined
at the beginning of Section 3. More precisely, we show that an isomorphism
Mod±(Σ) → Aut CX(Σ) implies an isomorphism Mod±(Σ) → Aut CY (Σ),
where CY (Σ) is a particular subcomplex of CX(Σ) and both are linear sub-
complexes of CS(Σ).

Before we give the definition of sharing pairs we introduce arcs to facil-
itate the discussion. Let R be a surface with boundary. In our setting, an
arc in R is a continuous image of the interval whose endpoints map to the
boundary of R. Let CX(Σ) be a linear subcomplex of CS(Σ) and let z be a
vertex of CX(Σ) corresponding to a curve with an associated region R. Let
SA(R) be the set whose elements are the, possibly empty, sets of arcs in R.
We can define a projection map

πz : CX(Σ)→ SA(R).

Note that we may also define a map from CX(Σ) to SA(Σ \R).
If v is a vertex of CX(Σ) that shares an edge with z then πz(v) = ∅. If v

and z do not share an edge then v corresponds to a curve whose intersection
with R is a nonempty collection of disjoint arcs, that is,

v and z fail to span an edge in CX(Σ) ⇐⇒ πz(v) ∈ SA(R) \ ∅.
For a vertex v ∈ CX(Σ), if the projection πz(v) is a set arcs that belong to
the same free isotopy class then it makes sense to think of πz(v) as a single
arc. We call an arc α non-separating if R\α is a single connected subsurface,
otherwise we call it separating. As we can see from Figure 4, it is possible
for a vertex v ∈ CX(Σ) to project to a non-separating arc πz(v) ∈ SA(R).

The following definitions, and Lemma 3.6, are used in the subsequent dis-
cussion of genus sharing pairs. We assume that CX(Σ) is a linear
subcomplex of CS(Σ).

Unlinked projections and handle pairs. Let z ∈ CX(Σ) corresponding
to ∂R for some region R. Two vertices u, v of CX(Σ) are said to have
unlinked projections if there exists a connected segment of ∂R intersecting a
component of πz(u) twice but not intersecting πz(v). The vertices u, v form
a handle pair for R if πz(u) and πz(v) are distinct non-separating arcs of R
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z

u

v

Figure 4. Two separating curves u and v such that the
union of their projections πz(u) and πz(v) define a torus with
two boundary components, one of which is z.

with representatives that lie on some subsurface Q ⊂ R such that Q ∼= Σ2
1,0,

see Figure 4.
Recall that for a vertex v in CX(Σ) we say that vertices u,w lie on the

same side of v if u,w ∈ Link(v) and there exists another vertex in Link(v)
which does not span an edge with either u or w. If v is a (k, l)-vertex then
we say that a vertex lies on a small side of v if it does not lie on the same
side as a (k + 1, l) or (k, l + 1)-vertex. The following result is analagous to
a result of Brendle-Margalit in the closed case [7, Lemma 3.2].

Lemma 3.6. Let CX(Σ) be a linear subcomplex of CS(Σ) where every mini-
mal vertex is small. Let φ ∈ Aut CX(Σ). Suppose CX(Σ) contains (k, l) and
(k+ 1, l)-vertices and let z be a (k+ 1, l)-vertex. Let u and v be two vertices
of CX(Σ) such that πz(u) and πz(v) are distinct, non-separating arcs.

(1) The projection πφ(z)(φ(u)) is a non-separating arc;
(2) If πz(u) and πz(v) are unlinked non-separating arcs then πφ(z)(φ(u))

and πφ(z)(φ(v)) are unlinked non-separating arcs.
(3) If πz(u) and πz(v) are a handle pair then πφ(z)(φ(u)) and πφ(z)(φ(v))

are a handle pair.

Proof. Let R be a region of genus k + 1 with l punctures such that z
corresponds to ∂R. For the first statement we claim that πz(u) is a non-
separating arc if and only if there is more than one (k, l)-vertex in Link(u)
that lies on the small side of z. To prove the forward direction we assume
that πz(u) is a non-separating arc. It follows then that R \πz(u) ∼= Σ2

k,l. As

there are infinitely many (k, l)-curves in Σ2
k,l, the implication is clear.

We deal with the other direction of the claim in two cases; either πz(u)
contains the homotopy class of a separating arc or it contains more than
one homotopy class of non-separating arcs. Suppose we are in the first case.
If we cut R by a separating arc it results in two surfaces R1 and R2. It
must be that R1

∼= Σ1
k1,l1

and R2
∼= Σ1

k2,l2
, with k2 ≥ k1, k1 + k2 = k + 1,

and l1 + l2 = l. If w is a vertex in Link(u) that lies on the small side of
z then it must correspond to a curve contained in either R1 or R2. If w is
a (k, l)-vertex then we have that k1 = 1 and l1 = 0. It follows that w is
unique, a contradiction.
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k − 1

l

u

v

z

x1

x2

y1

y2

Figure 5. A (k, l)-genus sharing pair u, v corresponds to the
red and blue curves. The vertex z corresponds to light blue
curve. The arcs πz(x1),πz(y1),πz(x2) and πz(y2) are shown
in green and orange. The region Q1 is bounded by u and z.

In the second case, suppose we cut along two distinct and disjoint non-
separating arcs in R. Either we obtain a surface of genus k and l punctures
or we obtain one or two surfaces of genus less than k. Therefore, either there
exists a single (k, l)-vertex adjacent to u on the small side of z or there are
none. This completes the proof of the first statement.

To prove the second statement let u and v be two vertices such that πz(u)
and πz(v) are unlinked non-separating arcs. These arcs are distinct if and
only if there exists a (k, l)-vertex of CX(Σ) on the small side of z that is
adjacent to u but not v. To prove the statement then we claim that the
arcs πz(u) and πz(v) are linked if and only if there exists a (k, l)-vertex w
in CX(Σ) that lies on the small side of z and is adjacent to both u and v.

If we cut R along disjoint representatives of πz(u) and π(v) then we either
obtain a surface of genus k and l punctures or we obtain one or two surfaces
of genus less than k, depending on whether πz(u) and πz(v) are linked or
unlinked. The claim follows similarly to the proof of the first statement.

For the final statement we note that two non-separating arcs form a handle
pair if and only if they are linked. This completes the proof. �

Genus sharing pairs. We say that two (k, l)-vertices form a (k, l)-genus
sharing pair if they correspond to curves with geometric intersection number
two and, of the four surfaces obtained by cutting Σ along the curves, one is
homeomorphic to Σ1

k−1,l and two are homeomorphic to Σ1
1,0.

If two vertices that form a genus sharing pair correspond to the curves
a,b we say that a,b share the (k − 1, l)-curve c, where c is isotopic to the
boundary curve of the region homeomorphic to Σ1

k−1,l.

Lemma 3.7. Let CX(Σ) be a linear subcomplex of CS(Σ) where every min-
imal vertex is small. Suppose CX(Σ) contains (k1, l1)- and (k2, l2)-vertices.
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Let vertices u, v ∈ CX(Σ) form a (k, l)-genus sharing pair. If g ≥ k + k1 +
k2 + 1 and n ≥ l + l1 + l2 then φ(u), φ(v) form a (k, l)-genus sharing pair
for all φ ∈ Aut CX(Σ).

Proof. We will show that two vertices u, v form a (k, l)-genus sharing pair
if and only if there are two (k1, l1)-vertices x1 and y1, two (k2, l2)-vertices
x2 and y2, and a (k + 1, l)-vertex z that satisfy the following properties.

(1) Both u and v lie on the small side of z;
(2) both x1 and y1 are adjacent to u, x2 and y2, but not v;
(3) both x2 and y2 are adjacent to v, x1 and y1 but not u;
(4) both pairs πz(x1), πz(y1) and πz(x2), πz(y2) are distinct handle pairs;

and
(5) if α1 ∈ {πz(x1), πz(y1)} and α2 ∈ {πz(x2), πz(y2)} then α1 and α2

are unlinked.

The result then follows from Proposition 3.5 and Lemma 3.6.
Suppose the vertices u, v form a (k, l)-genus sharing pair and correspond

to the curves u,v. Up to homeomorphism there is a unique confuguration
for the curves u,v shown in Figure 5. The curves u and v separate Σ into
four regions which are homeomorphic to Σ1

k−1,l, Σ1
1,0, Σ1

1,0 and Σ1
g−k−1,n−l.

Take R to be the complement of this final region in Σ and let z be the vertex
corresponding to ∂R. We then define x1, y1, x2, and y2 to be (k1, l1)- and
(k2, l2)-vertices corresponding to the projected arcs shown in Figure 5. Note
that the five conditions are met whenever g and n are as in the statement
of the lemma.

Now suppose we have vertices u, v, x1, y1, x2, y2, and z satisfying the above
conditions. By the fourth condition the arcs πz(x1) and πz(y1) are contained
in some region Q1

∼= Σ2
1,0. Denote the two boundary components of Q1 by z

and u. The vertex z must correspond to the curve z, and the arcs πz(x1) and
πz(y1) have endpoints on z. We want to show that the vertex u corresponds
to u.

The surface obtained by cutting along Q1 by πz(x1) is homeomorphic
to a pair of pants P . If we then cut P along πz(y1) the resulting surface
is an annulus. It follows that πz(x1) and πz(y1) fill Q1. From the second
condition we have that u corresponds to a curve that is disjoint from Q1.
Since Q1 is of genus one it must be that u corresponds to u. By symmetry,
the vertex v corresponds to v the boundary component not isotopic to ∂R
of the equivalent region Q2.

From the fifth condition, we can view z as the circle in Figure 6. There
exist segments γ1 and γ2 of z, with γ1∪γ2 = z, such that the arcs πz(x1) and
πz(y1) have endpoints in γ1 and the arcs πz(x2) and πz(y2) have endpoints
in γ2. It follows that the intersection of πz(x2) and πz(y2) with Q1 is a set
of four freely isotopic arcs. Since Q2 is a regular neighbourhood of the arcs
πz(x2) and πz(y2) we have that the intersection of Q1 and Q2 is an annulus
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πz(x1)

πz(y1)

πz(y2)

πz(x2)

z

Figure 6. The curve z intersects πz(x1),πz(y1),πz(x2) and
πz(y2) as shown.

whose boundary components are isotopic to z. The curves u and v must
therefore have essential intersection two.

If two separating simple closed curves intersect in two points then they
divide Σ into four regions, one of which must contain z. It follows that one
of these regions is of genus k − 1 and has l punctures. Thus, u, v form a
genus sharing pair. �

Puncture sharing pairs. We say that two (k, l)-vertices form a (k, l)-
puncture sharing pair if they correspond to curves with geometric intersec-
tion number two and, of the four surfaces obtained by cutting Σ along the
curves, one is homeomorphic to Σ1

k,l−1 and two are homeomorphic to Σ1
0,1.

If two vertices that form a puncture sharing pair correspond to the curves
a,b we say that a,b share the curve c, where c is isotopic to the boundary
curve of the region homeomorphic to Σ1

k,l−1.

Lemma 3.8. Let CX(Σ) be a linear subcomplex of CS(Σ) where every min-
imal vertex is small. Suppose CX(Σ) contains (k1, l1)- and (k2, l2)-vertices.
Let vertices u, v ∈ CX(Σ) form a (k, l)-puncture sharing pair and let g ≥
k + k1 + k2. If n ≥ l + l1 + l2 + 1, or l1, l2 > 0 and n ≥ l + l1 + l2 − 1 then
φ(u), φ(v) form a (k, l)-puncture sharing pair for all φ ∈ Aut CX(Σ).

Proof. We will show that two vertices u, v form a (k, l)-puncture sharing
pair if and only if there is a (k1, l1)-vertex x1, a (k2, l2)-vertex x2, and a
(k, l + 1)-vertex z that satisfy the following properties.

(1) Both u and v lie on the small side of z;
(2) the vertex x1 is adjacent to u and x2 but not v; and
(3) the vertex x2 is adjacent to v and x1 but not u.

The result then follows from Proposition 3.5.
Suppose the vertices u, v form a (k, l)-puncture sharing pair and corre-

spond to the curves u,v. Up to homeomorphism there is a unique config-
uration for the curves u,v shown in Figure 7. The curves u and v sepa-
rate Σ into four regions which are homeomorphic to Σ1

k,l−1, Σ1
0,1, Σ1

0,1 and

Σ1
g−k,n−l−1. Take R to be the complement of this final region in Σ and let

z be the vertex corresponding to ∂R. We then define x1 to be the (k1, l1)-
vertex and x2 to be the (k2, l2)-vertex corresponding to the projected arcs
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k

l − 1

u

v

z

πz(x2)

πz(x1)

Figure 7. A (k, l)-puncture sharing pair u, v corresponds to
the red and blue curves. The vertex z corresponds to light
blue curve. The arcs πz(x1) and πz(x2) are shown in green
and orange.

shown in Figure 7. Note that the three conditions can always be met when
g and n satisfy the bounds given in the statement of the lemma.

Now suppose we have vertices u, v, x1, x2, and z that satisfy the above
conditions. By the first and second conditions we must have that the arc
πz(x1) is contained in some Q1 homeomorphic to an annulus with a single
puncture. Denote the two boundary components of Q1 by z and u. The
vertex z must correspond to z and the arc πz(x1) has endpoints on z. We
want to show that the vertex u corresponds to u.

When we cut Q1 along the arc πz(x1) we get two surfaces; an annulus and
a disc with one puncture. The boundary of this annulus is isotopic to u, a
(k, l)-curve that is contained in the associated region of z with genus k. It
follows that u corresponds to u. By symmetry, the vertex v must correspond
to v, the boundary component not isotopic to z of the equivalent region Q2.

From the second and third conditions the curve z takes the form of the
circle in Figure 8(i). There exist segments γ1 and γ2 of z, with γ1 ∪ γ2 = z,
such that the arcs πz(x1) and πz(x2) have endpoints in γ1 and γ2 respectively.
It follows that the intersection of the arc representing πz(x2) with Q1 is a

(i) (ii)
z

πz(x1)
πz(x2)

πz(x1) z

πz(x1)

v

u
πz(x2)

Figure 8. The curve z intersects πz(x1) and πz(x2)

set of two freely isotopic arcs. If we cut along one of these arcs then, since u
and v must intersect, they take the form shown in Figure 8(ii) where they
intersect exactly twice. If two separating simple closed curves intersect in
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two points then they divide Σ into four regions, one of which must contain
z. It follows that one of these regions is of genus k and has l− 1 punctures.
Thus, u, v form a genus sharing pair. �

Note that the bounds on g and n found in Lemmas 3.7 and 3.8 are found
in the inequalities (5) and (6). The requirement in Theorem 3.1 that all
minimal vertices are small therefore allows us to apply Lemmas 3.7 and 3.8
to all minimal vertices of CS(A)(Σ).

Let CX(Σ) and CY (Σ) be linear subcomplexes of CS(Σ) such that CY (Σ)
is a subcomplex of CX(Σ). We will now use the two types of sharing pairs
to extend an automorphisms of CY (Σ) to automorphisms of CX(Σ). We
do this by introducing graphs of sharing pairs and showing that it consists
of infinitely many connected components, each corresponding to a unique
isotopy class of shared curve.

If u1, v1 and u2, v2 are (k, l)-genus sharing pairs that correspond to curves
that share the same (k − 1, l)-curve then we say that u1, v1 and u2, v2 are
similar. In the same way, we may define similar (k, l)-puncture sharing pairs
to be those that correspond to pairs of curves sharing the same (k, l − 1)-
curve.

Graphs of sharing pairs. Given a linear subcomplex CX(Σ) of CS(Σ) we
construct a graph SP with vertices corresponding to all (k, l)-sharing pairs
of the same type. Two vertices share an edge in SP if they correspond to
sharing pairs u, v and v, w, such that u,w is also a sharing pair and all three
pairs are similar. Note that this definition holds for both genus sharing pairs
and puncture sharing pairs.

From Proposition 3.5, Lemma 3.7, and Lemma 3.8 one can show that if
u, v and v, w share an edge in SP then φ(u), φ(v) and φ(v), φ(w) share an
edge, for all φ ∈ Aut CX(Σ)

It is clear that if two sharing pairs are connected in SP then they are
similar sharing pairs. This implies that the graph SP is made up of various
disconnected components. We will write SP(c) for the union of components
relating to sharing pairs that correspond to pairs of curves that share the
same curve c.

We now show that SP(c) is a single connected component of SP. We
will once again make use of Lemma 3.3.

Lemma 3.9. Suppose SP corresponds to (k, l)-genus sharing pairs and g ≥
k + 3, or SP corresponds to (k, l)-puncture sharing pairs and n ≥ l + 2.
Then the subgraph SP(c) is a single connected component of SP for any
curve c.

Proof. Let a,b be (k, l)-curves that share the curve c. Let R be the as-
sociated region of c that does not contain a or b. Let Mod(Σ, R) be the
subgroup of Mod(Σ) that fixes the subsurface R pointwise. Every vertex in
SP(c) corresponds to curves f(a), f(b), for some f ∈ Mod(Σ, R). This sat-
isfies the first condition in Lemma 3.3 with respect to the simplicial complex
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(i) (ii)

k − 1

l

a

b

k − 1

l

d

T (b)

(a,b)

(a,d)

(a, T (b))

Figure 9. (i) Generating twists and half twists with respect
to a genus sharing pair corresponding to curves a,b. (ii) The
vertex of SP(c) corresponding to the sharing pair a,d spans
an edge with both a,b and a, T (b).

SP(c). It remains to show that the second condition is satisfied. This will
be done in two cases; the first case deals with (k, l)-genus sharing pairs and
the second deals with (k, l)-puncture sharing pairs.

Suppose the vertices of SP correspond to (k, l)-genus sharing pairs. The
groups Mod(Σ, R) and Mod(Σ1

g−k+1,n−l) are isomorphic. It follows that

there exists a finite generating set S for Mod(Σ, R) consisting of Dehn twists
about non-separating curves and half twists about (0, 2)-curves, see Figure
9(i).

We choose a Humphries generating set S so that one non-separating curve
intersects a, one non-separating curve intersects b, and all other curves are
disjoint from both a and b. By symmetry it is enough to consider the single
case where T is a Dehn twist about a non-separating curve intersecting b
and disjoint from a. We have that T (a) = a and a, T (b) share the curve c.
It remains to show that the vertices corresponding to a,b and a, T (b) are
connected in SP(c).

Given g ≥ k+ 3 we can find a curve d such that the vertex corresponding
to a,d is adjacent to the vertices corresponding to a,b and a, T (b) in SP,
see Figure 9(ii). By Lemma 3.3 the result holds for SP(c) when defined
with respect to (k, l)-genus sharing pairs.

Now suppose the vertices of SP correspond to puncture sharing pairs.
The groups Mod(Σ, R) and Mod(Σ1

g−k,n−l+1) are isomorphic. Once again,

we can find a finite generating set S for Mod(Σ, R) consisting of Dehn twists
about non-separating curves and half twists about (0, 2)-curves, see Figure
10(i).

Again, we may choose S so that one non-separating curve and one (0, 2)-
curve intersect b and one (0, 2)-curve intersects both a and b, all other
curves are disjoint from both a and b. As before, if T is a Dehn twist about
a non-separating curve intersecting b and disjoint from a then it is clear
that T (a), T (b) share c. Given n ≥ l + 2 we can find a curve d such that
the vertex relating to a,d is adjacent to the vertices relating to a,b and
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(i) (ii)

k

l − 1

a

b

k

l − 1

H(b)

d

(a,b)

(d,b)

(H(b), H(a))

Figure 10. (i) Generating twists with respect to a puncture
sharing pair corresponding to curves a,b. (ii) The vertex of
SP(c) corresponding to the sharing pair d,b spans an edge
with both a,b and H(b),b. Note also that H(a) = b.

T (a), T (b) in SP. A similar argument follows for the half twist about the
(0, 2)-curve intersecting a and not b.

Finally, for the half twist H about a (0, 2)-curve intersecting both a and b
it is clear that H(a), H(b) share c. Furthermore, without loss of generality
we can assume that H(a) = b. Given n ≥ l + 2 we can find a curve d such
that the vertex corresponding d,b is adjacent to both to a,b and H(b),b,
see Figure 10(ii). By Lemma 3.3 the result holds for SP(c) when defined
with respect to (k, l)-puncture sharing pairs. �

The following proposition will be a key step used repeatedly when proving
Theorem 3.1.

Proposition 3.10. Let CX(Σ) and CY (Σ) be linear subcomplexes of CS(Σ)
such that CY (Σ) is obtained by removing all (k, l)-vertices from CX(Σ). Sup-
pose the natural homomorphism

ηX : Mod±(Σ)→ Aut CX(Σ)

is an isomorphism. If automorphisms of CY (Σ) either

(1) preserve (k + 1, l)-genus sharing pairs and g ≥ (k + 1) + 3, or
(2) preserve (k, l + 1)-puncture sharing pairs and n ≥ (l + 1) + 2,

then the natural homomorphism

ηY : Mod±(Σ)→ Aut CY (Σ)

is also an isomorphism.

Proof. By Lemma 2.1 the map ηY is injective. It remains to show that
it is surjective. Let φ be an automorphism of Aut CY (Σ). By assumption,
either (k + 1, l)-genus sharing pairs or (k, l + 1)-puncture sharing pairs are

preserved by φ and by Lemma 3.9 we have a well defined permutation φ̂ of

the vertices of CX(Σ) such that φ̂ restricts to φ on the vertices of CY (Σ). We

will show that φ̂ in fact extends to an automorphism of CX(Σ).
Suppose vertices u, v of CX(Σ) correspond to the curves u and v. We need

to show that the adjacency of u and v in the complex CX(Σ) is characteristic
in its subcomplex CY (Σ). If both u and v are vertices of CY (Σ) then this
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is trivial. Suppose neither u nor v are vertices of CY (Σ), that is, they are
both (k, l)-vertices. Then u and v span an edge in CX(Σ) if and only if there
are sharing pairs (a1, b1) ∈ SP(u) and (a2, b2) ∈ SP(v) such that a1 and a2

span an edge in CY (Σ).
Finally, suppose v is a vertex of CY (Σ) and u is not, that is, u is a (k, l)-

vertex. The vertices span an edge in CX(Σ) if there exists a sharing pair
(a, b) ∈ SP(u) such that a = v, or a spans an edge with v in CY (Σ). Since
both CX(Σ) and CY (Σ) are connected linear subcomplexes of CS(Σ) all edges

are of this form. We have therefore shown that φ̂ ∈ Aut CX(Σ).
By assumption there exists some f ∈ Mod±(Σ) whose image in Aut CX(Σ)

is precisely φ̂. Since the restriction of φ̂ to the subcomplex CY (Σ) is φ it
follows that the image of f in Aut CY (Σ) is indeed φ. �

In order to apply Proposition 3.10 for (k, l)-genus sharing pairs we require
that g ≥ k + 3. Similarly, to apply Proposition 3.10 for (k, l)-puncture
sharing pairs we require n ≥ l + 2. These conditions are due to Lemma
3.9. Combining these bounds with the bounds from Lemmas 3.7 and 3.8 we
arrive at the definition of small vertices given in Section 3.1.

3.3. Navigating between subcomplexes. Recall from the beginning of
Section 3 that CS(A)(Σ) is the subcomplex of CS(Σ) spanned by vertices
corresponding to curves separating regions represented in A ⊂ R(Σ). From
this definition we see that CS(A)(Σ) is a linear subcomplex of CS(Σ). Indeed,
if c1 and c2 are two curves that separate regions represented in A, then every
curve separating c1 and c2 also separate two regions represented in A. As
discussed in Section 3.1 this implies that v is a minimal vertex of CS(A)(Σ)
if and only if it is an extreme vertex of some maximal linear simplex.

Let v be a (k, l)-vertex of CS(A)(Σ). In Section 1 we saw that v is small if
there exists a (k1, l1)-vertex and a (k2, l2)-vertex in CS(A)(Σ) such that;

g ≥ k + max{k1 + k2, 2}+ 1, and (5)

n ≥ l + max{l1 + l2, 1}+ 1. (6)

We wish to prove Theorem 3.1 which states that if every minimal vertex
of is small then the natural homomorphism

ηS(A) : Mod±(Σ)→ Aut CS(A)(Σ)

is an isomorphism.

Diagrammatically representing orbits. When n = 0 the proof of
Brendle-Margalit progresses by an inductive argument on k, where (k, 0)-
vertices are minimal [7]. Similarly, when g = 0 the proof of the author uses
induction on l, where (0, l)-vertices are minimal [29]. In effect, these special
cases use the fact vertex types of CS(Σ) can be defined by positive integers.

When g, n > 0, in general not all minimal curves are of the same vertex
type. Furthermore, we require two integers to define each vertex type. More
specifically, every point in [0, g]× [0, n] with integer coordinates describes a
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vertex type in CS(Σ), except for (0, 0), (0, 1), (g, n), and (g, n − 1). It will
be useful therefore to define

VS :=
(
[0, g]× [0, n]

)
∩ Z× Z \ {(0, 0), (0, 1), (g, n), (g, n− 1)}.

Note that the correspondence between VS and the vertex types of CS(Σ) is
not bijective. This is because every (k, l)-vertex is equal to a (g − k, n− l)-
vertex. It follows that the (k, l)-vertices correspond to two elements of VS ,
unless both g and n are even and k = g/2, l = n/2.

Condition of rotation. We say that a subset VX satisfies the condition of
rotation if for all k and l

(k, l) ∈ VX if and only if (g − k, n− l) ∈ VX .

Note that this is equivalent to saying the π-rotation about the point (g/2, n/2)
preserves VX setwise.

Our strategy for proving Theorem 3.1 will make use of this notion. We
will remove (k, l)-vertices (and hence (g− k, n− l)-vertices) from CS(Σ) in a
prescribed order. This order will be such that at each step in the process we
can use Proposition 3.10 to show that the induced subcomplex of separating
curves will have Mod±(Σ) as its group of automorphisms.

We continue this process until we reach a subset of VS whose elements
correspond to the vertex types of CS(A)(Σ). The proof therefore amounts
to verifying that Proposition 3.10 can be applied in each instance. We will
see that this is possible due to the assumption that all minimal vertices of
CS(A)(Σ) are small.

Diagrammatically representing linear subcomplexes. As discussed
above, we would like to be able to check whether or not we can apply Propo-
sition 3.10 to a subcomplex defined by some subset of VS . One condition we
need to verify is that the subcomplex in question is a linear subcomplex.

To that end, let (k1, l1) and (k2, l2) be points in VS . We write (k1, l1) <
(k2, l2) if

(k2 − k1, l2 − l1) ∈ {(1, 0), (0, 1)}.
Now, for any two points (ks, ls), (kt, lt) ∈ VS such that ks ≤ kt and ls ≤ lt it
is clear that there exists a sequence of points in VS ;

(xs, ys) < (x1, y1) < (x2, y2) < · · · < (xt, yt).

Moreover, this sequence defines part of a maximal linear simplex in CS(Σ)
up to the action of Mod±(Σ).

Condition of step-paths. We say that a subset VX satisfies the condition
of step-paths if for any two points (ks, ls), (kt, lt) ∈ VX such that ks ≤ kt
and ls ≤ lt there exists a sequence of points in VX ;

(xs, ys) < (x1, y1) < (x2, y2) < · · · < (xt, yt).



864 ALAN MCLEAY

n

0 g

−→ −→

n− lm

lm

k1

g − k1

Figure 11. In the first diagram the shaded area contains ev-
ery point in VS . The horizontal red lines are lm and n− lm,
where lm is the lowest value of l such that CS(A)(Σ) con-
tains (k, l)-vertices. We are able to find a sequence of linear
subcomplexes between CS(Σ) and the subcomplex obtained
by removing all (k, l − 1)-vertices, where k1 ≥ k ≥ g and
0 ≤ l ≤ lm. Here, k1 is the lowest value of k such that
(k, l)-vertices belong to CS(A)(Σ).

Lemma 3.11. If VX is a subset of VS that satisfies the condition of rotation
and the condition of step-paths, then VX corresponds to a linear subcomplex
CX(Σ).

Proof. If VX satisfies the condition of rotation then there is a correspon-
dence between points in VX and vertex types of a subcomplex CX(Σ). It
remains then to show that CX(Σ) is a linear subcomplex. Assume that u, a
(ks, ls)-vertex, is an increment of v, a (kt, lt)-vertex , in CX(Σ). That is, u
and v are sequential in the ordering of some maximal linear simplex σ. We
will assume that (ks, ls) 6< (kt, lt). Since, however, VX satisfies the condition
of step-paths, we can find a sequence of points in VX as described in the
definition. This implies that σ is not maximal, which is a contradiction.
It follows that (ks, ls) < (kt, lt) and so u and v are increments in CS(Σ) as
required. �

We can now prove Theorem 3.1. We will use Lemma 3.11 throughout,
often without mention.

Proof of Theorem 3.1. Let (k1, l1)-, . . . , (km, lm)-vertices be minimal such
that k1 ≤ ki and lm ≤ li for all i. Our first goal is to apply Proposition
3.10 until we arrive at the subcomplex obtained by removing all (k, l − 1)-
vertices, for k1 ≤ k ≤ g and 0 ≤ l ≤ lm. Since all minimal vertices are small
we have that either lm = 0 or n ≥ 3lm + 1. If lm ≥ 2 then for a connected
linear subcomplex CX(Σ) containing (0, 2)-vertices we apply Lemma 3.8 to
see that (g, lm)-puncture sharing pairs are preserved by automorphisms of
CX(Σ). In fact, we have that all (k, l)-puncture sharing pairs are preserved
by automorphisms for k and l as above. Furthermore, from Lemma 3.11 and
Figure 11 it can be seen that each subcomplex may be chosen to be linear.
We can apply Proposition 3.10 until we arrive at the desired subcomplex.
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If lm = 1 then n ≥ 4 then by Lemma 3.8 we can show that (k, 1)-puncture
sharing pairs are preserved by automorphisms for k1 ≤ k ≤ g. This requires
the fact that each linear subcomplex contains (0, 2)-vertices. We then pro-
ceed as above. If lm = 0 then we need not remove any vertices to arrive at
the desired subcomplex.

The next step is to once again apply Proposition 3.10 multiple times in
order to obtain the automorphism group of the subcomplex obtained by
further removing all (k− 1, l)-vertices, for 0 ≤ k ≤ k1 and lm ≤ l ≤ n. Since
all minimal vertices are small, we have that either k1 = 0 or g ≥ 3k1 + 1.
Suppose k1 ≥ 1 and let CX(Σ) be any maximal linear subcomplex of CS(Σ)
containing (1, 0)-vertices. Since g ≥ k1+3, by Lemma 3.7 we have that (k, l)-
genus sharing pairs are preserved by automorphisms of CX(Σ) for values of k
and l as above. Similar to the previous step, we may remove all such vertices
and sustain an isomorphism between Mod±(Σ) and the automorphism group
of the various subcomplexes, see Figure 12. If k1 = 0 we need not remove

n− lm

lm

k1

g − k1

−→ −→

n− lm

lm

k1

g − k1

Figure 12. The subcomplex of CS(Σ) obtained by removing
all (k, l)-vertices, where k1 ≥ k ≥ g and 0 ≤ l ≤ lm, or
0 ≤ k ≤ k1 and lm ≤ l ≤ n has the extended mapping class
group as its group of automorphisms.

any vertices to arrive at the desired subcomplex. As such, we need not use
Lemma 3.7.

The final step is to remove all (k, l)-vertices, for k < ki and l < li for any
i ∈ {1, . . . ,m}. Since every minimal vertex is small we have that the inequal-
ities in both Lemmas 3.7 and 3.8 are satisfied for either (k+1, l)-genus shar-
ing pairs or (k, l+1)-puncture sharing pairs. We may apply Proposition 3.10
again (see Figure 13), and we conclude that ηS(A) : Mod±(Σ)→ CS(A)(Σ) is
an isomorphism. �

4. Complexes of dividing sets

The purpose of this section is to connect Theorem 3.1 with complexes
of regions. We do this by using a generalization of separating curves for
a surface Σ of strictly positive genus introduced by Brendle-Margalit [7,
Section 4]. As in the previous section we shall therefore assume that Σ =
Σg,n, and that g, n > 0.
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n− lm

lm

k1

g − k1

−→ −→

Figure 13. The blue lines have endpoints at (k1, l1) and
(km, lm), and corners at (ki, li) where (ki, li)-vertices are min-
imal for all values of i ∈ {1, 2, . . . ,m}. This figure, together
with Figures 11 and 12, show that there exists a sequence of
linear subcomplexes between CS(Σ) and CS(A)(Σ).

Dividing sets. A dividing set in Σ is a multicurve that divides the surface
into exactly two regions. We allow for one of the regions to be an annulus,
that is, the multicurve may consist of two isotopic non-separating curves.
As with separating curves, we call the two regions obtained by cutting along
a dividing set d the associated regions of d. We say that two dividing sets
are nested if one is contained entirely in one of the associated regions of the
other, otherwise we say that they intersect. If two dividing sets intersect
then their respective multicurves may intersect or they may not.

Let DS denote the set of all Mod±(Σ)-orbits of dividing sets in Σ. For a
subset D ⊆ DS we define the simplicial flag complex CD(Σ). The vertices
of CD(Σ) correspond to all homotopy classes of dividing sets that represent
elements of D. We say that a vertex corresponds to a dividing set if it cor-
responds to the equivalence class of that dividing set. Two vertices span an
edge in CD(Σ) if they correspond to nested dividing sets. As with complexes
of regions there is a natural homomorphism

ηD : Mod±(Σ)→ Aut CD(Σ)

for every subset D ⊆ DS.

For any dividing set d an enveloping region R̂d of d is a single-boundary

region such that d ⊂ R̂d and d is not contained in any proper single-

boundary subsurface of R̂d. If the vertex v ∈ CD(Σ) corresponds to the

dividing set v, we write v̂ for an enveloping region of v, that is, v̂ := R̂v.
The following definitions are related to those made in Section 1 in the con-
text of complexes of dividing sets.

Minimal vertices. Let CD(Σ) be a complex of dividing sets. We say that
a vertex v ∈ CD(Σ) is minimal if for any vertex u such that û ⊂ v̂, we have
that û and v̂ are homeomorphic. Note that it is possible to have a finite
sequence of nested dividing sets that are all minimal.

The following definition of small vertices is inherited from the subcom-
plexes of separating curves we visited in the previous section.
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Small vertices. Let Σ = Σg,n and let CD(Σ) be a complex of dividing sets.
We say that a vertex v ∈ CD(Σ) is small if there exist two vertices u1, u2

such that

g ≥ g(v̂) + max{g(û1) + g(û2), 2}+ 1, and (7)

n ≥ n(v̂) + max{n(û1) + n(û2), 1}+ 1. (8)

For A ⊂ R(Σ) we define ∂A ⊆ DS to be the subset consisting of dividing
sets where each of the associated regions contain a region represented in A.
In this section we will use Theorem 3.1 to prove the following result.

Theorem 4.1. Let C∂A(Σ) be a complex of dividing sets for some A ⊂ R(Σ).
If every minimal vertex of C∂A(Σ) is small then the natural homomorphism

η∂A : Mod±(Σ)→ Aut C∂A(Σ)

is an isomorphism.

Notice that in the special case Σ0,n we have S = DS and S(A) = ∂A
for A ⊂ R(Σ). In general S(A) = ∂A ∩ S. Suppose u1, u2 ∈ C∂A(Σ)
are two vertices that span an edge. If u1, u2 correspond to dividing sets
u1,u2 separated by the dividing set v then v must also separate two regions
represented in A ⊂ R(Σ). It follows that there exists a vertex v ∈ C∂A(Σ)
corresponding to v. We will use this fact throughout this section and the
proof of Theorem 4.1 without mention.

The case with annular dividing sets. We call a dividing set annular
when it has an annular associated region. Clearly, there is a bijection be-
tween the isotopy classes of annular dividing sets and isotopy classes of
non-separating curves. Suppose annular dividing sets are represented in
∂A ⊆ DS, that is, annuli are represented in A ⊂ R(Σ). It follows from [7,
Lemma 4.1] that the vertices of C∂A(Σ) that correspond to annular dividing
sets form a characteristic subset. We thus obtain an injective homomor-
phism

Aut C∂A(Σ) ↪→ AutN (Σ),

where N (Σ) is the complex of non-separating curves. From Lemma 2.1 and
[14, Theorem 1.4] we have that the composition

Mod±(Σ)
η∂A
↪−−→ Aut C∂A(Σ) ↪→ AutN (Σ)

∼=−→ Mod±(Σ)

is injective and equal to the identity map, therefore η∂A : Mod±(Σ) →
Aut C∂A(Σ) is an isomorphism. In the remainder of this section we will
assume that annular dividing sets are not represented in ∂A ⊆ DS and
prove that the homomorphism is an isomorphism in this case as well.
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4.1. Characteristic vertex types. We assume throughout this section
that no annular dividing sets are represented in ∂A. Let σ be any simplex
in the complex C∂A(Σ) consisting of vertices v1, . . . , vm. We call a collection
of pairwise nested multicurves v1, . . . ,vm a normal form representative for
σ if each vi corresponds to vi. We state the following result of Brendle-
Margalit [7, Lemma 4.3].

Lemma 4.2 (Brendle-Margalit). Let σ be a simplex of C∂A(Σ). There exists
a normal form representative of σ, unique up to isotopy.

As dividing sets are a generalization of separating curves, we may employ
similar techniques when studying their complexes. In particular, we can
define sides of vertices corresponding to dividing sets by analysing their
links as in Section 3.1. Recall, two vertices u,w ∈ Link(v) lie on the same
side of the vertex v if there exists another vertex in Link(v) that does not
span an edge with either u or w.

We say that a vertex v of C∂A(Σ) is 1-sided if every vertex of Link(v)
lies on the same side of v. We say that v is 2-sided if there are vertices of
Link(v) that lie on different sides of v. If v is an isolated vertex we call it
0-sided. Notice that every 1-sided vertex is minimal. There may, however,
be minimal vertices corresponding to multicurves that are not 1-sided.

Vertex types. For all v ∈ C∂A(Σ) corresponding to a dividing set v, we
define |v| to be the number of components of v.

(1) We say that a 1-sided vertex v is

type S1 if |v| = 1, and type M1 if |v| ≥ 2.

(2) If v is 2-sided, and every vertex on one side of v is type S1 then we
say v is

type SX if |v| = 1, and type MX if |v| ≥ 2.

(3) Finally, if v is any other 2-sided vertex we say v is

type S2 if |v| = 1, and type M2 if |v| ≥ 2.

Here, the letters ‘S’ and ‘M ’ indicate that the vertex corresponds to a sep-
arating curve or multicurve respectively.

Our goal now is to show that vertices of type S1, SX and S2 form char-
acteristic subsets of C∂A(Σ), that is, separating curves determine a charac-
teristic subset of vertices in C∂A(Σ). Recall from Section 3.1 that a linear
simplex is one with an ordering of the vertices determined by the sides of the
corresponding curves. We use the same terminology in the case of dividing
sets.

Linear simplices. A simplex σ of C∂A(Σ) is linear if there is a labeling of
its vertices v0, . . . , vm such that vi−1 and vi+1 do not lie on the same side
of vi for all i = 1, . . . ,m − 1. We call the vertices v0 and vm the extreme
vertices of the linear simplex σ. As discussed in Section 3.1 we have the
following result.
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Lemma 4.3. Let C∂A(Σ) be a complex of dividing sets and let φ be an
automorphism. If σ = {v0, . . . , vm} is a maximal linear simplex then φ(σ) =
{φ(v0), . . . , φ(vm)} is a maximal linear simplex.

We now move on to showing that these vertex types form characteristic
subsets, beginning with vertices of type S1.

Lemma 4.4. Let C∂A(Σ) be a complex of dividing sets. If every minimal
vertex of C∂A(Σ) is small then the type S1 vertices form a characteristic
subset.

Proof. It follows from the definition of a maximal linear simplex that a
vertex v is 1-sided if and only if it is an extreme vertex of some maximal
linear simplex. We will show then that a vertex is type M1 if and only if it
is 1-sided and there exist vertices u,w such that;

(1) u and w span a triangle with v, and
(2) any other 1-sided vertex spanning a triangle with u and w spans an

edge with v.

To prove one direction suppose v is typeM1, corresponding to the multicurve
v. Since v is 1-sided it is minimal, and hence small. It follows that we can
find vertices u,w corresponding to multicurves u,w such that w ⊂ v ∪ u.
Clearly the vertices u, v and w span a triangle. Now, any choice of 1-sided
vertex, other than v, that spans a triangle with u and w must correspond
to a dividing set contained in the associated region of u or w that does not
contain v. It follows then that any such vertex spans an edge with v.

Now assume that v is a vertex type S1 corresponding to v and let u and
w be vertices corresponding to dividing sets u,w satisfying the conditions
above. Let R be the region of Σ with boundary defined by v and containing
u,w. Since v does not correspond to u or w there exists an element in the
Mod±(Σ)-orbit of v that is disjoint from u and w and intersects v. This is
a contradiction, completing the proof. �

We treat the remaining cases seemingly out of order by first showing that
type S2 vertices form a characteristic subsets before dealing with type SX
vertices.

Lemma 4.5. Let C∂A(Σ) be a complex of dividing sets. If every minimal
vertex of C∂A(Σ) is small then the type S2 vertices form a characteristic
subset.

Proof. It follows from Lemmas 4.3 and 4.4 that the sets S1, M1 and S2∪M2

form characteristic subsets of C∂A(Σ). It remains only to show that we can
distinguish between type M2 vertices and type S2 vertices. We claim that a
vertex v is type M2 if and only if;

(1) there exist two vertices u and w that span a triangle with v, and
(2) there exists exactly one vertex that spans a triangle with u and w

and that fails to span an edge with v.
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v
Pw

Pu

Figure 14. The red multicurve is v. We see that we can
construct the desired pairs of pants Pu and Pw.

To prove the forward direction of the claim we assume v is type M2 and
consider three cases separately; |v| ≥ 4, |v| = 3, and |v| = 2. In each case
we will define vertices u and w that are on different sides of v. Suppose
u, v, w correspond to the multicurves u,v,w respectively. In order to define
the unique dividing set implicit in the claim we require that the (possibly
connected) subsurface bounded by u and v is a (possibly empty) collection
of annuli and a single pair of pants Pu. We define a pair of pants Pw related
to the dividing set w in the same way. Here, we go against convention
slightly by defining a pair pants to be homeomorphic to either Σ3

0,0 or Σ2
0,1.

Furthermore, we require that if a component curve of v bounds Pu (or Pw)
it must bound an annulus with w (or u). The unique vertex spanning edges
with u and w but not v corresponds to the dividing set

{u ∩w} ∪ {∂Pu \ v} ∪ {∂Pw \ v}.

An example is shown in Figure 14. It follows that in order to prove the
claim, hence the lemma, it suffices to find the required pairs of pants Pu, Pw
with respect to a multicurve v.

First we consider the case where |v| ≥ 4. The pair of pants Pu will
have either three boundary components, or two boundary components and
a single puncture. Suppose that such a Pu does not exist, then every dividing
set d nested with v will be isotopic to v. This contradicts our assumption
that v is 2-sided. Similarly, we can find a pair of pants Pw satsifying the
conditions above, see Figure 14.

Now let |v| = 3 and let Ru and Rw be the two associated regions of v
such that g(Rw) ≥ g(Ru). Suppose we can choose a dividing set u in Ru
with four components, two of which are isotopic to distinct components of
v. Since v is 2-sided we can find an appropriate choice of w contained in
Rw where either w has two components and Pw is homeomorphic to Σ3

0,0 or

w has three components and Pw is homeomorphic to Σ2
0,1. This is shown in

Figure 15 (i) and (ii), where u is the dividing set on the right and w is on the
left. Similarly, suppose we can choose u with three boundary components,
two of which belong to v and where the region Pu is homeomorphic to Σ2

0,1.
Once again, as v is 2-sided, there is an appropriate choice of w in Rw. A
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(i) (ii) (iii) (iv)

v v v v

Figure 15. The red multicurve with three components is v.
We see that we can always construct desired pairs of pants
Pu and Pw.

picture can be seen in Figure 15 (iii) and (iv), again u is on the right and
w is the dividing set on the on the left.

If neither choice of u exists it follows that there are no 1-sided vertices of
C∂A(Σ) corresponding to dividing sets in Ru with associated region of lower
genus or fewer punctures than Ru. We deduce that there is a 1-sided vertex
of C∂A(Σ) corresponding to a dividing set d such that

g(Ru) ≤ g(R̂d) ≤ g(Ru) + 1 and n(R̂d) = n(Ru),

where R̂d is the enveloping region of the dividing set d. Note that d will
have one or two components. All 1-sided vertices are minimal and so by
assumption all 1-sided vertices are small. From the definition of small, we
have that there exist two vertices corresponding to dividing sets d1,d2 such
that;

g(Rw) = g − g(Ru)− 2 ≥ g(R̂d) + g(R̂d1) + g(R̂d1) + 1− g(R̂d)− 2,

≥ g(R̂d1) + g(R̂d2)− 1, and

n(Rw) = n− n(Ru) ≥ n(R̂d) + n(R̂d1) + n(R̂d1) + 1− n(R̂d),

≥ n(R̂d1) + n(R̂d2) + 1.

Without loss of generality we can assume that g(R̂d2) ≥ g(R̂d1). From the

first inequality we have that g(Rw) ≥ g(R̂d1) if g(R̂d2) ≥ 1. However, if

g(R̂d2) < 1 then g(R̂d1) = 0 ≤ g(Rw). From the second inequality it is

clear that n(Rw) ≥ n(R̂d1) + 1. We conclude that there exists an element
f ∈ Mod±(Σ) such that f(d1) is contained in Rw. Moreover, there exists a
dividing set w in Rw separating f(d1) and v such that w has an associated
region Qw ⊂ Rw with three boundary components, where g(Qw) = g(Rw),
and n(Qw) = n(Rw)− 1, see Figure 15(iii). We may now choose u ⊂ Ru to
have two components, as depicted in the left hand side dividing set of see
Figure 15(iii). This completes the proof in the case where |v| = 3.

Now we deal with the case where |v| = 2. If both associated regions of
v contain dividing sets u and w such that Pu and Pw are homeomorphic
to Σ2

0,1 then we are done. If this is not the case then since v is of type M2

there exists a vertex in C∂A(Σ) spanning an edge with v that is either of
type SX or S2. Any such vertex is not 1-sided and so we can find a dividing
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(i) (ii)

u v w

u v w

Figure 16. (i) In each case the vertex corresponding to the
dividing set u is genus separating. As such, we can find a
curve v with an associated region of positive genus that does
not contain u. (ii) The vertex corresponding to u is of type
MX . As it is genus separating we can find a dividing set v
with three components.

set u with three components, one of which are shared by v. As before we
can therefore find the desired pairs of pants Pu and Pw.

We now assume that v is a vertex of type S2. If u and w lie on the
same side of v then up to relabeling there are infinitely many vertices in the
Mod±(Σ)-orbit of v spanning edges with u and w but not with v. Suppose
then that u and w lie on different sides of v. If the vertices u, v correspond
to the dividing sets u,v then the subsurface bounded by these curves cannot
be an annulus, as v is a separating curve. It follows that there are infinitely
many vertices in the Mod±(Σ)-orbit of v spanning edges with u and w but
not with v. This completes the proof. �

Finally we complete the proof that the vertices of C∂A(Σ) corresponding
to separating curves form characteristic subsets by distinguishing type SX
vertices and type MX vertices.

Lemma 4.6. Let C∂A(Σ) be a complex of dividing sets. If every minimal
vertex of C∂A(Σ) is small then the type SX vertices form a characteristic
subset.

Proof. From Lemmas 4.3 and 4.4 we see that the subset of type SX and MX

vertices forms a characteristic subset. Let u be either a type SX vertex or
a type MX vertex. Suppose u corresponds to a dividing set with associated
regions R and Q such that only type S1 vertices correspond to dividing
sets in R. We will call u genus separating if g(Q) ≥ 1, see Figure 16(i).
Note that if all minimal vertices are small, then all type SX vertices are
genus separating. We begin my showing that the subset of genus separating
vertices forms a characteristic subset. We claim that u is genus separating
if and only if there exists a type S2 vertex v and a type M2 vertex w such
that u and w lie on different sides of v.

To prove the claim, first assume that u is genus separating and corre-
sponds to the dividing set u. We can define a curve v such that u and v
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bound a region P homeomorphic to Σ3
0,0 or Σ2

0,1 depending on whether u is
type MX or SX respectively. Let v correspond to v. Now, since all 1-sided
vertices are minimal, and all minimal vertices are small, we have that there
exist vertices of C∂A(Σ) corresponding to dividing sets d1 and d2 contained
in Q such that

g(Q) ≥ g − g(R)− 1 ≥ g(R̂d1) + g(R̂d2), and

n(Q) ≥ n− n(R) ≥ n(R̂d1) + n(R̂d2) + 1

if u is type MX . If u is a type SX vertex then for d1 and d2 as above we
have

g(Q) ≥ g − g(R) ≥ g(R̂d1) + g(R̂d2) + 1, and

n(Q) ≥ n− n(R)− 1 ≥ n(R̂d1) + n(R̂d2).

In either case we conclude that there exists a typeM2 vertex w corresponding
to a dividing set that separates di from v, for some i ∈ {1, 2}. Thus, we
have that u and w lie on different sides of v.

Now assume that u is not genus separating and let v be a type S2 vertex
that spans an edge with u. Suppose v corresponds to a separating curve
with associated region Qv ⊂ Q. If there exists a vertex w as above then
it must correspond to a dividing set contained in Qv. This implies that
g(Q) ≥ g(Qv) ≥ 1, a contradiction.

In order to prove the lemma we will show that type MX genus separating
vertices form a characteristic subset. We claim that if u is genus separating
then u is type MX if and only if there exists a type M2 vertex v such that;

(1) the vertices u, v are sequential in a maximal linear simplex, and
(2) there is no type S2 vertex w such that u, v, w are sequential in a

maximal linear simplex.

First we let u be a vertex of type MX . Since u is genus separating we can
find a vertex that corresponds to a dividing set with three components, as
shown in Figure 16(ii). It is clear that there is no type S1, SX , or S2 vertex
w such that u, v, w are sequential in a maximal linear simplex.

If u is type SX then since it is genus separating we can find a vertex v
that corresponds to a dividing set with two components. We can then find a
vertex w corresponding to a separating curve such that u, v, w are sequential
in a maximal linear simplex. �

Combining Lemmas 4.4, 4.5, and 4.6 we have that the set of vertices of
C∂A(Σ) corresponding to separating curves forms a characteristic subset.

4.2. The case without annular dividing sets. We now prove Theorem
4.1 which states that if every minimal vertex of C∂A(Σ) is small then the
natural homomorphism

η∂A : Mod±(Σ)→ Aut C∂A(Σ)
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is an isomorphism. We will make use of Theorem 3.1 from Section 3 and
the results of Section 4.1.

Proof of Theorem 4.1. By Lemma 2.1 we have that η∂A is injective. We
want then to show that η∂A is surjective. Let φ ∈ Aut C∂A(Σ). It follows

from Lemmas 4.4, 4.5, and 4.6 that φ restricts to an automorphism φ̂ of
CS(A)(Σ). Here we think of CS(A)(Σ) as a full subcomplex of C∂A(Σ). For any
minimal vertex v ∈ C∂A(Σ) the boundary of the corresponding enveloping
region v̂ is represented in CS(A)(Σ). This implies that all minimal vertices
of CS(A)(Σ) are also minimal vertices of C∂A(Σ) and so, by assumption, they

are small. By Theorem 3.1 there exists a mapping class f ∈ Mod±(Σ) such

that ηS(A)(f) = φ̂. We need to show that η∂A(f) = φ.
It suffices to show that an automorphism of C∂A(Σ) restricting to the

identity on CS(A)(Σ) must be the identity. To do this, we show by induction
on the distance from a vertex to the subcomplex CS(A)(Σ). Since C∂A(Σ) is
connected the result follows.

By assumption, the automorphism φ restricts to the identity for all ver-
tices distance zero from CS(A)(Σ). Assume then that φ restricts to the iden-
tity for all vertices of C∂A(Σ) distance k from CS(A)(Σ). We deal with the
inductive step separately for 1-sided vertices and 2-sided vertices.

Let v be a 1-sided vertex of C∂A(Σ) that is distance k + 1 from a vertex
of CS(A)(Σ). Let u be a vertex of C∂A(Σ) spanning an edge with v and
distance k from a vertex of CS(A)(Σ). Let u, v correspond to u,v. There

exist elements of the Mod±(Σ)-orbit of u that fill the associated region of v
containing u. The vertex v is 1-sided, hence is the unique vertex whose link
contains vertices corresponding to all such dividing sets. It follows that φ
must also fix v.

Assume now that v is a 2-sided vertex that is distance k+1 from CS(A)(Σ).
Let u be a vertex of C∂A(Σ) adjacent to v that is distance k from CS(A)(Σ).
Let w be a 1-sided vertex of C∂A(Σ) that is not on the same side of v as
u. It follows that w is at most distance k + 1 from CS(A)(Σ). If u, v, w
correspond to u,v,w then using similar methods to the previous step we
can show that the orbits of u and w fill the associated regions of v. As all
distance k vertices, and all 1-sided, distance k + 1 vertices are are fixed by
φ we conclude that v is also fixed by φ, completing the proof. �

5. Complexes of regions

In this section we will complete the resolution of the metaconjecture in the
case of surfaces with punctures, that is we prove Theorem 2. A key step to
this result is invoking Theorem 4.1 which we proved in the previous section.
We relate the complex of dividing sets C∂A(Σ) and the complex of regions
CA(Σ). This is achieved by observing a bijection between the vertices of the
complex C∂A(Σ) and particular joins in the complex CA(Σ). This allows us
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to construct an injective homomorphism

∂ : Aut CA(Σ)→ Aut C∂A(Σ).

We then consider the injective homomorphism η−1
∂A ◦ ∂ ◦ ηA, where η∂A is

the isomorphism from Theorem 4.1, and show that it is the identity on
Mod±(Σ).

5.1. Types of join. First we define a map

Φ :
{

vertices of C∂A(Σ)
}
→
{

subcomplexes of CA(Σ)
}
.

Given a vertex v of C∂A(Σ) corresponding to a dividing set v, define Φ(v)
to be the full subcomplex of CA(Σ) spanned by the vertices that correspond
to regions contained in the associated regions of the dividing set v.

Recall that a subcomplex X ⊂ CA(Σ) is a join if X is spanned by disjoint
subsets of vertices V1, . . . , Vm, such that every vertex in Vi spans an edge
with every vertex in Vj for all i 6= j. Assuming the subcomplex spanned by
the vertices in Vi is not itself a join for each i, we say that X has m join
components. If a join component consists of a solitary vertex we call it a
singular component, and a non-singular component otherwise. We say that
a join X is k-sided if X has exactly k non-singular components. Note that
each join component corresponds to a subsurface of Σ, that is, the union of
all the regions represented in the join component.

In the following three lemmas we show that the set of subcomplexes in the
image of Φ is characteristic in CA(Σ). Roughly, as the naming convention
suggests, we show that k-sided vertices of C∂A(Σ) map to k-sided joins in
CA(Σ). While not strictly true, it is only in a distinct minority of cases
where this intuition fails. We split the vertices of C∂A(Σ) into three types;
strong 2-sided vertices, weak 2-sided vertices, and finally all 1-sided vertices.

Strong 2-sided vertices. Recall from Section 4.1 that a vertex v of C∂A(Σ)
is 2-sided if there are vertices of Link(v) that lie on different sides. We call a
2-sided vertex of C∂A(Σ) strong if there are infinitely many vertices on each
of its sides, otherwise we call it weak.

Note that all 2-sided vertices are strong, unless one of the associated
regions is homeomorphic to either Σ3

0 or Σ2
0,1, and annular dividing sets are

represented in ∂A. Furthermore, annular dividing sets are represented in
∂A if and only if non-separating annuli are represented in A.

We begin by characterizing the image of all strong 2-sided vertices of
C∂A(Σ) under the map Φ. To that end, we say that a 2-sided join X in
CA(Σ) is maximal if there is no vertex z in CA(Σ) \ X such that X ∪ {z}
spans a 2-sided join.

Lemma 5.1. The restricted map

Φ :
{

strong 2-sided vertices of C∂A(Σ)
}
→
{

maximal 2-sided joins of CA(Σ)
}

is a bijection.
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Proof. We must first show that this map makes sense, that is, for any strong
2-sided vertex v ∈ C∂A(Σ) the subcomplex Φ(v) is a maximal 2-sided join in
CA(Σ). Let v correspond to the dividing set v and suppose L and R are the
two associated regions of v. We write VL for the subcomplex spanned by
vertices corresponding to non-peripheral regions of L. We define VM to be
the subcomplex spanned by peripheral regions of L (and R) and define VR
analogously to VL. Now, every vertex in Φ(v) is contained in either VL, VM ,
or VR. Furthermore every vertex of VL spans an edge with every vertex of
VM and VR. The same is true for VM and VR and so Φ(v) = VL ∗VM ∗VR, a
join. By definition of a strong 2-sided vertex, L and R are filled by regions
represented in A. It follows that VL and VR are non-singular join components
of Φ(v). Furthermore, it is clear that each vertex of VM spans an edge with
every other vertex of VM , and so Φ(v) is a 2-sided join with |VM | singular
components.

Suppose Φ(v) is not a maximal 2-sided join. Then there exists a vertex z
not in Φ(v) such that Φ(v) ∪ {z} spans a 2-sided join. Every vertex that is
not in Φ(v) corresponds to a region that intersects both L and R. It follows
that the subcomplex spanned by VL, VR, and the vertex z is not a join. This
implies that the subcomplex spanned by Φ(v) ∪ {z} is not 2-sided, which is
a contradiction. It follows that Φ(v) is indeed maximal.

It remains to show that all maximal 2-sided joins of CA(Σ) are of this form.
Let X = V1 ∗ V2 ∗ · · · ∗ Vm be a such a join, where V1 and V2 are the two
non-singular components. Each Vi corresponds to a subsurface Ri of Σ, that
is, the vertices in Vi correspond to regions that fill Ri. Now, both R1 and
R2 are non-separating and the complement of {Ri}mi=1 must be a collection
of annuli, as otherwise X is not maximal. Now, for i > 2 each component Vi
is a single vertex. If this vertex does not correspond to an annulus then we
can find a region represented in A that intersects Ri and either R1 or R2.
The subcomplex spanned by X and a vertex corresponding to this region
is a 2-sided join and so X is not maximal, a contradiction. Similarly, it
must be that each annulus Ri, for i > 2, has boundary components that
are isotopic to boundary components of R1 and R2. It follows that R1 has
boundary components that are isotopic to a 2-sided dividing set v in ∂A and
that Φ(v) = X. �

Weak 2-sided vertices. We now move on to the weak 2-sided vertices of
C∂A(Σ). Recall that these only occur when one of the associated regions
is a pair of pants or a punctured annulus, and non-separating annuli are
represented in A.

Suppose X is a 1-sided join with more than two join components, that
is, one non-singular component and at least two singular components. Let
u,w ∈ X be two such singular components. We say that X is a filling join
if there are no vertices x, y ∈ CA(Σ) such that {u,w, x, y} spans a square.
We call a filling join X maximal if there exist no vertex z in CA(Σ) \X such
that X ∪ {z} spans a filling join or a 2-sided join.
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(i) (ii)

Qu

Qx

Qw

Figure 17. (i) Any region that essentially intersects Qw
must intersect either Qu or Qx. (ii) The vertices correspond-
ing to the regions shown span a square in a complex of re-
gions.

Lemma 5.2. If the complex CA(Σ) has no corks then the restricted map

Φ :
{

weak 2-sided vertices of C∂A(Σ)
}
→
{

maximal filling joins of CA(Σ)
}

is a bijection.

Proof. Let v be a weak 2-sided vertex of C∂A(Σ) corresponding to the di-
viding set v. Let L be the associated region of v homeomorphic to either
Σ3

0 or Σ2
0,1 and let R be the other associated region of v. Let VR be the sub-

complex spanned by vertices corresponding to regions contained in R. As in
the proof of Lemma 5.1, let VM be the subcomplex spanned by the vertices
corresponding to annuli with boundary components isotopic to boundary
components of R. Finally, define VL to be the subcomplex consisting of all
vertices corresponding to regions in L. Note that VL has at most one vertex.
It follows then that Φ(v) is equal to the join VL ∗ VM ∗ VR and that each
vertex in VM spans an edge with all other vertices in Φ(v). Furthermore,
VR contains infinitely many vertices and is not a join, so Φ(v) is a 1-sided
join in CA(Σ). Now, let u and w be any two distinct vertices of VL ∪ VM
corresponding to regions Qu, Qw ⊆ L. If Qu is homotopic to L then there
is no vertex z that spans an edge with u and not w. If Qu and Qw are
annuli and a region Qx intersects Qu and not Qw, then every region Qy that
interscts Qw must also intersect either Qu or Qx, see Figure 17(i). It follows
that there are no vertices x, y that span a square with u,w, hence Φ(v) is a
filling join of CA(Σ).

Suppose now that Φ(v) is not maximal. Then there exists a vertex z
not in Φ(v) that spans a filling join or a 2-sided join with Φ(v). However,
every vertex that is not in Φ(v) also fails to span an edge with one of the
vertices in VM . If L ∼= Σ2

0,1 then it follows that if X := Φ(v) ∪ {z} spans
a join, it must span a 1-sided join with a sole singular join component.
In particular X is neither a filling join nor a 2-sided join, hence Φ(v) is
maximal. Suppose then that L ∼= Σ3

0. As above, we see that X cannot be
2-sided and so we assume that X is a filling join. By definition, X must have
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two singular join components u,w ∈ CA(Σ) corresponding to non-separating
annuli. Furthermore, the complement of two such annuli in Σ is a single
connected region. We can therefore find vertices x, y ∈ CA(Σ) corresponding
to annuli that span a square with u and w, see Figure 17(ii). It follows that
X is not a filling join, hence Φ(v) is maximal.

It remains to show that all maximal filling joins in CA(Σ) are induced by
weak 2-sided vertices of C∂A(Σ). Let X = V ∗ v1 ∗ · · · ∗ vm be such a join
where V is the sole non-singular join component, and each vi is a vertex in
CA(Σ). Suppose the subcomplex V is spanned by regions in the subsurface
R. Since X is 1-sided, R is connected. Furthermore, since X is maximal, R is
non-separating. Suppose both v1 and v2 do not correspond to annuli. There
exists a region represented in A that is disjoint from R and intersects both of
these non-annular regions. It follows that there exists a vertex z ∈ CA(Σ)\X
that spans a 2-sided join with X, which is a contradiction. Thus, we have
shown that at most one singular component of X corresponds to a region
other than an annulus. If v1 corresponds to annulus that is not peripheral
in R then the Mod±(Σ)-orbit of this annulus fills the complementary region
of R. As above, this contradicts the maximality of X.

Suppose now that there are at least four singular components of X
corresponding to annuli. Any region with four boundary components con-
tains a non-peripheral annulus. Since R is non-separating, it has a unique
complementary region L with at least four boundary components. Any such
region is filled by non-separating annuli hence X is not maximal. We have
therefore proven that there are at most three singular vertices of X that
correspond to annuli. Similar to the above argument, if L has three bound-
ary components and contains a puncture then it is filled by non-separating
annuli, hence X is not maximal. If Q has two boundary components it must
contain a puncture, otherwise X would only have one singular join com-
ponent (corresponding to the annulus). If L has one boundary component
then CA(Σ) contains corks. It follows that Q is either a pair of pants or a
punctured annulus, completing the proof. �

All 1-sided vertices. Finally, we deal with the 1-sided vertices of C∂A(Σ).
If a 1-sided join X has two join components, that is, one singular component
and one non-singular component, we call it perfect. A perfect join X is
maximal if there exist no vertices z in CA(Σ) \X such that X ∪ {z} spans
a join.

Lemma 5.3. If the complex CA(Σ) has no holes and no corks then the
restricted map

Φ :
{

1-sided vertices of C∂A(Σ)
}
→
{

maximal perfect joins of CA(Σ)
}

is a bijection.

Proof. We begin by showing that Φ(v) is a maximal perfect join if v is a
1-sided vertex corresponding to the dividing set v. Let L and R be the two
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associated regions of v such that L does not contain any non-homotopic
dividing sets. By the definition of ∂A, this implies that if Q is a region in
L that is represented in A then v ⊆ ∂Q. Since the complex CA(Σ) does not
contain any holes, it must be that v = ∂Q. This implies that either Q and
L are homotopic, or Q is peripheral in L. If Q is peripheral then it may also
be homotopic to L, if it is a non-separating annulus. Otherwise, L is not
represented in A, as CA(Σ) has no corks. In any of these cases we have that
Q is the sole region contained in L that is represented in A and so Φ(v) is
a perfect join. To see that it is maximal we note that any vertex z not in
Φ(v) cannot span an edge with the singular component of Φ(v), hence Φ(v)
and z do not span a join.

It remains to show that every maximal perfect join X = V ∗ u is of this
form. Let V correspond to the region R. Since X is a maximal perfect join,
R must be a connected non-separating subsurface. Let L be the comple-
mentary region of R. Suppose C∂A(Σ) contains a vertex that corresponds to
a dividing set in L that is not homotopic the boundary of L. In this case
L must contain more than one region represented in A. It follows that we
can find a vertex of CA(Σ) that is not in X yet spans a join with X. This
contradicts the maximality of X. It follows that the only vertices of C∂A(Σ)
that correspond to dividing sets in L are those which are homotopic to its
boundary, that is, X is the image of a 1-sided dividing set. �

5.2. Completing the proof. As a consequence of Lemmas 5.1, 5.2, and
5.3 we have that an automorphism of CA(Σ) induces an automorphism on the
vertices of C∂A(Σ). We will now show that this automorphism extends to an
automorphism of the entire complex. To that end, we say that a subcomplex
V of CA(Σ) is compatible with a subcomplex W if V = V1∗V2 where V1 is not
empty and V1 ⊆W [7, Section 5]. We can now state the following results of
Brendle-Margalit. These facts are vital in proving Theorem 2.

Lemma 5.4 (Brendle-Margalit). Let u and v be vertices of the connected
complex of dividing sets C∂A(Σ). Then u and v span an edge if and only if
Φ(u) is compatible with Φ(v).

In other words, vertices u and v correspond to nested dividing sets if and
only if their images in Φ are compatible.

Lemma 5.5 (Brendle-Margalit). Let CA(Σ) be a connected complex of re-
gions with no holes and no corks.

(1) Let R be represented in A; then there is a vertex in C∂A(Σ) that
corresponds to a subset of ∂R.

(2) The complex C∂A(Σ) is connected.

Before completing the proof of the main theorem of this chapter we note
that there is a partial order on vertices of CA(Σ). We say that u � v if
the link of v is contained in the link of u. A vertex is link-minimal when
it is minimal with respect to this ordering. If a vertex v is a singular join
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component of a perfect join in CA(Σ) then we say that it is a 1-sided vertex
of the complex. Finally, if a vertex v corresponds to an annulus then we call
v an annular vertex.

Proof of Theorem 2. Let CA(Σ) be a connected complex of regions such
that all minimal vertices are small. Suppose that CA(Σ) contains no holes
and no corks. We would like to show that

ηA : Mod±(Σ)→ Aut CA(Σ)

is an isomorphism. It follows from Lemma 2.1 that ηA is injective. It remains
to show that it is surjective. Combining all the results of Section 5 we have
that there is a well-defined homomorphism

∂ : Aut CA(Σ)→ Aut C∂A(Σ)

where for any v ∈ C∂A(Σ) we define ∂(φ)(v) by Φ−1 ◦φ◦Φ(v). We will show
that the homomorphism ∂ is injective.

Suppose ∂(φ) is the identity for some φ ∈ Aut CA(Σ). Let v be a 1-
sided, annular vertex of CA(Σ) corresponding to an annulus with boundary
components isotopic to the curve v. We would like to show that φ(v) = v.
Let the regions R and Q be the associated regions of v. We want to find
a vertex of C∂A(Σ) corresponding to a curve which is not isotopic to the
curve v. Since CA(Σ) is connected, up to renaming regions, it contains a
vertex w corresponding to a subsurface of Q that is not homotopic to R. If
w corresponds to an annulus then the desired vertex of C∂A(Σ) corresponds
to the isotopy class of the boundary components of the annulus. If w does
not correspond to an annulus then from Lemma 5.5 we can find the desired
vertex. We do not consider the case where w corresponds to the region Q
itself as CA(Σ) does not contain corks.

Having found a vertex in C∂A(Σ) that corresponds to a non-peripheral
curve in Q we deduce that there exist vertices of C∂A(Σ) corresponding to
curves that fill Q. Each of these vertices is fixed by ∂(φ) by assumption
and so it follows that φ(v) corresponds to a region disjoint from Q. Since
v is a 1-sided vertex and CA(Σ) has no holes we have that φ(v) = v. It
can be shown using a similar argument that if v is a 1-sided, non-annular,
link-minimal vertex of CA(Σ) then we can deduce that φ(v) = v.

Now assume that v is any other vertex of CA(Σ). Let Q be a complemen-
tary region of a region Rv, such that v corresponds to Rv. Since v is not
a 1-sided, annular vertex and CA(Σ) does not contain holes, we have that
there exist vertices that span edges with v and that correspond to regions
contained in Q. We will label the set of all such vertices Q.

Suppose vertices u,w ∈ Q correspond to regions Ru, Rw ⊂ Q. Define R̃u
to be a non-separating subsurface of Q containing Ru such that for any other

subsurface R with Ru ⊂ R ⊂ R̃u we have that R and R̃u are homotopic.

Define R̃w analogously. Writing u ≤ w if R̃u ⊆ R̃w up to homotopy, we
see ≤ is a partial order on the vertices of Q. We claim that a ≤-minimal
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vertex of Q is either a 1-sided, annular vertex or it is a 1-sided, non-annular,
link-minimal vertex.

We prove the claim in three steps. First we assume that u ∈ Q is a
2-sided, non-annular vertex. Let P be a complementary region of Ru that
does not contain the boundary of Q. There are no holes in CA(Σ), so there
must exist a vertex w of CA(Σ) corresponding to a subsurface of P . This
implies that w < u.

In the second case we assume that u is a 1-sided, non-annular vertex that
is not link-minimal. Since u is non-annular, and there are no holes in CA(Σ),
the region Ru must be non-separating. However u is not link-minimal, so
there must be a vertex w such that Rw ⊂ Ru, hence w < u.

Finally we suppose that u is a 2-sided, annular vertex. Denote by P the
complementary region of Ru that does not contain the boundary of Q. Since
CA(Σ) has no corks, there must be a vertex w of CA(Σ) represented by a
proper subsurface of P . Once again, since CA(Σ) has neither holes nor corks,
it must be that there exists a vertex w < u.

We have therefore characterised all ≤-minimal vertices. We now have
that one of the following conditions hold;

(1) there exist 1-sided, annular vertices and 1-sided, non-annular, link-
minimal vertices in Q corresponding to regions that fill the region
Q,

(2) there exists a 1-sided annular vertex of CA(Σ) corresponding to the
boundary of Q and no vertices of CA(Σ) correspond to non-peripheral
subsurfaces of Q, or

(3) the region Q is homeomorphic to Σ2
0, Σ2

0,1, or Σ3
0 and Q contains

1-sided, annular vertices corresponding to non-separating annuli.

Indeed, if there exists a ≤-minimal vertex of Q corresponding to a non-
peripheral region in Q then by the above claim we must be in the first
case. If however, all ≤-minimal vertices of Q are peripheral then the bound-
ary of Q may be connected or it may not. If it is connected then since
there are no corks, the region Q is not represented in A and we are in
the second case. If the boundary of Q is not connected then each of its
boundary components must be nonseparating curves and hence nonseparat-
ing annuli are represented in A. If Q is homeomorphic to anything other
than an annulus, a punctured annulus, or a pair of paints then we can find
nonseparating annuli in that fill Q. This contradicts our assumption that
all ≤-minimal vertices are peripheral, so we must be in the third case.

Given a vertex v, let V be the set of all the 1-sided, annular vertices and
1-sided, non-annular, link-minimal vertices in the link of v. We may now
conclude that v is the unique vertex of CA(Σ) such that Link(v) contains
V. Since we have shown that such vertices are fixed by φ it follows that
φ(v) = v. We have succeeded in proving that ∂ is injective.

If every minimal vertex of CA(Σ) is small then it follows that every min-
imal vertex of C∂A(Σ) is small. From Lemma 5.5 the complex C∂A(Σ) is
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connected and by Theorem 4.1 the natural homomorphism η∂A is an iso-
morphism. The diagram

Mod±(Σ) Aut CA(Σ)

Aut C∂A(Σ)

ηA

∼=
η∂A ∂

is commutative from the definition of ∂. Finally we may conclude that both
ηA and ∂ are isomorphisms, completing the proof. �

6. Geometric normal subgroups

In this section we will prove Theorem 1 which states that many normal
subgroups of Mod±(Σ) are geometric. We do this by defining a complex of
regions related to a normal subgroup N and an application of Theorem 2.
We begin with some definitions regarding commutativity of certain mapping
classes. Let R be region of Σ. Recall that a partial pseudo-Anosov element
of Mod±(Σ) is the image of a pseudo-Anosov element of Mod±(R) under
the map Mod±(R)→ Mod±(Σ) induced by the inclusion of R in the surface
Σ.

Pure mapping classes. Using the terminology of Ivanov [16] we call a
mapping class f pure if it can be written as a product f1 . . . fk where;

(1) each fi is a partial pseudo-Anosov element or a power of a Dehn
twist, and

(2) if i 6= j then fi and fj have supports which are represented by
disjoint, non-homotopic regions.

The fi are called the components of f . We note that the pure elements of
Mod±(Σ) are also elements of Mod(Σ).

We call a subgroup of Mod±(Σ) pure if each of its elements is pure. The
support of a pure subgroup is well-defined and is invariant under passing to
finite index subgroups.

Basic subgroups. Let N be a pure normal subgroup of Mod±(Σ) and G a
finite index subgroup of N . There exists a strict partial order on subgroups
of G as follows:

H ≺ H ′ if CG(H ′) ( CG(H).

This means that ‘≺’ is a transitive binary relation, but no subgroup is related
to itself. We say a subgroup of G is a basic subgroup if among all non-
abelian subgroups of G it is minimal with respect to the strict partial order.
Crucially, we will make use of the fact that if B is a basic subgroup with
support R, then the centralizer of B is supported in the complement of R
[7, Section 6.2].

Recall from Section 1.1 that for any f ∈ Mod±(Σ) we write Rf for a
proper single-boundary subsurface such that f is supported in Rf and f
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is not supported in any single-boundary proper subsurface of Rf . As a
convention we say that Rf is not defined if f is the identity. Furthermore,
f ∈ N is of minimal support if for all elements h ∈ N such that Rh ⊂ Rf
we have that Rh and Rf are homeomorphic. We state the following result
of Brendle-Margalit [7, Lemma 6.4]. While stated in their paper only for
closed surfaces, the proof translates to punctured surfaces.

Lemma 6.1 (Brendle-Margalit). Let N be a pure normal subgroup of
Mod±(Σ) that contains an element f of minimal support and let G be a
finite index subgroup of N .

(1) The support of a basic subgroup of G is a non-annular region of Σ.
(2) If B is a basic subgroup of N then B ∩ G is a basic subgroup of G;

similarly, any basic subgroup of G is a basic subgroup of N .
(3) N contains a basic subgroup whose support is a subsurface of Rf .
(4) Mod±(Σ) acts on the set of supports of basic subgroups of G.

6.1. A complex of regions. It follows from Lemma 6.1 that we may define

a complex of regions C]N (Σ) whose vertices correspond to the supports of

basic subgroups of N . In particular, from Lemma 6.1(1) we have that C]N (Σ)
has no corks. If we assume that every element of N with minimal support

is also of small support, then by Lemma 6.1(3) the complex C]N (Σ) contains
minimal vertices that are small. Indeed, every minimal vertex of CN (Σ) must
be small, as otherwise there exists an element of N with minimal support
that is not of small support. This complex may be disconnected and it may
contain holes.

Suppose v ∈ C]N (Σ) is a hole. If v corresponds to R then there are

components Q1, . . . , Qk of Σ \R such that no vertices of C]N (Σ) correspond
to regions in any Qi. Define the filling of v to be the region R∪Q1∪· · ·∪Qk.
We now define C[N (Σ) to be the complex of regions obtained by replacing

the holes in C]N (Σ) with vertices corresponding to their fillings.

Brendle-Margalit show that the complex C[N (Σ) has no holes, no corks,
and that every minimal vertex is small [7, Lemma 2.4]. Furthermore, they

show that the small vertices of C[N (Σ) lie in the same connected component
of the complex [7, Lemma 6.5]. We define this connected component to be

the complex of regions CN (Σ). It is easy to check that since C[N (Σ) has no
holes and no corks the complex CN (Σ) has no holes and no corks. We have
therefore proven the following result.

Proposition 6.2. Let N be a pure normal subgroup of Mod±(Σ) such that
every element of minimal support is also of small support. Then the natural
homomorphism

Mod±(Σ)→ Aut CN (Σ)

is an isomorphism.
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6.2. Completing the proof. We can now move on to proving Theorem
1. The next proposition is the key step and mirrors the argument of Ivanov
discussed Section 1.2

Proposition 6.3 (Brendle-Margalit). Let N be a pure normal subgroup
of Mod±(Σ) such that every element of minimal support is also of small
support. There exists a natural injective homomorphism

Φ : CommN → Aut CN (Σ).

Proof. We first define the homomorphism. For any basic subgroup B of
N we write vB for the vertex of CN (Σ) corresponding to the support of B.
Suppose α : G1 → G2 is an isomorphism between finite index subgroups of
N . We define α? := Φ([α]) by

α?(vB) = vα(B∩G1).

We must first show that there is a vertex of CN (Σ) that can be expressed
as vα(B∩G1), that is, we must show that α(B ∩ G1) is a basic subgroup of
N . This is indeed the case, as by Lemma 6.1(2) the group B ∩G1 is a basic
subgroup of G1 and since α is an isomorphism we have that α(B ∩G1) is a
basic subgroup of G2. Once again, Lemma 6.1(2) tells us that α(B ∩G1) is
a basic subgroup of N , so vα(B∩G1) is a vertex of CN (Σ).

We will now show that α? is a well defined automorphism of the vertices
of CN (Σ). In particular we must show that α? = β? whenever [α] = [β].
Suppose then that H1 and H2 are finite index subgroups of N and β : H1 →
H2 is an isomorphism such that [α] = [β] as above. We would like to show
that

vα(B∩G1) = vβ(B∩H1).

The isomorphisms α and β agree on some finite index subgroup of N . We
may therefore assume that H1 is a finite index subgroup of G1 such that
α(B ∩H1) = β(B ∩H1). Since B ∩H1 has finite index in B ∩ G1 it must
be that β(B ∩ H1) = α(B ∩ H1) has finite index in α(B ∩ G1). It follows
that the supports of α(B∩G1) and β(B∩H1) are equal, and so the vertices
vα(B∩G1) and vβ(B∩H1) are equal.

It is possible for one vertex of CN (Σ) to correspond to the support of two
basic subgroups. We must also deal with this issue. To that end, assume
that B′ is a basic subgroup of N such that vB = vB′ . We would now like to
show that

vα(B∩G1) = vα(B′∩G1).

As mentioned above, the centralizer of a basic subgroup with support R is
supported in the complement of R. As the support of a basic subgroup is
invariant under passing to finite index subgroups, the centralizers of B ∩G1

and B′ ∩ G1 are equal. It follows that the centralizers of α(B ∩ G1) and
α(B′∩G1) are also equal. This is enough to show that vα(B∩G1) = vα(B′∩G1),
see [7, Lemma 6.2].
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In order to prove that Φ is a homomorphism it remains only to show
that α? preserves the edges of CN (Σ). We claim that two vertices vB and
vB′ span an edge if and only if B and B′ commute. Now, the subgroups B
and B′ commute if and only if B ∩ G1 and B′ ∩ G1 commute. This occurs
precisely when the subgroups α(B ∩ G1) and α(B′ ∩ G1) commute. This
implies that α(B′ ∩ G1) is a subset of the centralizer of α(B ∩ G1). This
is enough to show that the vertices vα(B∩G1) and vα(B′∩G1) spans an edge.
This completes the proof that α? is a well defined automorphism of CN (Σ),
hence Φ is a well defined homomorphism.

Finally we wish to show that Φ is injective. Assume then that α? is the
identity. We will show that [α] is the identity and in particular that α is
the identity. For any f ∈ G1 we would like to show that α(f) = f . We
will write f? := ηA(f) and α(f)? := ηA(α(f)), where ηA is the isomorphism
from Theorem 2. It is enough therefore to show that f? = α(f)?. As above
we may assume that B is contained in G1. Furthermore, it is true that
f?(vB) = vfBf−1 , see [7, Lemma 6.7(4)]. We have

f?(vB) = vfBf−1 = α?(vfBf−1) = vα(fBf−1) = vα(f)α(B)α(f)−1

= α(f)?(vα(B)) = α(f)?α?(vB) = α(f)?(vB).

We have therefore shown that α(f)? = f? and so α(f) = f . It follows that
the homomorphsim Φ is injective. �

We can now complete the proof of the main theorem of the paper. Before
giving the proof we note that if G is a group and H is a finite index subgroup
then CommG ∼= CommG ∩ H. Indeed, any isomorphism of finite index
subgroups of G restricts to an isomorphism of finite index subgroups of
G ∩H and any finite index subgroup of G ∩H is also finite index in G.

Proof of Theorem 1. Let N be a normal subgroup of Mod±(Σ). It can
be shown that the natural homomorphisms

Mod±(Σ)→ AutN → CommN

are injective, for example see Brendle-Margalit [7, Proof of Theorem 1.1].
Let P be a pure normal subgroup of finite index in Mod±(Σ). The fact that
such a subgroup exists is shown by Ivanov [16]. Suppose every element of
minimal support in N is also of small support, then by Propositions 6.2 and
6.3 we have the following commutative diagram:

Mod±(Σ) Aut CN∩P (Σ)

AutN CommN CommN ∩ P

∼=

∼=

Φ

This is enough to show that Φ is an isomorphism. It follows that all homo-
morphisms in the diagram are isomorphisms, completing the proof. �
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6.3. Application to the Johnson filtration. Finally we apply Theorem
1 to the Johnson filtration which was introduced in Section 1.1. Given
two curves a,b with algebraic intersection two, there exists a product of
Dehn twists Ta, Tb that belongs to Jk(Σ) for any k, as argued by Farb [11,
Theorem 5.10]. It follows that for any k, if f ∈ Jk(Σ) is an element of
minimal support then Rf is homeomorphic to Σ1

2,0, Σ1
1,1, or Σ1

0,3.
Suppose that Σ = Σg,n where g ≥ 5 and n > 0 and let f be an element

of minimal support in Jk(Σ). We first consider the case where Rf ∼= Σ1
2,0.

Now, f is of small support if there exist elements h1, h2 ∈ Jk(Σ) satisfying
the inequalities (1) and (2). If n ≥ 3 we may choose h1, h2 such that
Rh1
∼= Rh2

∼= Σ1
1,1. Hence, the hypotheses of Theorem 1 will be satisfied if

g ≥ 5 = 2 + 1 + 1 + 1 = g(Rf ) + g(Rh1) + g(Rh1) + 1, and

n ≥ 3 = 0 + 1 + 1 + 1 = n(Rf ) + n(Rh1) + n(Rh1) + 1.

Next, we consider the case where Rf ∼= Σ1
1,1. Here, if n ≥ 3 we may choose

h1, h2 ∈ Jk(Σ) such that Rh1
∼= Σ1

2,0 and Rh2
∼= Σ1

1,1. It follows that the
same hypotheses will be satisfied if

g ≥ 5 = 1 + 2 + 1 + 1 = g(Rf ) + g(Rh1) + g(Rh2) + 1, and

n ≥ 3 = 1 + 0 + 1 + 1 = n(Rf ) + n(Rh1) + n(Rh2) + 1.

Finally, if f is such that Rf ∼= Σ1
0,3 and n ≥ 5 we choose h1, h2 such that

Rh1
∼= Σ1

2,0 and Rh2
∼= Σ1

1,1 and so we satisfy the hypotheses of Theorem 1
if

g ≥ 5 ≥ 0 + 2 + 1 + 1 = g(Rf ) + g(Rh1) + g(Rh2) + 1, and

n ≥ 5 = 3 + 0 + 1 + 1 = n(Rf ) + n(Rh1) + n(Rh2) + 1.

Applying Theorem 1 we have that Jk(Σ) is geometric, that is, we arrive at
Corollary 1.1.
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