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Some new results about the
smallest ideal of βS

Neil Hindman and Dona Strauss

Abstract. We provide what we believe is the first nontrivial alge-
braic description of the smallest ideal of the Stone-Čech compactifi-
cation of a discrete semigroup. Specifically, given sets A and B, let
S = R(A,B) = A × B with the discrete topology and the rectangular
semigroup operation (a, b) · (c, d) = (a, d). Then the smallest ideal of βS
is isomorphic (but not homeomorphic) to R(βA, βB). We also deter-
mine exactly the topological center of βS. The minimal left ideals of βS
all have isolated points. We derive several results about βS that must
hold for any semigroup S if the minimal left ideals have isolated points.
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1. Introduction

If S is a discrete space, we take the Stone-Čech compactification βS of
S to be the set of ultrafilters on S with the point x ∈ S being identified
with the principal ultrafilter {A ⊆ S : x ∈ A}. For every subset A of S, let
A = {p ∈ βS : A ∈ p}. The topology of βS is defined by choosing the sets
of the form A as a base for the open sets. Then βS is a compact Hausdorff
space, and, for every subset A of S, A is a clopen subset of βS equal to
c`βS(A). If A ⊆ S, then A∗ = A \A.

By the defining property of the Stone-Čech compactification, every func-
tion f mapping S to a compact Hausdorff space C, has a continuous exten-
sion mapping βS to C. So lim

s→p
f(s), where s denotes an element of S, is

defined for every p ∈ βS. See [5, Section 3.5].
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If (S, ·) is a semigroup, then the operation extends to βS so that (βS, ·)
is a right topological semigroup with S contained in its topological center.
That is, for each p ∈ βS, the function ρp : βS → βS defined by ρp(q) = q · p
is continuous and for each x ∈ S, the function λx : βS → βS defined by
λx(q) = x · q is continuous. So, if p and q are elements of βS, p · q =
lim
s→p

lim
t→q

s · t, where s and t denote elements of S. (This is because, given

s ∈ S, limt→q s · t = s · q since λs is continuous and lims→p s · q = p · q
since ρq is continuous.) A subset A of S is a member of p · q if and only if
{s ∈ S : s−1A ∈ q} ∈ p, where s−1A = {t ∈ S : s · t ∈ A}. Equivalently,
A ∈ p · q if and only if {s ∈ S : s · q ∈ A} ∈ p. See [5, Part I] for an
elementary introduction to the structure of (βS, ·).

As does any compact Hausdorff right topological semigroup, (βS, ·) has
a smallest two sided ideal, K(βS), which is the union of all of the minimal
left ideals of βS and is also the union of all of the minimal right ideals of
βS. If R is a minimal right ideal of βS and L is a minimal left ideal of
βS, then R ∩ L is a group and any two such groups are isomorphic. This
group is called the structure group of βS. Every left ideal of βS contains a
minimal left ideal and every right ideal of βS contains a minimal right ideal.
(Since minimal left ideals are compact, the first assertion is immediate. The
second takes some work [5, Theorem 2.7].)

From a combinatorial point of view, the smallest ideal of βS is very im-
portant. For example, a subset C of S is central if and only if it is a member
of an idempotent in K(βS). As a consequence of that description, one knows
that whenever S is partitioned into finitely many cells, one of them must be
central. And central sets are guaranteed to have substantial combinatorial
structure; for example, in (N,+), a central set must contain solutions to ev-
ery partition regular system of homogeneous linear equations with rational
coefficients.

There are many examples where the algebraic structure of K(βS) is
known precisely. If S is a right zero semigroup (i.e., x · y = y for all x
and y in S), then so is βS and if S is left zero, then so is βS. (See [5,
Exercises 4.2.1 and 4.2.2].) In either case, K(βS) = βS.

For any linearly ordered set S, define x ∨ y = max{x, y} and x ∧ y =
min{x, y}. Then K(βN,∧) = {1} and K(βN,∨) = N∗ = βN \ N with the
operation p ∨ q = q for p, q ∈ N∗. That is, K(βN,∨) = N∗ with the right
zero operation. More generally, if κ is an infinite cardinal, κd is κ with the
discrete topology, and C = {p ∈ βκd : every member of p is cofinal in κ},
then K(κd,∨) = C and C is right zero. (If κ is regular, then C is the set of
uniform ultrafilters on κ.)

These examples (with the possible exception of (N,∧)) are all nice things
to know. But they are all easy exercises to establish. In this paper we
present an explicit algebraic description of K(βS), where S is an arbitrary
rectangular semigroup. While the proofs are not difficult, we don’t think
that they qualify as easy exercises.



SMALLEST IDEAL OF βS 899

Definition 1.1. Let A and B be nonempty sets. The rectangular semigroup
generated by A and B is the set R(A,B) = A×B with the discrete topology
and the operation · defined by (a, b) · (c, d) = (a, d).

Rectangular semigroups arise in K(βS) if one knows that the maximal
groups in K(βS) are trivial. By the Structure Theorem [5, Theorem 1.64],
K(βS) can be described, as a set, as X × G × Y , where X is the set of
idempotents in a chosen minimal left ideal of βS, Y is the set of idempotents
in a chosen right ideal of βS and G is the structure group. Since X is a
left zero semigroup and Y is a right zero semigroup, X × Y is a rectangular
semigroup. In the case in which all the elements in K(βS) are idempotent,
|G| = 1 and K(βS) is algebraically isomorphic to R(X,Y ).

Further, rectangular semigroups are known to play a significant role in the
structure of K(βN,+) (whose maximal groups are far from trivial, since each
one contains a copy of the free group on 2c generators [5, Corollary 7.37]).
In [8], Yevhen Zelenyuk solved a long standing open problem by showing
that there exist idempotents in K(βN,+) whose sum is an idempotent not
equal to either of them by showing that K(βN,+) contains copies of R(A,A)
for any finite nonempty set A. Later, it was shown in [7, Corollary 3.13]
that if |A| = 2c, then K(βN,+) contains an algebraic copy of R(A,A); and
if D is any subsemigroup of K(βN,+) consisting of idempotents, then D
is isomorphic to a subsemigroup of R(A,A). It follows that, if S is any
infinite discrete cancellative semigroup, then R(A,A) occurs in βS, because
βS contains semigroups topologically isomorphic to H, a subsemigroup of
βN which contains all the idempotents of βN [5, Theorem 6.32].

In Section 2, we determine a simple explicit description of an isomorphism
from K

(
β
(
R(A,B)

))
onto R(βA, βB). We also obtain substantial informa-

tion about the minimal left ideals, minimal right ideals, and the topological
center.

It turns out that all minimal left ideals of β
(
R(A,B)

)
have isolated

points. Because of the relationship with minimal dynamical systems, there
is substantial interest in minimal left ideals. For example, for any discrete
semigroup S, the minimal closed invariant subsets of the dynamical system
(βS, 〈λs〉s∈S) are precisely the minimal left ideals of βS and given a mini-
mal left ideal L of βS, up to a homeomorphism respecting the action of S,
(L, 〈λs|L〉s∈S) is the unique universal minimal dynamical system for S [5,
Lemma 19.6 and Theorem 19.10]. We shall see in Theorem 3.13, that the
assumption that a minimal left ideal of βS has an isolated point, is equiva-
lent to a strong recurrence property of the dynamical systems (〈Ts〉s∈S , X).
In Section 3 we obtain several results about semigroups S with the property
that the minimal left ideals have isolated points.
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2. The algebraic structure of K(β(R(A,B)))

We do not require that the sets A and B be infinite, but if they are both
finite, our results are trivial. In the following theorem, we list some of the
simple basic properties of K

(
β
(
R(A,B)

))
.

Theorem 2.1. Let A and B be nonempty discrete sets and let S = R(A,B).
Let π1 : βS → βA and π2 : βS → βB be the continuous extensions of the
projection functions. For x ∈ βA and y ∈ βB, let Rx = {p ∈ βS : π1(p) =
x} and let Ly = {p ∈ βS : π2(p) = y}.

(1) For every p, q, r ∈ βS, p · q · r = p · r.
(2) Let p ∈ βS. The following statements are equivalent.

(a) p ∈ K(βS).
(b) p is an idempotent.
(c) p is a product in βS.

In particular, S ⊆ K(βS).
(3) For p, q ∈ βS, π1(p · q) = π1(p) and π2(p · q) = π2(q).
(4) For x ∈ βA and y ∈ βB, Rx is a right ideal of βS and Ly is a left

ideal of βS.
(5) For every x ∈ βA and every y ∈ βB, |Rx ∩ Ly ∩K(βS)| = 1.
(6) If x ∈ βA, Rx ∩K(βS) is a minimal right ideal of βS.
(7) If y ∈ βB, Ly ∩K(βS) is a minimal left ideal of βS.
(8) For every x ∈ βA, Rx is a minimal right ideal of βS if and only if
|Rx ∩ Ly| = 1 for every y ∈ βB.

(9) For every y ∈ βB, Ly is a minimal left ideal of βS if and only if
|Rx ∩ Ly| = 1 for every x ∈ βA.

(10) The mapping p 7→
(
π1(p), π2(p)

)
is an algebraic isomorphism from

K(βS) onto R(βA, βB).

Proof. (1) If p, q, r ∈ βS, p · q · r = lim
s→p

lim
t→q

lim
u→r

s · t · u = lim
s→p

lim
t→q

lim
u→r

s · u =

lim
s→p

lim
t→q

s · r = lim
s→p

s · r = p · r, where s, t, u denote elements of S.

(2) (a) implies (c) because βS · βS is an ideal of βS. By (1), (c) implies
(b). And (1) also establishes that (b) implies (a) because, if p = p · p ∈ βS
and q ∈ K(βS), then p · p = p · q · p ∈ K(βS).

In particular, S ⊆ K(βS) because every element of S is idempotent.
(3) Note that for s, t ∈ S, π1(s · t) = π1(s) and π2(s · t) = π2(t). If

p, q ∈ βS and s and t denote members of S, π1(p · q) = lim
s→p

lim
t→q

π1(s ·
t) = lim

s→p
lim
t→q

π1(s) = lim
s→p

π1(s) = π1(p) and π2(p · q) = lim
s→p

lim
t→q

π2(s · t) =

lim
s→p

lim
t→q

π2(t) = lim
s→p

π2(q) = π2(q).

(4) Let x ∈ βA and y ∈ βB. Then π1 : S → A and π2 : S → B are
surjective so Rx 6= ∅ and Ly 6= ∅. By (3), Rx is a right ideal of βS and Ly
is a left ideal of βS.

(5) Let p1 and p2 be elements of Rx ∩ Ly ∩K(βS). We shall show that
p1 = p2.
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Let P1 ∈ p1 and P2 ∈ p2. It suffices to show that P1 ∩ P2 6= ∅. Let
P ′1 = {s ∈ S : s · p1 ∈ P 1} and P ′2 = {s ∈ S : s · p2 ∈ P 2}. Since p1 and p2
are idempotent, P ′1 ∈ p1 and P ′2 ∈ p2. This implies that π1[P

′
1]∩ π1[P ′2] 6= ∅,

because both these sets are members of x. So we can choose a ∈ A and
b1, b2 ∈ B such that (a, b1) ∈ P ′1 and (a, b2) ∈ P ′2.

Let P ′′1 = {t ∈ S : (a, b1)t ∈ P1} and P ′′2 = {t ∈ S : (a, b2)t ∈ P2}. Then
P ′′1 ∈ p1 and P ′′2 ∈ p2. So π2[P

′′
1 ] ∩ π2[P ′′2 ] 6= ∅, because both these sets are

members of y. So we can choose c1, c2 ∈ A and d ∈ B such that (c1, d) ∈ P ′′1
and (c2, d) ∈ P ′′2 . Then (a, b1)(c1, d) = (a, d) ∈ P1 and (a, b2)(c2, d) =
(a, d) ∈ P2.

(6) If x ∈ βA, Rx contains a minimal right ideal R. We claim that
R = Rx ∩ K(βS). To see this, assume that p ∈ (Rx ∩ K(βS)) \ R. If
y = π2(p), p ∈ Rx ∩Ly ∩K(βS). Since R∩Ly 6= ∅, there is a point q in this
set. So Rx∩Ly∩K(βS) contains two distinct points p and q – contradicting
(5).

(7) This is proved in the same way as (6).
(8) Let x ∈ βA. If Rx is a minimal right ideal in βS, then Rx ⊆ K(βS),

and so |Rx ∩ Ly| = 1 for every y ∈ βB by (5).
Conversely, suppose that |Rx ∩ Ly| = 1 for every y ∈ βB. If Rx is not

a minimal right ideal in βS, then Rx 6⊆ K(βS) by (6). So there exists
p ∈ Rx \K(βS). Let π2(p) = y. Since Ly meets the right ideal Rx ∩K(βS),
there exists a point q ∈ Rx ∩ Ly ∩K(βS). Then p and q are distinct points
in Rx ∩ Ly – a contradiction.

(9) This is proved in the same way as (8).
(10) Let φ : K(βS) → R(βA, βB) be defined by φ(p) = (π1(p), π2(p)).

For every x ∈ βA and every y ∈ βB, Rx and Ly are respectively a right
ideal and a left ideal in βS (by (4)), and so Rx ∩ Ly ∩ K(βS) 6= ∅. So φ
is surjective. It follows from (5) that φ is injective, and it follows from (3)
that φ is a homomorphism.

�

As a set, R(βA, βB) = βA×βB, and can naturally be given the product
topology. It is reasonable to ask whether K(βS) is also homeomorphic to
R(βA, βB) with this topology. We shall see in Theorem 2.3 below that
K(βS) 6= βS. Since S ⊆ K(βS), K(βS) is dense in βS, and so K(βS) is
not compact.

In fact, more generally, for any semigroup S, K(βS) cannot be home-
omorphic to βA × βB for any infinite discrete spaces A and B. This is
because by [4, Exercises 4K1 and 14Q1], the product of two infinite com-
pact F-spaces cannot be an F-space and if K(βS) were homeomorphic to
βA× βB, it would be a compact subset of βS, and therefore an F-space.

Theorem 2.2. Let A and B be nonempty sets, let S = R(A,B), let a ∈ A
and let b ∈ B. Then Ra is a minimal right ideal of βS and Lb is a minimal
left ideal of βS. Consequently, Ra is a right zero semigroup and Lb is a left



902 NEIL HINDMAN AND DONA STRAUSS

zero semigroup. Furthermore, the minimal left ideals of βS have isolated
points.

Proof. We show that Ra ⊆ K(βS) so that by Theorem 2.1(6), Ra is a
minimal left ideal of βS. Let p ∈ Ra. By Theorem 2.1(2) it suffices to show
that p is a product. Since p ∈ Ra, {a} × B = π−11 [{a}] ∈ p. Let b ∈ B. We
show that (a, b) · p = p by showing that p ⊆ (a, b) · p so let P ∈ p. Then
({a} ×B) ∩ P ⊆ (a, b)−1P so P ∈ (a, b) · p.

Similarly, Lb is a minimal left ideal of βS.
That Ra is a right zero semigroup and Lb is a left zero semigroup now

follows from the isomorphism defined in Theorem 2.1(10).
To see that the minimal left ideals of βS have isolated points, let a ∈ A

and y ∈ βS. Let L = Ly ∩K(βS), which is a minimal left ideal of βS by
Theorem 2.1(7). Then Ra meets L in a unique point, by Theorem 2.1(5).
This is an isolated point of L, because Ra = π−11 [{a}] is an open subset of
βS. �

We now determine precisely the conditions under which Rx and Ly are
minimal right or left ideals.

Theorem 2.3. Assume that A and B are infinite, A ⊆ B or B ⊆ A,
S = R(A,B), and x ∈ (A ∩B)∗. Then there are points in Rx ∩ Lx that are
not products. In particular, Rx is not a minimal right ideal of βS and Lx is
not a minimal left ideal of βS.

Proof. Pick a net 〈aι〉ι∈D in A∩B which converges to x. Pick a cluster point
p of the net 〈(aι, aι)〉ι∈D in βS. Then π1(p) = π2(p) = x so p ∈ Rx ∩ Lx.
We shall show that p is not a product in βS so by Theorem 2.1(2), neither
Rx nor Lx is contained in K(βS).

Suppose p = q · r for some q and r in βS. Let D = {(a, a) : a ∈ A ∩ B}.
Then D ∈ p so {s ∈ S : s−1D ∈ r} ∈ q. Pick s = (a, b) ∈ S such that
s−1D ∈ r. Since π2(r) = π2(p) = x ∈ B∗, A × {a} /∈ r. Pick t = (c, d) ∈
S \ (A × {a}) such that t ∈ s−1D. Then s · t = (a, d) ∈ D and d 6= a, a
contradiction. �

Recall that if κ is a cardinal, an ultrafilter p is κ-complete if and only if
whenever A ⊆ p and |A| < κ, one has that

⋂
A ∈ p. Thus, if 0 < κ ≤ ω,

every ultrafilter is κ-complete. A cardinal κ is Ulam-measurable if there
exists an ω+-complete non-principal ultrafilter on a set of size κ. (For any
cardinal κ, κ+ is the smallest cardinal greater than κ.) And κ is measurable
if there exists a κ-complete non-principal ultrafilter on a set of size κ. By [3,
Theorem 8.31], the first Ulam-measurable cardinal is the first uncountable
measurable cardinal. By the theorem on page 193 of [3], any measurable
cardinal is strongly inaccessible (so the existence of uncountable meaurable
cardinals cannot be established in ZFC).
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It is a routine exercise to establish that an ultrafilter p on a set B is
κ-complete if and only if whenever |X| < κ and f : B → X, there is some
member of p on which f is constant.

Theorem 2.4. Let A and B be nonempty sets, let S = R(A,B), let κ = |B|,
and let x ∈ βA. The following statements are equivalent.

(a) x is κ+-complete.
(b) Rx is a minimal right ideal of βS.

Proof. (a) ⇒ (b). Assume that x is κ+-complete. We shall show that, if
y ∈ βB, |Rx ∩ Ly| = 1. It will then follow from Theorem 2.1(8) that Rx is
a minimal right ideal of βS.

So assume that there are two disinct points p1 and p2 in Rx ∩ Ly. Then
we can partition S into disjoint sets D1 and D2 for which D1 ∈ p1 and
D2 ∈ p2. Observe that, for each b ∈ B, the sets {a ∈ A : (a, b) ∈ D1} and
{a ∈ A : (a, b) ∈ D2} form a disjoint partition of A. Let B1 = {b ∈ B : {a ∈
A : (a, b) ∈ D1} ∈ x} and B2 = {b ∈ B : {a ∈ (a, b) ∈ D2} ∈ x}. Then
B1 and B2 form a disjoint partition of B. We may assume without loss of
generality that B1 ∈ y.

For every b ∈ B1, {a ∈ A : (a, b) ∈ D2} /∈ x. Since |B1| ≤ κ, it follows
that

⋃
b∈B1

{a ∈ A : (a, b) ∈ D2} = π1[π
−1
2 [B1] ∩ D2] /∈ x. Since B1 ∈ y,

π−12 [B1] ∈ p2 and so π−12 [B1] ∩D2 ∈ p2. This contradicts our asssumption
that π1(p2) = x.

(b) ⇒ (a) Assume that Rx is a minimal right ideal of βS and suppose
that x is not κ+-complete. Pick f : A → B such that f is not constant on
any member of x. We extend f to a continuous function from βA to βB,
which we shall also denote by f . Let y = f(x). Since f is not constant on
any member of x we have y ∈ B∗. Let 〈aι〉ι∈D be a net in A which converges
to x in βA. Let q be a cluster point of the net

〈(
aι, f(aι)

)〉
ι∈D in βS. Since

π1(q) = x we have that q ∈ Rx so q ∈ K(βS) and thus, by Theorem 2.1(2),
q is an idempotent. Note that π2(q) = y.

Let E =
{(
a, f(a)

)
: a ∈ A

}
. Then E ∈ q = q · q so {s ∈ S : s−1E ∈

q} ∈ q. Pick s = (a, b) ∈ S such that s−1E ∈ q. Since π2(q) = y 6= f(a),
{t ∈ S : π2(t) 6= f(a)} ∈ q. Pick t = (c, d) ∈ s−1E such that d 6= f(a). Then
(a, d) = (a, b) · (c, d) ∈ E, a contradiction. �

Theorem 2.5. Let A and B be nonempty sets, let S = R(A,B), let µ = |B|,
and let y ∈ βB. The following statements are equivalent.

(a) y is µ+-complete.
(b) Ly is a minimal left ideal of βS.

Proof. The proof that (a) ⇒ (b) is a right-left switch of the corresponding
part of the proof of Theorem 2.4.

(b) ⇒ (a) Assume that Ly is a minimal left ideal and suppose that y
is not µ+-complete. Pick f : B → A such that f is not constant on any
member of y. Denote also by f the continuous extension of f taking βB
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to βA. Observe that f(y) ∈ A∗. Let 〈bι〉ι∈D be a net in B converging
to y. Let q be a cluster point in βS of 〈(f(bι), bι)〉ι∈D. Then π2(q) = y so
q ∈ Ly ⊆ K(βS) and so by Theorem 2.1(2), q = q·q. Note that π1(q) = f(y).
Let E = {(f(b), b) : b ∈ B}. Then E ∈ q and so {s ∈ S : s−1E ∈ q} ∈ q.
Choose s = (a, b) such that s−1E ∈ q.

Let C = {(c, d) ∈ S : f(d) 6= a}. Then C ∈ q because otherwise we
would have f

(
π2(q)

)
= f(y) = a – contradicting the fact that f(y) ∈ A∗.

So we can choose (c, d) ∈ C ∩ s−1E. But then s · (c, d) = (a, d) /∈ E – a
contradiction.

�

Recall that the topological center of a right topological semigroup T is
{p ∈ T : λp is continuous}. We now characterize the topological center of
R(A,B).

Theorem 2.6. Let A and B be nonempty sets, let S = R(A,B), let p ∈ βS,
let κ = |B|, and let x = π1(p). The following statements are equivalent.

(a) λp is continous.
(b) For every q ∈ βS, the operation on βS is jointly continuous at (p, q).
(c) x is κ+-complete.
(d) For all y ∈ βB, |Rx ∩ Ly| = 1.
(e) Rx is a minimal right ideal of βS.
(f) p · βS is closed in βS.
(g) Rx ∩K(βS) is closed in βS.

Proof. The equivalence of (c) and (e) is Theorem 2.4, the equivalence of (d)
and (e) is Theorem 2.1(8), (b) trivially implies (a), and (a) trivially implies
(f).

(d) ⇒ (b). Assume that for all y ∈ βB, |Rx ∩ Ly| = 1 and let q ∈ βS.
It suffices to let 〈(pι, qι)〉ι∈D be a net in βS × βS converging to (p, q) and
show that 〈pι ·qι〉ι∈D converges to p ·q. Note that 〈pι〉ι∈D converges to p and
〈qι〉ι∈D converges to q. We will show that the only cluster point of 〈pι ·qι〉ι∈D
is p · q.

So let r be a cluster point of 〈pι · qι〉ι∈D. Passing to a subnet, we may
presume that 〈pι · qι〉ι∈D converges to r. Now 〈π1(pι · qι)〉ι∈D converges to
π1(r). But for ι ∈ D, π1(pι · qι) = π1(pι) and 〈π1(pι)〉ι∈D converges to
π1(p) = x. So π1(r) = π1(p · q) = π1(p) = x.

Let y = π2(q). As above, one has π2(r) = π2(p · q) = π2(q) = y. So
{r, p · q} ⊆ Rx ∩ Ly and thus r = p · q.

(a) ⇒ (c). Assume that λp is continuous and suppose that x is not κ+-
complete. Let f : A → B be a function which is not constant on any
member of x and denote also by f its continuous extension from βA to βB.
Define g : A → S by g(a) =

(
a, f(a)

)
and denote also by g its continuous

extension from βA to βS. Put y = f(x) and q = g(x). We claim that
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y = π2
(
g
(
π1(p)

))
. To see this, π2

(
g
(
π1(p)

))
= π2

(
g(x)

)
= π2

(
g( lim
a→x

a)
)

=

lim
a→x

π2
(
a, f(a)

)
= y, where a denotes an element of A.

Since λp is continuous, p ·q = lim
a→x

p ·
(
a, f(a)

)
, where a denotes an element

of A.
Linearly order B by <. Since f is not constant on any member of x, y is

not principal, so for any c ∈ B, either {b ∈ B : b < c} ∈ y or {b ∈ B : b >
c} ∈ y. So

(i) {c ∈ B : {b ∈ B : b < c} ∈ y} ∈ y or
(ii) {c ∈ B : {b ∈ B : b > c} ∈ y} ∈ y.

We may assume that (i) holds, because, if it does not, it would hold with
the ordering < on B reversed. So let C = {c ∈ B : {b ∈ B : b < c} ∈ y} and
assume that C ∈ y.

Let H = {(a, d) ∈ S : d < f(a)}. We show now that H ∈ p · q. Since
π2
(
g
(
π1(p)

))
= y, C ∈ y, and for (a, b) ∈ S, π2

(
g
(
π1
(
(a, b)

)))
= f(a) we

have that P = {(a, b) ∈ S : f(a) ∈ C} ∈ p. To see that H ∈ p · q it
suffices to show that P ⊆ {s ∈ S : s−1H ∈ q}, so let s = (a, b) ∈ P . Then
f(a) ∈ C so {d ∈ B : d < f(a)} ∈ y. Since π2(q) = y, pick Q ∈ q such that
π2[Q] ⊆ {d ∈ B : d < f(a)}. Given (c, d) ∈ Q, (a, b) · (c, d) = (a, d) ∈ H as
required.

However, we also have lim
a→x

p ·
(
a, f(a)

)
= p · q ∈ H. so {c ∈ A : p ·(

c, f(c)
)
∈ H} ∈ x. Also π2

(
g(x)

)
= y and C ∈ y so pick X ∈ x such that

π2
[
g[X]

]
⊆ C. Pick c ∈ X such that p ·

(
c, f(c)

)
∈ H. Pick P1 ∈ p such that

P1 ·
(
c, f(c)

)
⊆ H. Since c ∈ X, f(c) ∈ C so {d ∈ B : d < f(c)} ∈ y. Pick

P2 ∈ p such that π2 ◦ g ◦ π1[P2] ⊆ {d ∈ B : d < f(c)}. Pick (a, b) ∈ P1 ∩ P2.
Since (a, b) ∈ P1,

(
a, f(c)

)
= (a, b) ·

(
c, f(c)

)
∈ H so f(c) < f(a). Since

(a, b) ∈ P2, f(a) < f(c). This contradiction completes the proof.
(f)⇒(a) Assume that p · βS is closed in βS. By Theorem 2.1(2), p · βS ⊆

K(βS). Let q ∈ βS and let 〈qι〉ι∈D be a net in βS coinverging to q. We shall
show that p·q is the only cluster point of the net 〈p·qι〉ι∈D, so let r be a cluster
point of 〈p · qι〉ι∈D. By passing to a subnet, we may presume that 〈p · qι〉ι∈D
converges to r. Since each p · qι ∈ p ·βS which is closed, r ∈ p ·βS ⊆ K(βS).
For each ι ∈ D, π1(p ·qι) = π1(p) = x so π1(r) = π1(p ·q) = x. Let y = π2(q).
Then for ι ∈ D, π2(p · qι) = π2(qι) so 〈π2(p · qι)〉ι∈D cohnverges to π2(q) so
π2(r) = π2(q) = y and π2(p · q) = π2(q) = y. Then p · q and r are both in
Rx ∩Ly ∩K(βS). Since this set is a singleton, by Theorem 2.1(5), p · q = r.

(g)⇒(a) Assume that Rx ∩K(βS) is closed in βS. As in the preceding
paragraph, let 〈qι〉ι∈D be a net in βS which converges to an element q in
βS and assume that 〈p · qι〉ι∈D converges to r. By Theorem 2.1(2), p · qι ∈
Rx∩K(βS) for every ι ∈ D, and so r ∈ K(βS). We have π1(p·q) = π1(r) = x
and π2(p · q) = π2(r) = π2(q). Let y = π2(q). Since Rx ∩ Ly ∩K(βS) is a
singleton, by Theorem 2.1(5), p · q = r.
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(e)⇒ (g) If Rx is a minimal right ideal of βS, Rx ∩K(βS) = Rx, which
is closed in βS since Rx = π−11 [{x}]. �

Note that the equivalent conditions of Theorem 2.5 neither imply that λp
is continuous, nor are they implied by the assumption that λp is continuous.
To see this assume that |A| = µ ≥ ω and |B| = κ ≥ ω. Then it is easy to
choose p so that π1(p) is in A so is κ+-complete and π2(p) is not µ+-complete
and vice versa.

Corollary 2.7. Let A and B be nonempty sets, let S = R(A,B), and
assume that κ = |B| is infinite and |A| is not Ulam-measurable. Then the
topological center of βS is {p ∈ βS : π1(p) ∈ A}.
Proof. There are no κ+-complete nonprincipal ultrafilters on A. �

As a consequence of Theorem 2.6, if x is not κ+-complete, then none of
Rx ∩K(βS), K(βS), or p · βS can be closed, where π1(p) = x. We will see
in Corollary 2.9 that if A and B are infinite, then K(βS) is not a Borel set.

In the proof of the following theorem, we use the fact from [6, Lemma
3.1] that if S is any countably infinite discrete set and B is a Borel subset
of βS, then there is a set B of compact subsets of βS with |B| ≤ c such that
B =

⋃
B.

Theorem 2.8. Let S = R(N,N). Then K(βS) is not Borel. If x ∈ N∗,
then Rx ∩K(βS) is not Borel. If p ∈ βS and π1(p) ∈ N∗, then p · βS is not
Borel.

Proof. Let x ∈ N∗. We claim that if C is a compact subset of Rx ∩K(βS),
then π2 assumes only finitely many values on C. Suppose instead we have a
sequence 〈pn〉∞n=1 in C on which π2 is injective. Let p be a cluster point of
the sequence 〈pn〉∞n=1. Let M = {n ∈ N : π2(pn) 6= π2(p)}. Then p ∈ c`{pn :
n ∈ M}. Also p ∈ K(βS) so by Theorem 2.1(2), p ∈ βS · p = c`(S · p).
Therefore by [5, Theorem 3.40] either {pn : n ∈ M} ∩ (βS · p) 6= ∅ or
c`{pn : n ∈ M} ∩ (S · p) 6= ∅. In the first case we have some m ∈ M and
q ∈ βS such that pm = q ·p. But then π2(pm) = π2(q ·p) = π2(p), so m /∈M .
In the second case, we have some r ∈ c`{pn : n ∈ M} and some s ∈ S such
that r = s · p. Now Rx = π−11 [{x}] so is compact and thus π1(r) = x. But
π1(r) = π1(s · p) = π1(s) ∈ N. This contradiction establishes the claim.
Thus if C is a Borel subset of Rx∩K(βS), then π2 takes on at most c values
on C. But for each y ∈ βN, Rx ∩ Ly ∩ K(βS) 6= ∅ and so π2 takes on 2c

values on Rx ∩ K(βS). Thus we have established that Rx ∩ K(βS) is not
Borel. Since Rx is compact this also establishes that K(βS) is not Borel.

Now let p ∈ βS such that x = π1(p) ∈ N∗. By Theorem 2.1(2), p · βS ⊆
K(βS) so p · βS is a right ideal of βS contained in Rx ∩K(βS), which is a
minimal right ideal by Theorem 2.1(6), so p ·βS = Rx∩K(βS) which is not
Borel. �

Corollary 2.9. Let A and B be infinite sets and let S = R(A,B). Then
K(βS) is not Borel.
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Proof. Pick countably infinite A′ ⊆ A and B′ ⊆ B and let S′ = R(A′, B′).
By Theorem 2.1(2) S ⊆ K(βS) so βS′ ∩K(βS) 6= ∅. Thus by [5, Theorem
1.65] K(βS′) = βS′∩K(βS). By Theorem 2.8, K(βS′) is not Borel, so since
βS′ is compact, K(βS) cannot be Borel. �

3. Semigroups with isolated points in minimal left ideals

We saw in the last section that the minimal left ideals in βR(A,B) have
isolated points. In this section we establish several results that apply to any
such semigroup. As we have already noted, since all minimal left ideals of
βS are homeomorphic, if one of them has isolated points, they all do.

Lemma 3.1. Let S be a semigroup, let L be a minimal left ideal of βS, let
q be an isolated point of L, and let p be the identity of q · βS ∩ L. Then
{s ∈ S : s · q = q} ∈ p.

Proof. Pick A ⊆ S such that A ∩ L = {q}. Let B = {s ∈ S : s · q = q}.
We claim that B ∈ p. Suppose instead that S \ B ∈ p. Then q = p · q ∈
S \B · q = c`

(
(S \ B) · q

)
. Pick s ∈ S \ B such that s · q ∈ A. Then

s · q ∈ A ∩ L = {q}, a contradiction. �

Theorem 3.2. Let S be a semigroup and assume that βS has a minimal
left ideal with an isolated point.

(1) If L is any minimal left ideal of βS and q is an isolated point of L,
then the minimal right ideal q · βS is closed in βS.

(2) All maximal subgroups of βS are finite.
(3) If L is any minimal left ideal of βS and q is an isolated point of L,

then every point of the group q · βS ∩ L is isolated in L.
(4) Let R be a minimal right ideal of βS. If some r ∈ R is isolated in

the minimal left ideal βS · r then every q ∈ R is isolated in βS · q.

Proof. (1) Pick A ∈ q such that A ∩ L = {q}. Let p be the identity of the
group G = q ·βS∩βS ·q. Let B = {s ∈ S : s ·q = q}. By Lemma 3.1, B ∈ p.
For s ∈ B, let Ts = {x ∈ βS : s · x = x} and let T =

⋂
s∈B Ts. Then q ∈ T .

Each Ts is a right ideal of βS and if x ∈ βS \ Ts, D ∈ s · x, and C ∈ x such

that D ∩ C = ∅, then s−1D ∩ C is a neighborhood of x missing Ts. Thus T
is a closed right ideal of βS. Further, for x ∈ T , ρx is constantly equal to x
on B so p · x = x. Therefore T ⊆ p · βS = q · βS, so T = q · βS.

(2) Since the maximal subgroups of K(βS) are all isomorphic, it suffices
to show that some maximal subgroup is finite. Let L be a minimal left ideal
of βS and let q be an isolated point in L. By (1) the minimal right ideal
q · βS is closed in βS so the maximal group G = q · βS ∩ L is closed in βS.
Further, for each x ∈ G, the restriction of ρx to G is a homeomorphism so
G is homogeneous. By [5, Theorem 6.38], βS does not contain an infinite
compact homogeneous subspace so G is finite.

(3) Let L be a minimal left ideal of βS, let q be an isolated point of L,
and let G = q · βS ∩ L. Let x ∈ G and suppose that x is not isolated in L.
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Pick a net 〈xι〉ι∈D in L \ {x} which converges to x. Pick y, z ∈ G such that
x · y = q and q · z = x. Then 〈xι · y〉ι∈D is a net in L converging to q so
eventually xι ·y = q and thus eventually xι ·y ·z = q ·z = x. Now x ·y ·z = x
so y · z = p, the identity of G. So eventually xι · p = x. But p is a right
identity for L so eventually xι = x, a contradiction.

(4) Let R be a minimal right ideal of βS. Assume we have r ∈ R which is
isolated in the minimal left ideal J = βS · r. By (3), every point of R ∩ J is
isolated in J . Now let q ∈ R, let L = βS ·q, and let p be the identity of R∩L.
By [5, Theorem 2.11(c)], the restriction of ρp to J is a homeomorphism from
J onto L and by [5, Theorem 2.11(b)], ρp[R ∩ J ] = R ∩ L. �

Lemma 3.3. Let S be a semigroup, let L be a minimal left ideal of βS, let
q be an isolated point of L, and let p be the identity of q · βS ∩ L. Then

(1) {s ∈ S : s · p = p} ∈ p.
(2) If s · p = p, then {t ∈ S : s · t = t} ∈ p.
(3) {s ∈ S : s · p = p} ∈ r for every idempotent r ∈ p · βS.

Proof. (1) By Theorem 3.2(3), p is isolated in L. Also p · βS = r · βS so
Lemma 3.1 applies.

(2) [5, Theorem 3.35]
(3) For every s ∈ S and every idempotent r ∈ p · βS, s · p = p if and only

if s · r = r, because p · r = r and r · p = p. So (3) follows from Lemma 3.1
and Theorem 3.2(4). �

Theorem 3.4. Let S be a countably infinite semigroup. Assume that βS
has a minimal left ideal L with an isolated point q, and the identity p of
the group q · βS ∩ L is in S∗. Then K(βS) contains a compact right zero
Gδ semigroup C. Furthermore, every idempotent in the minimal right ideal
p · βS is in C.

Proof. Let B = {s ∈ S : s ·p = p} and for s ∈ B, let Bs = {t ∈ S : s ·t = t}.
By Lemma 3.3, B ∈ p and for each s ∈ B, Bs ∈ p. Let C = B ∩

⋂
s∈B Bs.

Then p ∈ C so C ∩ K(βS) 6= ∅. We claim that C is right zero. (Having
shown that, given q ∈ C we have that p · q = q so q ∈ K(βS), so C is a Gδ
subset of K(βS).) So let q, r ∈ C. To see that q · r = r, let A ∈ r. We claim
that B ⊆ {s ∈ S : s−1A ∈ r}. Let s ∈ B. We claim that Bs ∩ A ⊆ s−1A.
Let t ∈ Bs ∩A. Then s · t = t so t ∈ s−1A.

Let r be any idempotent in p ·βS. Since r ·p = p, {s ∈ S : s−1B ∈ p} ∈ r.
Further, if s−1B ∈ p and t ∈ s−1B ∩ B, then p = s · t · p = s · p so s ∈ B
and therefore B ∈ r. Furthermore, since p · r = r, s · r = s · p · r = p · r = r
for every s ∈ B. It follows from [5, Theorem 3.35] that Bs ∈ r for every
s ∈ B. �

Theorem 3.5. Let S be a countably infinite semigroup and assume that
K(βS) ⊆ S∗. Then K(βS) contains a compact Gδ right zero semigroup if
and only if every minimal left ideal of βS has an isolated point.

Proof. The sufficiency follows from Theorem 3.4.
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For the necessity let C be a compact Gδ subset of K(βS) such that q·r = r
for all q and r in C. By [5, Theorem 3.36], the interior U of C in S∗ is
nonempty. Pick p ∈ U and let L = βS · p. We claim that U ∩ L = {p}.
Let x ∈ U ∩ L. Since x is an idempotent in L, p · x = p. Since x ∈ C,
p · x = x. �

The next result involves a notion of largeness stronger than the notion
of being strongly central , which was introduced in [1]. A subset A of a
semigroup S is strongly central if and only if for every minimal left ideal
L of βS, there is an idempotent in A ∩ L. As the name would suggest,
any strongly central set is central (which means it is a member of some
idempotent in K(βS)). It must also be syndetic which is characterized by
the fact that A ∩ L 6= ∅ for every minimal left ideal L of βS. We shall use
the notion of a subset of a semigroup S being piecewise syndetic, which is
equivalent to being a member of an ultrafilter in K(βS). A combinatorial
definition of this property can be found in [5, Definition 4.38].

We shall say that a subset A of S is hypersyndetic if and only if there is
a minimal right ideal R of βS such that A is a member of every idempo-
tent in R. This property is stronger than being strongly central. (It is at
least superficially weaker than the property of being very strongly syndetic,
introduced in [1, Definition 2.10].)

We shall see that, if the minimal left ideals of S have isolated points, S
is rich in equations of the form s · t = t.

Theorem 3.6. Let S be a semigroup, let J be a minimal left ideal of βS,
and let q be an isolated point of J . Let R = q · βS and let E(R) = {r ∈
R : r · r = r}. Let A =

{
a ∈ S :

(
∀r ∈ E(R)

)
(a · r = r)

}
and for a ∈ A,

let Ba = {t ∈ S : a · t = t}. Then E(R) ⊆ A ∩
⋂
a∈ABa. Therefore A is

hypersyndetic and for each a ∈ A, Ba is hypersyndetic.

Proof. Let p ∈ E(R). We show that A ∈ p and for each a ∈ A, Ba ∈ p.
Given r ∈ E(R), we have that r ∈ p · βS so p · r = r. Thus, if a · p = p, then
a · r = r so A = {a ∈ S : a · p = p}. Now q is isolated in J = βS · q so by
Theorem 3.2(4), p is isolated in βS · p and consequently by Lemma 3.3(1),
A ∈ p. And by Lemma 3.3(2), Ba ∈ p. �

Theorem 3.7. Let S be a discrete semigroup. For each s ∈ S, let Bs =
{t ∈ S : s · t = t}.

(1) If each minimal left ideal of βS has an isolated point, there is a
hypersyndetic subset B of S such that Bs is hypersyndetic for every
s ∈ B.

(2) Each minimal left ideal of βS has an isolated point if and only if
there is a piecewise syndetic subset B of S for which {Bs : s ∈ B}
has the finite intersection property.

Proof. (1) follows immediately from Theorem 3.6. The necessity of (2)
follows from (1). For the sufficiency, assume that B is a piecewise syndetic
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subset of S for which {Bs : s ∈ B} has the finite intersection property. We
can choose p ∈ B∩K(βS). Note that p ·βS is the minimal right ideal of βS
to which p belongs. Choose x ∈

⋂
s∈B Bs. Then s · x = x for every s ∈ B,

and so q · x = x for every q ∈ B. Let R = {y ∈ βS : (∀q ∈ B)(q · y = y)}.
Since R is non-empty, it is a right ideal of βS. Also R is contained in the
minimal right ideal p · βS, because p ∈ B, and therefore R = p · βS. Since
p ∈ R ∩B, p is an idempotent. Let L be the minimal left ideal of βS which
contains p. If y ∈ B ∩ L, then y · p = p. Since L · p = L, y ∈ L · p and so
y · p = y and therefore y = p. Thus L ∩ B = {p} and p is an isolated point
of L. �

Definition 3.8. Let (S, ·) be a semigroup with |S| = κ.

(a) A set A ⊆ S is a left solution set if and only if there exist a and b in
S such that A = {x ∈ S : a · x = b}.

(b) A set A ⊆ S is a right solution set if and only if there exist a and b
in S such that A = {x ∈ S : x · a = b}.

(c) For a ∈ S, Fix(a) = {x ∈ S : x · a = a}.
(d) S is weakly left cancellative if and only if every left solution set is

finite.
(e) S is weakly right cancellative if and only if every right solution set

is finite.
(f) S is very weakly left cancellative if and only if whenever A is a set

of left solution sets with |A| < κ, one has |
⋃
A| < κ.

(g) S is very weakly right cancellative if and only if whenever A is a set
of right solution sets with |A| < κ, one has |

⋃
A| < κ.

In [2, Lemma 3.8(1)] it was shown that if S is both very weakly left
cancellative and very weakly right cancellative and there is a finite bound
on {Fix(a) : a ∈ S}, then the minimal left ideals of βS do not have isolated
points. In Theorem 3.9 we strenghten the left hypothesis, but significantly
weaken the right hypothesis.

Theorem 3.9. Assume that S is weakly left cancellative and there is a
finite bound on |Fix(a)| for a ∈ S. Let L be a minimal left ideal of βS.
Then L ⊆ S∗ and L has no isolated points in the relative topology.

Proof. It suffices to show that there is some minimal left ideal with no
isolated points, and any set with no isolated points is automatically con-
tained in S∗. By [5, Theorem 4.31] S∗ is left ideal of βS, and so there
is a minimal left L of βS contained in S∗. If L has an isolated point, it
follows from Theorem 3.6 that there is a very strongly central subset B
of S for which {Bs : s ∈ B} has the finite intersection property, where
Bs = {t ∈ S : s · t = t}. Since B is a member of an ultrafilter in
L, B is infinite. Since {Bs : s ∈ B} has the finite intersection property,
{|Fix(a) : a ∈ S} cannot be bounded. �
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Corollary 3.10. If S is weakly left cancellative and there is a finite bound
on |Fix(a)| for a ∈ S, then K(βS) ⊆ S∗.

Proof. K(βS) =
⋃
{L : L is a minimal left ideal of βS}. �

We note that Theorem 3.9 is not a consequence of [2, Lemma 3.8(1)].
That is, the hypotheses of Theorem 3.9 can be satisfied by a semigroup S
which is not very weakly right cancellative.

Theorem 3.11. Let κ be an infinite cardinal. There is a semigroup S with
|S| = κ such that S is left cancellative, S is not very weakly right cancellative,
and for each a ∈ S, Fix(a) = ∅.

Proof. Let D = {xσ : σ ≤ κ} ∪ {yσ,τ : τ < σ ≤ κ}, where these symbols
are all distinct. Let S be the set of all words over D with no occurrences of
yσ,τxτ . If u, v ∈ S and it is not the case that there exist τ < σ ≤ κ such
that u ends in yσ,τ and v begins with xτ , then u ·v is ordinary concatenation
of words. If we have τ < σ ≤ κ such that u ends in yσ,τ and v begins with
xτ , then let σ1 = σ, σ0 = τ , and assume we have m ∈ N, and σm > σm−1 >
. . . > σ1 and z ∈ S ∪{∅} such that z does not end in yη,σm for some η > σm
and u = zyσm,σm−1 · · · yσ1,τ . Pick w ∈ S ∪ {∅} such that v = xτw and define
u · v = zxσmw.

It is an exercise (unfortunately quite tedious) to verify that the opera-
tion defined is associative. It is an easy exercise to verify that S is left
cancellative.

Let A = {s ∈ S : sx0 = xκ}. Then A is a right solution set and {yκ,σyσ,0 :
0 < σ < κ} ⊆ A so |A| = κ and thus S is not very weakly right cancellative.

Let a ∈ S and suppose we have u ∈ S such that u · a = a. The con-
catenation of u with a is a word longer than a so we must have u =
zyσm,σm−1 · · · yσ1,τ and a = xτw as in the definition of the operation so
zxσmw = xτw, a contradiction since σm > τ . �

We see now that one can have K(βS) ⊆ S∗ and yet have infinite minimal
left ideals with isolated points.

Theorem 3.12. Let S = {(a, b) ∈ N × N : a < b} and for (a, b) and (c, d)
in S, define (a, b) · (c, d) = (a, b ∨ d). Then K(βS) ⊆ S∗ and the minimal
left ideals of βS are infinite and have isolated points.

Proof. It is routine to verify that S is both weakly left cancellative and
weakly right cancellative. Therefore by [5, Theorem 4.36], S∗ is an ideal of
βS so K(βS) ⊆ S∗.

Let π1 : βS → βN and π2 : βS → βN be the continuous extensions of π1
and π2 respectively.

Given p, q ∈ βS we have that π1 ◦ ρq and π1 agree on S so π1(p · q) =
π1(p). If s, t ∈ S and π2(s) ≤ π2(t), then π2(s · t) = π2(t). Consequently if
π2(q) ∈ N∗, then π2 ◦ ρq is constantly equal to π2(q) on S so that for all p
in βS, π2(p · q) = π2(q).
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Let x ∈ βN and let y ∈ N∗. Let Rx = {p ∈ βS : π1(p) = x} and let
Ly = {p ∈ βS : π2(p) = y}. Then Rx 6= ∅ since π1 is surjective and Ly 6= ∅
since π2[S] = N \ {1}. Therefore Rx is a right ideal of βS and Ly is a left
ideal of βS.

As in the proof of Theorem 2.1(3) we have that If a ∈ N, y ∈ N∗, and

p ∈ Ra ∩ Ly, then Ra ∩ Ly = {p} and {a} ×B ∩ Lx = {p}. In particular,
minimal left ideals of βS have isolated points.

Since Ra ∩ Rb = ∅ if a 6= b we have that each minimal left ideal of βS is
infinite. �

If S is as in Theorem 3.12, theorems analogous to those proved in the
preceding section for β(R(A,B)) can be proved for βS. For example, p 7→
(π1(p), π2(p)) defines an algebraic isomorphism from K(βS) onto R(βN,N∗).

(X, 〈Ts〉s∈S) is called a dynamical system if S is a discrete semigroup, X
is a compact Hausdorff space, for each s ∈ S, Ts is a continuous mapping
from X to itself and, for each s, t ∈ S, Ts ◦ Tt = Ts·t. In this case, the map

s 7→ Ts from S into XX extends to a continuous map from βS into XX

where XX has the product topology. If p ∈ βS, we shall denote the image
of p under this map by Tp. So Tp is a mapping from X to itself. For each
p, q ∈ βS, Tp ◦ Tq = Tp·q ([5, Remark 19.13]).

Theorem 3.13. Let S be a discrete semigroup. Then the following state-
ments are equivalent:

(1) Each minimal left ideal of βS has an isolated point;
(2) If (X, 〈Ts〉s∈S) is a dynamical system and X is non-empty, there

exists x ∈ X such that {s ∈ S : Ts(x) = x} is hypersyndetic.

Proof. (1) ⇒ (2). Assume that (1) holds. Pick a minimal left ideal L of
βS By Theorem 3.2(4) there is an idempotent p which is isolated in L. Let
A = {s ∈ S : s · p = p} and let R = p · βS. Then by Lemma 3.3(3), for each
idempotent r ∈ R, A ∈ r.

Now let (X, 〈Ts〉s∈S) be a dynamical system with X 6= ∅ and pick y ∈ X.
Let x = Tp(y) and note that Tp(x) = Tp

(
Tp(y)

)
= Tp(y) = x. To see that

{s ∈ S : Ts(x) = x} is hypersyndetic, it suffices to show that A ⊆ {s ∈ S :
Ts(x) = x}, so let s ∈ A. Then Ts(x) = Ts

(
Tp(y)

)
= Ts·p(y) = Tp(y) = x.

(2) ⇒ (1). Assume that (2) holds. Let L be a minimal left ideal of
βS. By applying (2) to the dynamical system (L, 〈λs|L〉s∈S), we see that
there exists q ∈ L such that {s ∈ S : s · q = q} is hypersyndetic. Let
B = {s ∈ S : s · q = q} and for s ∈ B, let Bs = {t ∈ S : s · t = t}. By [5,
Theorem 3.35], Bs ∈ q for every s ∈ B. It follows from Theorem 3.7(2) that
L has an isolated point. �
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