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Test elements in solvable
Baumslag-Solitar groups

John C. O’Neill

Abstract. In this paper, normal forms are established for group el-
ements in the solvable Baumslag-Solitar groups to classify all test ele-
ments in these groups. These normal forms are used to identify two gen-
eral types of endomorphisms and automorphisms are identified through
these types. Test elements are then identified as elements whose to-
tal exponents on one of the generators is zero. Finally, we show that
Turner’s Retract Theorem does not hold for these groups by giving a
specific counterexample.
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1. Introduction

An element g of a group G is called a test element if it has the property
that for every endomorphism ϕ : G→ G, ϕ(g) = g implies ϕ is an automor-
phism. Test elements were introduced by Shpilrain in 1995 [9] and classified
by Turner for free groups in 1996, using his Retract Theorem for free groups
[11]. In this paper, the statement was a corollary to a theorem about the
stable image of endomorphisms of free groups. The result was more directly
restated in [5] as follows:

Theorem. A word w in a free group F is a test word if and only if w is
not in any proper retract.
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Many of the works that have followed prove this theorem for test ele-
ments in different classes of groups. Test elements were classified in the
free product of finite cyclic groups by Voce [12] who found similarly that
group elements were test elements when they lay outside proper retracts.
O’Neill and Turner proved that test elements for torsion-free stably hyper-
bolic groups were precisely those elements that lie outside proper retracts
and showed that almost all surface groups have test elements [5]. The same
authors described a method for finding test elements in the commutator
subgroup of a direct product of groups with cyclic centralizers [6] and that
work was developed further by Pan, Ma and Luo [7]. Test elements in finitely
generated abelian groups were explored by Rocca and Turner [8].

More recently, Groves proved Turner’s Retract Theorem more generally
for all torsion-free hyperbolic groups [4], improving on the result by O’Neill
and Turner. Snopce and Tanushevski proved that Turner’s Retract Theorem
held for finitely generated profinite groups [10] and the term ’Turner group’,
which is used to describe groups in which test elements are precisely those
group elements that lie outside proper retracts, was established circa 2013
[3]. In short, Turner groups are groups for which Turner’s Retract Theorem
holds true.

The solvable Baumslag-Solitar Groups are a class of two-generator, one-
relator groups which can be presented BS1,n = 〈a, t|tat−1 = an〉 as in Farb
and Mosher [2]. When n = 1, the group is the fundamental group of the
Klein Bottle, which is well understood, so the remainder of the paper will be
centered on classifying test elements in the solvable Baumslag-Solitar groups
for which n ≥ 2.

Using the single relator, one can see five useful relationships in establishing
a normal form for group elements. The first pair, ta = ant and ta−1 = a−nt
demonstrate that t may be moved to the right of a power of the generator a
at the expense of multiplying that power of a by n. More generally, if k > 0

then tk · am = am·nk · tk. Thus a positive power of t may be moved to the
right of any power of a at the expense of multiplying the exponent of a by a
power of n. The second pair, at−1 = t−1an and a−1t−1 = t−1a−n, similarly
demonstrate that a negative power of the generator t may be moved to the
left of a power of the generator a at the expense of multiplying the exponent
of a by a power of n. This suggests that any group element g ∈ BS1,n
can be represented g = t−kaxtm for k,m ≥ 0. The fifth useful relationship
t−1ant = a implies that if x is a multiple of n that x may be reduced when
both k and m are positive to arrive at the normal form g = t−kaltm for
integers k, l and m with k,m ≥ 0, where if l is a multiple of n then k or m
is zero.

We note that for any representation of g ∈ BS1,n that the total exponent

in t, denoted |g|t =
∣∣t−kaltm∣∣

t
= m− k is a well-defined integer even though

the total exponent in a is not. This fact is extremely useful when trying
to understand the class of groups and the action of endomorphisms on it.
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Furthermore, the following equation also holds for this class of groups, and
its justification is left to the reader:

(aqt)s = aq(1+n+···+ns−1)ts, s > 0 (1.1)

This result and its inverse representation may be used many times in reduc-
ing the image of general group elements under endomorphism throughout
the remainder of the paper.

The author would like to especially thank a former student, Tom McCaleb,
for pointing out several typographical errors in the initial writeup of this
work and to Ted Turner, for asking the initial question years ago. He would
also like to thank the referee for pointing out several errors and suggested
changes which have improved the flow of the paper.

2. Endomorphisms and retractions of solvable
Baumslag-Solitar groups

In this section, two types of endomorphisms of ϕ : BS1,n → BS1,n are
classified based on the images of generators. The first type are shown to
be monomorphisms and the second type is shown to contain the subclass of
proper retracts.

Proposition 2.1. Let ϕ : BS1,n → BS1,n be an endomorphism. Then it
has one of two types defined by its action on the generators:
Type 1: ϕ(a) = t−kaltk; ϕ(t) = t−paqtp+1 for k, p ≥ 0 and integers q and l.
Type 2: ϕ(a) = 1; ϕ(t) = t−paqtr for p, r ≥ 0 and if q is a multiple of n
then p = 0 or r = 0.

Proof. Suppose that ϕ : BS1,n → BS1,n for n ≥ 2 is an endomorphism.
Then the image of the generators have normal forms as stated in the previous
section, say ϕ(a) = t−kaltm and ϕ(t) = t−paqtr with ϕ(tat−1) = ϕ(an).
Note that the total exponents of the images are

∣∣ϕ(tat−1)
∣∣
t

= (m − k) and
|ϕ(an)|t = n(m− k). Since the total exponents are well defined, n(m− k) =
(m − k) and since n ≥ 2, we can conclude that m − k = 0 which implies
m = k. Thus, any endomorphism of BS1,n for n ≥ 2 must have the action

ϕ(a) = t−kaltk and ϕ(t) = t−paqtr.
If l = 0 then ϕ(a) = 1 and ϕ(t) = t−paqtr, which is an endomorphism

of Type 2. Normal forms require that if q is a multiple of n that p = 0 or
r = 0; otherwise, the relator may be applied and a reduced form will exist.

If l 6= 0 then further restrictions on the exponent of the image of t are
shown below:
Case 1: Assuming k = 0,

al·n = ϕ(a) = ϕ(tat−1) = (t−paqtr) · al · (t−ra−qtp)
Using the relator r times, the right side of the previous equation reduces so
that

al·n = t−pal·n
r
tp
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and conjugating both sides of this equation by tp yields

al·n
p+1

= al·n
r

which implies r = p + 1 since n ≥ 2. This is an endomorphism of Type 1
with ϕ(a) = al and ϕ(t) = t−paqtp+1.
Case 2: Assuming k 6= 0, the general form of a Type 1 endomorphism
can be obtained most readily when following ϕ by the inner automorphism
αtk(g) = tkgt−k and applying the argument in Case 1 to obtain the desired
form. Alternatively, the reader could make a direct argument by examining
9 sub-cases, based on the relationships of k, p and r. �

It is useful to note that nontrivial endomorphisms of Type 2 have a cyclic
image generated by the image of the generator t. It is also useful to note that
endomorphisms of Type 1 respect the total exponent of t for each generator.
For endomorphisms of this type, the image of the generator t is a conjugate
of aqt. More specifically, ϕ(t) = t−p(aqt)tp. This is a useful fact for the
following propositions.

Proposition 2.2. If ϕ : BS1,n → BS1,n is an endomorphism of Type 1,
then ϕ is a monomorphism.

Proof. Let ϕ be any Type 1 endomorphism of BS1,n. Then ϕ(a) = t−kaltk

and ϕ(t) = t−paqtp+1. Suppose that g = t−iastj and ϕ(g) = 1. Then
|ϕ(g)|t = 0. Reducing the image of g to its normal form reveals that i = j
because of this total exponent condition. Hence, g = t−jastj . Thus:

1 = ϕ(g) = ϕ(t−j)ϕ(as)ϕ(tj)

= (t−p(aqt)tp)−j(t−kaltk)s(t−p(aqt)tp)j

= (t−p(aqt)−jtp)(t−k(al)stk)(t−p(aqt)jtp)

= h · als · h−1,

where h = (t−p(aqt)−jtp−k).
Conjugation on both sides of the equation yields al·s = 1. This implies

that l = 0 or s = 0, but if l = 0, then ϕ is not a Type 1 endomorphism.
Therefore, s = 0 and g = 1, as desired. �

Recall that an endomorphism ρ : G → G is a retraction if it has the
property that ρ2(g) = ρ(g) for all g ∈ G. The image of the endomorphism
is called a retract and it is a proper retract [11] if the image is a proper
subgroup.

Proposition 2.3. Let ρ : BS1,n → BS1,n be a nontrivial proper retraction.
Then ρ is an endomorphism of Type 2 such that ρ(t) = t−paqtp+1.

Proof. If ρ is a nontrivial proper retraction, then it cannot be a monomor-
phism which implies ρ cannot be an endomorphism of Type 1. Therefore,
ρ is of Type 2 with ρ(a) = 1 and ρ(t) = t−paqtr. Note that ρ2(t) =
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ρ(ρ(t)) = ρ(t−paqtr) = (t−paqtr)r−p. However, since ρ2(t) = ρ(t), this
implies (t−paqtr)r−p = (t−paqtr)1. Examination of the total exponents on t
reveals that (r− p)2 = (r− p) and thus r− p = 0 or r− p = 1. If r− p = 0,
we obtain the trivial retraction which contradicts the assumption. Thus,
r − p = 1 which implies r = p+ 1, as desired. �

Proposition 2.4. Let ρ : BS1,n → BS1,n be an endomorphism such that
ρ(a) = 1 and ρ(t) = t−paqtp+1. Then ρ is a retraction.

Proof. It is enough to demonstrate that ρ2(g) = ρ(g) for each of the gen-
erators. Note that with the assumptions, ρ2(a) = ρ(1) = 1 = ρ(a) and

ρ2(t) = ρ(ρ(t))

= ρ(t−paqtp+1)

= ρ(t)−p · ρ(a)q · ρ(t)p+1

= ρ(t)−p · (1) · ρ(t)p+1

= ρ(t).

Since the retraction property holds on each of the generators, it must hold
for all group elements, as desired. �

Propositions 2.3 and 2.4 demonstrate that proper retracts of the solvable
Baumslag-Solitar groups are cyclic groups of the form R = 〈t−paqtp+1〉 for
p ≥ 0 and integer q. Furthermore, if p 6= 0, then due to normal forms, we
may assume that gcd(q, n) = 1. This leads to the following proposition:

Proposition 2.5. If g ∈ BS1,n is not the identity element and g lies in

a proper retract, then g = t−paq(1+n+···+ni−1
)tp+i for positive integer i or

g = t−p+ja−q(1+n+···+n−j−1
)tp, for negative integer j.

Proof. If g is in a proper retraction of BS1,n then g can be obtained as a
power of a cyclic generator of the form t−paqtp+1 for p > 0 and integer q or
for p = 0 and integer q with gcd(n, q) = 1. If i is a positive integer then:

g = (t−paqtp+1)i

= t−p(aqt)itp

= t−paq(1+n+···+ni−1
)tp+i, by equation 1.1.

If j is negative then:

g = (t−paqtp+1)j

= (t−p(aqt)tp)j

= t−p+ja−q(1+n+···+n−j−1
)tp, by equation 1.1.

�
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3. Automorphisms of solvable Baumslag-Solitar groups

In classifying automorphisms of the solvable Baumslag-Solitar groups, the
work of Collins and Levin [1] should be duly noted. For the benefit of the
reader, we classify all automorphisms of BS1,n using the terminology stated
above to completely identify all test elements in BS1,n.

Lemma 3.1. An endomorphism ϕ : BS1,n → BS1,n is an automorphism

if and only if l 6= 0 divides some power of n with ϕ(a) = t−kaltk and
ϕ(t) = t−paqtp+1.

Proof. (⇒) First, let ϕ be an automorphism as stated above and consider
the case where k = 0. Consider it’s inverse, say ψ, which is an endomorphism
of Type 1 with the following general form:

ψ(a) = t−αaβtα

ψ(t) = t−γaδtγ+1

Since (ψ ◦ ϕ) (a) = a, t−αaβ·ltα = a by applying the composition when
k = 0. Conjugation on both sides of the equation by tα and repeated use
of the relator tat−1 = an yields aβ·l = an

α
. This implies that β · l = nα

and therefore, l divides a power of n. If k 6= 0, one follows ϕ by the inner
automorphism αtk(g) = tkgt−k and maintains a similar argument to obtain
the desired conclusion.

(⇐) Suppose that β · l = nα for the endomorphism ϕ : BS1,n → BS1,n.
We first consider the endomorphism with k = 0 so that

ϕ(a) = al

ϕ(t) = t−paqtp+1.

The inverse endomorphism ψ = ϕ−1 is given as follows:

ψ(a) = t−αaβtα (3.1)

ψ(t) = t−p−αa−β·qtp+α+1 (3.2)

One can readily obtain that ψ (ϕ (a)) = t−αaβ·ltα = t−αan
α
tα = a by

iteratively applying the alternative formulation of the relator, t−1ant = a.
To show ψ (ϕ (t)) = t requires the reduction of ψ (ϕ (t)) to its normal form
using two distinct applications of equation (1.1) and that tpaβ·qt−p = aβ·q·n

p

through iterative application of the relator. In the case that k 6= 0, we
follow ϕ by the inner automorphism αtk(g) = tkgt−k and provide a similar
argument to obtain the desired conclusion. �

Stated another way, the preceding argument demonstrates that, up to
inner automorphism, an automorphism of BS1,n requires that the image of
the first generator, a, be either itself or a properly chosen power of itself.
Intuitively, this leads to the first example of a test element in BS1,n, given
below.
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Lemma 3.2. If BS1,n = 〈a, t|tat−1 = an〉 then the generator a is a test
element.

Proof. Suppose that ϕ : BS1,n → BS1,n is an endomorphism such that
ϕ(a) = a. Then ϕ is an endomorphism of Type 1 with k = 0 as in Propo-
sition 2.1. The inverse endomorphism ψ will require α = 0 and β = 1 as
in (3.1) and (3.2). Thus, if ϕ(a) = a and ϕ(t) = t−paqtp+1 then the inverse
endomorphism will be given by ϕ−1(a) = a and ϕ−1(t) = t−pa−qtp+1. This
establishes that a is a test element. �

4. Classification of test elements in solvable
Baumslag-Solitar groups

Theorem 4.1. Suppose that g ∈ BS1,n = 〈a, t|tat−1 = an〉 for n ≥ 2 and
that g is not the identity element. Then g is a test element if and only if
the total exponent on t, |g|t = 0.

Proof. (⇐) Suppose that g ∈ BS1,n has the normal form g = t−jamtj with
j ≥ 0,m 6= 0 and that ϕ : BS1,n → BS1,n with ϕ(g) = g. Then ϕ is an

endomorphism of Type 1 (otherwise, ϕ(g) = 1) with ϕ(a) = t−kaltk and
ϕ(t) = t−paqtp+1 for k, p ≥ 0 and integer q. Note that:

t−jamtj = g = ϕ(g) = ϕ
(
t−jamtj

)
.

Reducing the image on the right hand side into its normal form, one obtains:

t−jamtj = t−j−kal·mtj+k.

Conjugation by tj+k on each side of this equation and simplifying yields

am·nk = al·m.

Since m 6= 0, we have l = nk, and by Lemma 3.1, ϕ is an automorphism.
(⇒) We prove via the contrapositive and conversely, suppose that g ∈

BS1,n has a nonzero total exponent in t, say g = t−paqtr, with p, r ≥ 0
and p 6= r. Then g is fixed by the endomorphism defined on the generators
ϕ(a) = an

p−nr+1 and ϕ(t) = aq·(n−1)t. By Lemma 3.1, this endomorphism
is not an automorphism because gcd(np − nr + 1, n) = 1. Thus, g is not a
test element. �

5. Turner’s retract theorem

The retract theorem was initially established by E. C. Turner for finitely
generated free groups when Turner proved that the test elements of free
groups were precisely those elements that were not contained in proper re-
tracts [11]. More recently, the term Turner group has been used to describe
those groups for which being a test element is equivalent to lying outside
all proper retracts such as described by Fine, et. al. [3] and by Snopce and
Tanushevski [10]. Based on the preceding results, we see that the retract
theorem does not hold for the solvable Baumslag-Solitar groups because it
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is clear that the element g = t−4at7 is neither a test element (since |g|t = 3)
nor does it lie in any proper retract for BS1,n, n ≥ 2. In the parlance of
the previously cited literature, the solvable Baumslag-Solitar Groups are not
Turner Groups when n ≥ 2.
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